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Extremal solutions of a general marginal problem

Petra Linhartová

Abstract. The characterization of extremal points of the set of probability measures with
given marginals is given in the general context of a marginal system. The sets of marginal
uniqueness are studied and an example is added to illustrate the theory.
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1. Introduction.

We shall say that L = {X
qj
−→ Xj | j ∈ J} is a marginal system if X, Xj are Po-

lish spaces, qj : X −→ Xj Borel measurable maps for j ∈ J (called projections here)
and where J is a nonempty index set. Denote by M(X) (M1(X)) a set of bounded
Borel signed (probability) measures defined on X and define a map MARG(P ) :
M(X) −→

⊗

j∈J M(Xj) by MARG(P ) = (Pj | j ∈ J), where Pj = qj ◦ P are the

image measures that will be called marginals (or projections) of P . Hoffmann–
Jørgensen [7] considers a marginal system of probability measures, i.e. the system

{X
qj
−→ (Xj , Qj)| j ∈ J}, where Qj ∈ M1(Xj) are fixed,

and presents necessary and sufficient conditions for the existence of a P ∈ M1(X),
such that MARG(P ) = (Qj , | j ∈ J). (See also [6].) Our problem is to characterize
extremal solutions of the above equation.
We shall say, that P ∈ M1(X) is a simplicial measure w.r.t. a marginal system

L if it is an extremal point of the (nonempty) set

L(P ) = {Q ∈ M1(X)| MARG(Q) = MARG(P )}.

We shall say, that a Borel set B ⊂ X is a set of marginal uniqueness (w.r.t. a margi-
nal system L) (or shortly a MU-set) if

Q(B) = R(B) = 1, MARG(Q) = MARG(R)⇒ R ≡ Q

holds for every R, Q ∈ M1(X).

∗Presented by Prof. Josef Štěpán. We regret to have to say that Dr. Petra Linhartová, née
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It is easy to see that each set L(P ) (P ∈ M1(X)) is a nonempty convex set and
contains a simplicial measure only if the projections qj are continuous mappings,
as in this case the set L(P ) is weakly closed. In addition, the boundary of the set,
exL(P ), is rich enough to make valid the Choquet theorem for any P ∈ M1(X).
The same conclusion is true in the case when qj are continuous for j ∈ J \S, where
S is at most countable subset of J . The argument for this is as follows:
For i ∈ S there is a uniformity of Xi which makes the set U(Xi) of bounded

uniformly continuous functions onXi separable. Denote Ui a countable dense subset
of U(Xi), put D =

⋃

i∈S{f ◦ g| f ∈ Ui} and observe that each L(P ) is a nonempty
convex set closed w.r.t. the coarsest topology of M1(X) for which the maps Q −→
∫

X h dQ are continuous for any h ∈ C(X)∪D. Using [14] or [12], we get the desired
conclusion.
The problem of characterization of simplicial measures has a remarkable history

(see [3]). In the case of

L = {X = X1 × X2
qj
−→ Xj , j = 1, 2},

where qj are continuous projections, Štěpán [13] has proved that P ∈ M1(X) is

a simplicial measure if and only if ess inf dP ′

d|n|
= 0 for any n ∈ M(X), MARG(n) = 0,

n 6= 0, where P ′ is the absolutely continuous part of P w.r.t. |n|.
Our aim is to extend this result to general marginal systems L. For this purpose

we specify the Douglas density theorem [4] to our situation. Fix a marginal system
L and denote

(1)

D = {f : X −→ R| f(x) =
∑

j∈α

fj(qj(x)), α ⊂ J a finite set ,

fj ∈ C(Xj) for j ∈ α}.

Observe that D is a linear set of bounded Borel measurable functions defined on
X , containing all constant functions, with the property

(2)
MARG(P ) = MARG(Q) iff

∫

X

f dP =

∫

X

f dQ

for any f ∈ D, P, Q ∈ M(X).

Hence, according to Douglas (1964), we have

Lemma. P is a simplicial measure if and only if D is dense in L1(P ).

In connection with Lemma, let us observe that Hahn–Banach Theorem and Riesz
Representation Theorem yield the following characterization of compact MU-sets.

