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On entropy-like functionals and codes

for metrized probability spaces II

Miroslav Katětov

Abstract. In Part I, we have proved characterization theorems for entropy-like functionals
δ, λ, E, ∆ and Λ restricted to the class consisting of all finite spaces P ∈ W, the class of all
semimetric spaces equipped with a bounded measure. These theorems are now extended
to the case of δ, λ and E defined on the whole ofW, and of ∆ and Λ restricted to a certain
fairly wide subclass of W.

Keywords: regular code, dyadic expansion, entropy

Classification: 94A17

In Part I of this paper, published in 1990 (see[1]), we have introduced the func-
tionals δ, λ, E, ∆ and Λ, defined on W, the class of all semimetrized measure
spaces, by means of a suitably extended and modified concept of a code. It has
been shown that these functionals restricted to WF , the class of all finite P ∈ W,
can be characterized as the largest ones satisfying certain simple conditions.
In Part II we prove that the corresponding theorems remain valid, with certain

modifications, for δ, λ and E defined on all semimetrized measure spaces. As for ∆
and Λ, we also prove characterization theorems, though only for ∆ and Λ restricted
to a certain subclass of W.
For reasons not connected with mathematics, this Part II has been written two

years later than Part I and appears only now. In view of this fact, it seems necessary
to recall a number of definitions from Part I, correcting at the same time several
misprints and minor errors, and also adding some further definitions. This is done
in Section 5, the first section of this Part II.
Section 6 contains several lemmas and the proof of the fact that the entropies

Ê, E and E∗, defined in different ways, do coincide on W. Section 7 contains the
characterization theorems for δ, λ and E defined onW. In Section 8, we prove the
restricted versions of characterization theorems for ∆ and Λ.

5.

In this section, some definitions and notational conventions (and also two lem-
mas) from Part I are restated, in particular if the pertinent formulations in Part I
contain a misprint or error (there is a number of these; fortunately, they do not
affect the subsequent propositions). We also introduce some additional concepts
(see 5.2, 5.5–5.9 below). The terminology and notation of Part I is retained with
few exceptions explicitly stated (see 5.2, 5.6 and 5.9).
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5.1. We list some terms and notational conventions from Part I, referring to rel-
evant passages in Part I or to the definitions restated in the present section. —
The basic notation is contained in 1.1–1.3. The definitions of semimetric spaces,
W -spaces and some related concepts are in 1.4.–1.8 (for a concept of a subspace
see, however, 5.2 below). Recall that the class of all semimetric spaces (respectively,
W -spaces) is denoted by S (respectively,W). The diameter of a space was defined
in 1.9. — For Hamming spaces, codes, etc. see 5.10 below. — The symbols ε ∗ P
and ε⊙ P are defined in 1.17. Recall that if P = 〈Q, ̺〉 ∈ S or P = 〈Q, ̺, µ〉 ∈ W

and ε > 0, then ε⊙ P is 〈Q, σ〉 or 〈Q, σ, µ〉, respectively, where σ(x, y) = ̺(x, y) if
̺(x, y) > ε and σ(x, y) = 0 if ̺(x, y) ≤ ε.

For δP , λP , etc. see 2.8, for δf and λf see 1.20; for E(ε, P ), Ê(P ), etc. see
5.14 below. The definitions of a strictly branching and well-fitting code are restated
in 5.15. For dyadic expansions see 2.23, 2.24 and also 5.9 below.

5.2. The definition (1.4) of a subspace of P ∈ S is retained. However, for W -
spaces we will have subspaces in a wide and in a narrow sense; the latter will be
called pure.

Definition. Let P = 〈Q, ̺, µ〉 ∈ W. If S ∈ W, S = 〈Q, ̺, ν〉, dom ν = domµ
and ν ≤ µ, we will say that S is a subspace of P in the wide sense, abbreviated
subspace (w.s.). If S = 〈Q, ̺, ν〉 is a subspace (w.s.) of P = 〈Q, ̺, µ〉 and there is
a µ̄-measurable set T ⊂ Q such that ν(X) = µ̄(X ∩ T ) for all X ∈ domµ, we will
say that S is a pure subspace of P . — Thus a subspace (of P ∈ W) in the sense of
1.7 is now called a pure subspace.