Theorem 1. Consider a marginal system L with all the projections qj continuous
and K ⊂ X a compact set. Then K is a MU-set if and only if D ↾K is a dense set
in C(K) (w.r.t. the supremum norm).
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In 1957, Arnol’d and Kolmogorov proved that for any n ∈ N there exists a set
S ⊂ R

2n+1 homeomorphic to < 0, 1 >n, such that

C(S) = {f : S −→ R, f(x1, . . . , x2n+1) =
2n+1
∑

j=1

fj(xj)

for some fj ∈ C(R), 1 ≤ j ≤ 2n+ 1},

and provided thus very nontrivial examples of sets of marginal uniqueness. Indeed,
according to Theorem 1 the set S is a MU-set when considering the marginal sys-

tem {R
2n+1 πj

−→ R, j = 1, 2, . . . , 2n + 1} with the canonical projections πj . From
Theorem 1 we can also see that < 0, 1 >n is a MU-set w.r.t. the marginal system

{< 0, 1 >n qj
−→ R, j = 1, 2, . . . , 2n+1}, where qj = πj(h) and h is a homeomorphism

of < 0, 1 >n and S.

2. A characterization of simplicial measures.

Consider a marginal system L = {X
qj
−→ Xj | j ∈ J}, a P ∈ M1(X) and a Borel

set B ⊂ X . Denote

M0(B) ={n ∈ M(X)| MARG(n) = 0, |n|(∁B) = 0},

M(P, B) ={n ∈ M(X)| |n| ↾B≤ b · P for a b ∈ R
+},

M1(P, B) =M1(X) ∩ M(P, B),

K0 ={K ⊂ X a compact set |n = 0 for every n ∈ M0(X) ∩ M(P, ∁K)},

K1 ={K ⊂ X a compact set |n ↾K= 0 for any n ∈ M0(X) ∩ M(P, ∁K)}.

Now, we are prepared to generalize Theorem 1 of Štěpán [13].

Theorem 2. Let L = {X
qj
−→ Xj | j ∈ J} be a marginal system. The following

statements are equivalent:

(a) P is a simplicial probability measure on X ,
(b) sup{P (K)|K ∈ K0} = 1,
(c) sup{P (K)|K ∈ K1} = 1,

(d) ess inf ( dP ′

d|n|
) = 0 for any n ∈ M0(X), n 6= 0,

(e) ess inf ( dP ′

d|n|
) = 0 for any n ∈ M0(X), 0 6= n ≪ P ,

(f) ess sup | dn
dP

| = +∞ for any n ∈ M0(X), 0 6= n ≪ P ,
(g) g ∈ L∞(P ), EP [g| qj ] = 0, j ∈ J implies that g = 0 a.s. [P ],

where the essential infima and suprema are defined w.r.t. the dominating measures
and P ′ denotes an absolutely continuous part of P w.r.t. the |n|. In (g) by EP [g| qj ]
we have denoted the conditional expectation of g w.r.t. P relative to the σ-algebra

σ(qj) = {[qj ∈ Bj ], Bj Borel set in Xj}.
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Corollary. If P is a simplicial measure then

sup{P (K), K is a compact MU–set } = 1.

The assertion follows easily from (c) as eachK ∈ K1 is easily seen to be a compact
MU-set. Let us also observe that any of the conditions (a)–(g) implies that

(3)

P is completely determined by its restriction to the

σ–algebra σ(qj , j ∈ J) = σ(
⋃

j∈J

σ(qj)).

Proof: (a)⇒ (b)X is a separable metric space, so there exists an equivalent metric
d, such that the space U(X) of bounded functions on X uniformly continuous w.r.t.
d is separable w.r.t. the usual supremum norm. Denote {f1, f2, ...} a countable
dense subset of U(X).

According to Lemma there exist functions ai
n ∈ D (the set defined by (1)) for

i, n ∈ N, such that

ai
n → fi, as n → ∞ a.s. w.r.t. P

and in L1(P ) for i ∈ N.

Take ε > 0. The Jegoroff’s theorem implies the existence of compact sets Ki ⊂ X ,
such that

P (Ki) > 1− ε2−i,

ai
n → fi, uniformly on Ki, n → ∞, i ∈ N.

Denote K =
⋂∞

i=1Ki. Then P (K) > 1 − ε and ai
n → fi uniformly on K, for

n → ∞, i ∈ N. Now we only need to show that the compact set K, we have just
constructed, is an element of K0. So, let n ∈ M(P, ∁K)∩M0(X), it follows from (2)
that n(a) = 0 for a ∈ D. We may write that

|n(fi)| = |n(fi)− n(ai
k)| ≤ |n|(1K |ai

k − f |) + |n|(1∁K |ai
k − fi|) ≤

≤ |n|(1K |ai
k − fi|) + b · P (|ai

k − fi|)

holds for i, k ∈ N and some b ∈ R. The limit of the first term as k → ∞ is zero,
because ai

k converge to f uniformly on K, the limit of the second one is zero too,

as ai
k converge to f in L1(P ). Thus we have proved that n(fi) = 0 for all i ∈ N,

hence n = 0.
(b) ⇒ (c) Obvious.
(c) ⇒(d) Suppose that (c) holds for a P ∈ M1, assume that there are n ∈

M0(X), n 6= 0, and δ > 0, such that ess inf hn ≥ δ, where hn ∈ [ dP ′

d|n|
]. Take K ∈ K1

an arbitrary set. It is easy to see that

|n| ↾∁K≤ δ−1P ′ ≤ δ−1P,
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hence |n| is dominated by P on ∁K, which means that n ∈ M(P, ∁K). As K ∈ K1,
we have n ↾K= 0 and therefore P ′(K) = 0. But it is in contradiction with (c).
(d) ⇒ (e) Obvious.
(e) ⇒ (f) Consider n ∈ M0(X), 0 6= n ≪ P and observe that

∣

∣

∣

∣

dn

dP

∣

∣

∣

∣

=
d|n|

dP
=

d|n|

dP ′ a.s. [P ]

holds as |n| and (P −P ′) are singular measures. Hence, | dn
dP

| · dP ′

d|n|
= 1 holds almost

everywhere w.r.t. both P ′ and |n| and thus it follows from (e) that ess sup | dn
dP | =

+∞, when the essential supremum is defined w.r.t. P ′. This, of course, implies (f).
(f) ⇒ (g) Consider g ∈ L∞(P ) such that E[g| qj ] = 0 for each j ∈ J . Define

n ∈ M(X) by dn = g · dP . It is easy to see that the signed measure n vanishes at
each set in

⋃

j∈J σ(qj), hence n ∈ M0(X). According to (f) we get n = 0 and the

validity of implication (g).
(g)⇒ (a) Assume that P is not a simplicial measure. By Hahn–Banach Theorem

and Lemma above there is g ∈ L∞, P [g 6= 0] > 0, such that

(4)

∫

X
g · f dP = 0 holds for any f ∈ D.

As C(Xj) is a dense set in L1(qj◦P ) for any j ∈ J , we may see that (4) is equivalent
to E[g| qj ] = 0 for j ∈ J which contradicts the implication (g). �

To illustrate the theory, we have presented, let us consider a marginal system

L = {X
p
−→ Y, X

q
−→ Z} and a measure P ∈ M1(X), such that

P [(p, q) ∈ S] = 1 and P [p = y, q = z] > 0 for (y, z) ∈ S

holds for a finite set S ⊂ Y ×Z. Using (g) we are able to prove that P is a simplicial
measure if and only if (see [9])

(5)
P =

h
∑

j=1

αjεxj
for some xj ∈ X

and αj > 0 with h = cardS

and

(6)
there is no finite sequence (y1, z1), . . . , (y2n, z2n) of distinct points

in S such that y1 = y2, z2 = z3, . . . , y2n−1 = y2n, z2n = z1 – a cycle .

Indeed, if P is a simplicial measure then according to (3) P is completely de-
termined by its values in the sets [p = y, q = z], (y, z) ∈ S. Hence, these sets
are atoms of P , which implies that P has a form of (5). Now, assume that there
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is a cycle (y1, z1), . . . , (y2n, z2n) in S. Without loss of generality, assume that
card{y1, . . . , y2n} = card{z1, . . . , z2n} = n. Define g ∈ L∞(P ) by

g =

2n
∑

i=1

(−1)i+1P [p = yi, q = zi] · I[p=yi, q=zi]

and observe that E[g| p] = E[g| q] = 0. Indeed, if, for example, 1 ≤ i ≤ 2n is
odd, then P [p = yi] = P [p = yi, q = zi] + P [p = yi, q = z2i+1] implies that
E[g| p = yi] = 0. Using (g) we arrive to contradiction.
To finish our reasoning, assume that a measure P defined by (5) is not simplicial.

According to (g) there is a g ∈ L∞, P [g 6= 0] > 0 such that E[g| p] = E[g| q] = 0.
Now, it is easy to construct a cycle in S by induction:
We start with a (y1, z1) ∈ S, such that E[y| p = y1, q = z1] > 0. As E[g| p] = 0,

we may find (y1, z2) ∈ S, such that E[g| p = y1, q = z2] < 0. Now, E[g| q] = 0
implies the existence of (y3, z2) ∈ S with E[g| p = y3, q = z2] > 0 . . . etc. Continu-
ing this procedure we construct a sequence (yi, zi) ∈ S which necessarily contains
a cycle segment (yj , zj), (yj+1, zj+1), · · · , (yj+l, zj+l).
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[2] Beneš V., Štěpán J., The support of extremal probability measures with given marginals, In:
Math. Stat. and Prob. Theory A (1987), 33–41.
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