5.3. Notation. Let P = 〈Q, ̺, µ〉 ∈ W. If f : Q→ R is µ̄-measurable, µ̄{q ∈ Q :
fq < 0} = 0 and

∫
Q f dµ < ∞, then f · µ will denote the measure X 7→

∫
X f dµ

defined on domµ, and f · P will denote the W -space 〈Q, ̺, f · µ〉. — Clearly f · P
is a subspace (w.s.) of P iff µ̄{q ∈ Q : fq > 1} = 0.
If T ⊂ Q is µ̄-measurable, then T · µ will denote the measure X 7→ µ̄(T ∩ X)

defined on domµ, and T · P will denote the pure subspace 〈Q, ̺, T · µ〉 of P .

5.4. Fact. If S is a subspace (w.s.) of P ∈ W, then there is a function f such that
S = f · P .

5.5. Notation. If Pt = 〈Q, ̺, νt〉, t ∈ T , T finite, are subspaces (w.s.) of a W -
space, then Σ(Pt : t ∈ T ) will denote the W -space 〈Q, ̺,Σ(νt : t ∈ T )〉.

5.6. A partition of a semimetric space is defined in the usual way (see 1.8). For
W -spaces, we introduce partitions in a wide and in a narrow sense; the latter will
be called pure.

Definition. Let P ∈ W. If Ut, t ∈ T , T finite, are subspaces (w.s.) of P and
Σ(Ut : t ∈ T ) = P , then U = (Ut : t ∈ T ) will be called a partition of P in the
wide sense, abbreviated partition (w.s.). If, in addition, Ut are pure subspaces of P ,
then U will be called a pure partition of P . — Thus partitions (of P ∈ W) in the
sense of 1.8 are now called pure partitions. Observe that, e.g., “U is a pure partition
of P ∈ S ∪ W” means that either P ∈ S and U is a partition of P or P ∈ W and
U is a pure partition of P .
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5.7. Notation. If P ∈ S∪W, U = (Ut : t ∈ T ), T finite, and Ut are subspaces of
P (subspaces (w.s.) if P ∈ W), then we put d(U) = max(d(Ut) : t ∈ T ).

5.8. In Part I, we used the concept of a totally bounded space P ∈ S∪W without
giving the definition. It will now be stated explicitly.

Definition. A space P ∈ S ∪ W is called totally bounded, if d(P ) < ∞ and, for
every ε > 0, there is a pure partition U of P with d(U) < ε.

5.9. Similarly as with subspaces and partitions, we will have, forW -spaces, dyadic
expansions in a wide and in a narrow sense, whereas the concept of a dyadic expan-
sion of a semimetric space or of a set remains unchanged (see 2.23).

Definition. Let P be aW -space. LetD satisfy the conditions stated in 2.23 and let
D′ and D′′ have the meaning described in 2.23. We will say that P = (Pu : u ∈ D)
is a dyadic expansion of P in the wide sense, abbreviated dyadic expansion (w.s.)
or merely d.e. (w.s.), if Pu are subspaces (w.s.) of P , Pu0+Pu1 = Pu for all u ∈ D′

and P∅ = P . If, in addition, all Pu are pure subspaces, then P will be called a pure
dyadic expansion, abbreviated pure d.e. — Observe that a dyadic expansion (of
P ∈ W) in the sense of 2.23 will now be called a pure dyadic expansion.
In 2.24, we have introduced, for any FW -space P and any pure d.e. Z = (Pu :

u ∈ D) of P , the symbol E(P,Z) denoting Σ(H(wPu0, wPu1)d(Pu) : u ∈ D′). This
notation will now be extended: for a dyadic expansion (w.s.) Z = (Pu : u ∈ D)
of a W -space P , we put E(Z) = E(P,Z) = Σ(H(wPu0, wPu1)d(Pu) : u ∈ D′). —
Later on (see 7.7), we will also introduce the notation λZ, δZ, where Z is a dyadic
expansion.

5.10. In the present Part II, only one Hamming space, namely K∞ (see 1.11
and 1.12) and only ε-codes in K∞ will be considered. We state the pertinent
definitions restricted to this special case.

We put A = {0, 1} × R+, K∞ = 〈A∗, π, λ〉, where A∗ =
⋃
(An : n ∈ N) and,

for every x ∈ A, x = 〈πx, λx〉. We put |K∞| = A∗. If x, y ∈ A∗, x = (xi : i < m),
y = (yj : j < n), we put τ(x, y) = Σ(λxi ∧ λyi : i < m ∧ n, xi 6= yi). Then K∞ is
a Hamming space in the sense of 1.11 and τ is a semimetric on |K∞|.

5.11. We now restate the definition of an ε-code (in K∞). If P ∈ S ∪ W, ε ≥ 0,
then a mapping f : |P | → A∗ will be called an ε-code (or an approximative code)
of P (in K∞), if (1) fP is finite, (2) if P = 〈Q, ̺, µ〉 ∈ W, then all f−1u,
u ∈ fP , are µ̄-measurable, (3) if u, v ∈ fP , then d(f−1{u, v}) ≤ τ(u, v) ∨ ε, (4)
if u · (a), u · (b) ∈ [fP ], πa = πb, then a = b (recall that, for any ordered set X and
any Y ⊂ X , [Y ] denotes the set of all x ∈ X such that x ≺ y for some y ∈ Y ). —
A 0-code will be called an exact code.

5.12. To introduce the concept of a regular ε-code, some notation from 2.2 and
2.3 is needed. For the reader’s convenience, we restate the pertinent notational
conventions, correcting some misprints occurring in 2.2. Let us note that the nota-
tion described below concerns an arbitraryM∗ and an arbitrary semimetric onM∗;
however, it will be used only for the case of M = A and ̺ = τ (see 5.10).
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If M is a set, S ⊂M∗, x ∈ [S], then

(I) br(x, S) denotes the set of all b ∈M such that x · (b) ∈ S;
(II) Br(x, S) denotes the set of all z ∈M∗ such that

(1) x · z ∈ [S], |z| ≥ 1,
(2) br(x · z′, S)| = 1 whenever z′ ≺ z, ∅ 6= z′ 6= z,
(3) br(x · z, S)| 6= 1;

(III) if u ∈ [S], x ≺ u, x 6= u, then β(x, u, S) denotes the (unique) z ∈ M∗ such
that
(1) x · z ≺ u, |z| ≥ 1,
(2) |br(x · z′, S)| = 1 if z′ ≺ z, ∅ 6= z′ 6= z,
(3) x · z = u or |br(x · z, S)| 6= 1;
if x = u, we put β(x, u, S) = ∅.

If M is a set, S ⊂ M∗, ̺ is a semimetric on M∗, then we put, for x, y ∈ [S],
̺′S(x, y) = ̺(x′, y′), where x′ = β(x ∧ y, x, S), y′ = β(x ∧ y, y, S). Then ̺′S is

a semimetric on [S], denoted often simply by ̺′. — If X ⊂ [S], we put d′(X) =
d′S(X) = d(〈X, ̺

′〉).

5.13. An ε-code of a space P ∈ S∪W is called regular (see 2.4), if d(f−1{u, v}) ≤
d′(Br(s, fP )) ∨ ε whenever u, v ∈ fP , s ≺ u ∧ v and |br(s, fP )| 6= 1.

5.14. The notation from 2.11. 2.12 and 2.13 will now be given.
Let f be an ε-code of P = 〈Q, ̺, µ〉 ∈ W. Then

(1) B(f) = {u ∈ [fP ] : |br(u, fP )| = 2};
(2) if u ∈ B(f), then E(u, f) = H(µ̄S, µ̄T ) · τ ′(s, t), whereBr(u, fP ) = {s, t},

S = {x ∈ P : u · s ≺ fx}, T = {x ∈ P : u · t ≺ fx};
(3) E(f) = Σ(E(u, f) : u ∈ B(f));
(4) for ε > 0, E(ε, P ) = inf(E(f) : f is a regular ε-code of P );

(5) Ê(P ) = sup(E(ε, P ) : ε > 0).

Note that Ê(P ) is called the coding entropy (or simply the entropy) of P .

5.15. Recall (see 2.17) that an η-code f of P ∈ S ∪ W is called (1) strongly
branching, if B(f) = [fP ] \ fP , (2) well-fitting, if, for every u ∈ B(f), d{x ∈ P :
u ≺ fx} = d′(Br(u, fP )) = λ(s), where s ∈ Br(u, fP ).

5.16. Since there is an error (not affecting the subsequent assertions) in 2.18, we
state it here in the correct form.

Fact. Every strongly branching well-fitting ε-code of a space P ∈ S∪W is regular.
If, in addition, d(f−1u) = 0 for all u ∈ fP , then f is exact.

5.17. In 2.20, there are also some misprints and errors in the formulation of the
lemma and in its proof. Therefore, we now state the lemma in a modified form and
present its proof. Let us note that some technical details of the proof are omitted.
Recall that λf =

∫
(λ ◦ f) dµ if P = 〈Q, ̺, µ〉 ∈ W.

Lemma. Let f be a regular ε-code of P ∈ S ∪ W. Then there exists a strongly
branching, well-fitting regular ε-code g of P such that

(1) for every x ∈ P , λ(gx) ≤ λ(fx),
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(2) δg ≤ δf ,
(3) if P ∈ W, then λg ≤ λf , E(g) ≤ E(f),
(4) there is a bijection ψ : (fP ∪B(f))→ [gP ] such that

(a) for all u1, u2 ∈ fP ∪B(f), u1 ≺ u2 iff ψu1 ≺ ψu2, hence ψ(fP ) = gP ,

(b) g−1(ψv) = f−1v for all v ∈ fP .

Proof: I. We are going to construct a strongly branching regular ε-code h of P
and a mapping ψ such that (1)–(4) are satisfied (with h instead of g).

Let M denote the set of all 〈u, s〉 such that u ∈ B(f), s ∈ Br(u, fP ). Choose
a mapping η : M → {0, 1} such that if 〈u, s〉, 〈u, t〉 ∈ M , s 6= t, then η〈u, s〉 6=
η〈u, t〉.
For every u ∈ fP ∪ B(f), we define ψu as follows. Let (zi : i < k) = (zi(u) :

i < k(u)) be the strictly increasing sequence of all z ∈ fP ∪B(f) such that z ≺ u.
For each i < k there is exactly one si = si(u) such that zisi = zi+1. For i < k, we
put vi = 〈η〈zi, si〉, d

′(Br(zi, fP ))〉 ∈ A∗, and we put ψu = (vi : i < k). Finally, we
put hx = ψ(fx) for every x ∈ P . It is easy to prove that h is a strongly branching
regular ε-code of P in K∞ and that h and ψ satisfy (1)–(4), with g replaced by h.

II. Define g as follows. If x ∈ P , hx = (vi : i < k), put gx = (ui : i < k), where
ui ∈ A, πui = πvi, λui = d{x ∈ P : vi ≺ fx}. It is easy to see that g is a strongly
branching well-fitting regular ε-code of P satisfying (1)–(4). �

6.

6.1. Notation. A) If P = (Pu : u ∈ D) is a dyadic expansion of a space
P ∈ W ∪ S, we put P ′′ = (Pv : v ∈ D′′). — B) In this section, (1) if U is
a partition (w.s.) of P ∈ W, then η(U) denotes the infimum of all E(P), where P
is a d.e. (w.s.) of P such that P ′′ refines U , (2) if U is a pure partition of P ∈ W,
then η∗(U) denotes the infimum of all E(P), where P is a pure d.e. of P such that
P ′′ refines U .

6.2. Proposition. If P ∈ WF , then E
∗(P ) = sup{η∗(U) : U is a pure partition

of P} = E(P ) = sup{η(U) : U is a partition (w.s.) of P}.

Proof: Since E(P ) = E∗(P ) for every P ∈ WF , by 2.31, we have only to show
that E∗(P ) = sup(η∗(U) : . . . ), E(P ) = sup(η(U) : . . . ).
Let P = 〈Q, ̺, µ〉. Put V = ({q} · P : q ∈ Q). By definition (2.24), E∗(P ) =

η∗(V). Evidently, V refines every pure partition U of P , hence η∗(U) ≤ η∗(V) and
therefore the supremum in question is equal to η∗(V), hence to E∗(P ).

We are going to show that E(P ) = sup{η(U) : U is a partition (w.s.) of P}.
Clearly, it is sufficient to prove that E(P ) = sup{η(U) : U is a partition (w.s.)
of P , U refines V}. Let U = (Ut : t ∈ T ) be a partition (w.s.) of P refining V . We
can assume that U is of the form (bqk{q} · P : q ∈ Q, k ∈ K(q)). We denote by

ψ(U) the infimum of all E(P), where P is a d.e. (w.s.) of P and P ′′ is equal (up
to indexing) to U , and we denote by P △ U the FW -space 〈T, σ, ν〉, T = {〈q, k〉 :
q ∈ Q, k ∈ K(q)}, obtained from P by splitting (see 2.28). It is easy to see that
ψ(U) is equal to E∗(P △ U). Hence ψ(U) is equal to E∗(P ); this follows easily
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from E∗(P ) = E(P ) for P ∈ WF . Since η(U) = inf{ψ(T ) : T refines U}, we get
η(U) = E∗(P ) for every partition (w.s.) U refining V . �

6.3. We are going to consider the functionals E∗ and E defined on the class of
all W -spaces. These functionals have been introduced in [2] (the notation in [2] is
C∗

E and CE). In Part I of the present article, the definitions of E
∗(P ) and E(P )

have been given only for P ∈ WF and in a form different from, though equivalent
to that in [2]; see 2.24 and 2.28.
The functionals E∗ and E on W can be defined in various ways. We choose to

define them here by transforming 4.29 in [2] to a definition. The advantage of this
procedure lies in the fact that E∗ and E introduced in this manner are immediately
seen (due to 6.2) to coincide on WF with E

∗ and E introduced in 2.24 and 2.28.

6.4. Definition. If P is a W -space, we put E∗(P ) = sup{η∗(U) : U is a pure
partition of P}, E(P ) = sup{η(U) : U is a partition (w.s.) of P}.

6.5. By 6.2, E∗ and E defined above coincide on WF with E
∗ and E defined in

2.24 and 2.28, respectively. We are now going to prove that, for every P ∈ W,

E∗(P ) and E(P ) coincide and are equal to the coding entropy Ê(P ) introduced
in 2.13. To this end, we shall need a number of lemmas.

6.6. Notation and definition. A W -space possessing a partition (w.s.) U with
d(U) = 0 will be called a W0-space. The class of all W0-spaces will be denoted
by W0.

6.7. Proposition. Let P be a W -space, let U be a partition (w.s.) of P and let
d(U) = 0. Then E(P ) = η(U) = inf{E(P) : P is a d.e. (w.s.) of P , P ′′ refines U},
and if U is pure, then E∗(P ) = η∗(U) = inf{E(P) : P is a pure d.e. of P , P ′′

refines U}.

Proof: We prove only the equality for E∗(P ) since the proof of the first equality
is analogous. Clearly, it is sufficient to show that η∗(V) ≤ η∗(U) for every pure
partition V of P . We can assume that η∗(U) < ∞. Let ε > 0. Choose a pure d.e.
P = (Pu : u ∈ D) of P such that P ′′ refines U , E(P) ≤ η∗(U) + ε. It is easy to see

that there is a pure d.e. P̂ of P such that P̂ ⊃ P (i.e., P̂ = (P̂u : u ∈ D̂), D ⊂ D̂,

P̂u = Pu for u ∈ D) and P̂ ′′ refines V . Since d(P̂u) = 0 for u ∈ D̂ \D′, we have

E(P̂) = E(P), and therefore E(P̂) ≤ η∗(U) + ε. This implies η∗(V) ≤ η∗(U) + ε.
Since ε > 0 was arbitrary, we get η∗(V) ≤ η∗(U). �

6.8. Proposition 6.7 has the following straightforward corollary.

Proposition. If P is a W -space, then E(P ) = inf{E(P) : P is a d.e. (w.s.) of P ,
d(P ′′) = 0}, E∗(P ) = inf{(P) : P is a pure d.e. of P , d(P ′′) = 0}, E∗(P ) ≥ E(P ).

6.9. For δ and λ, there also are propositions analogous to 6.7 and 6.8. First, we
restate the relevant definitions (cf. 2.8) in a simplified form.
If P ∈ S ∪ W, then, for every ε ≥ 0, δ(ε, P ) is the infimum of δf , where f is

a regular ε-code of P , and δP = sup(δ(ε, P ) : ε > 0).
If P ∈ W, then, for every ε ≥ 0, λ(ε, P ) is the infimum of λf , where f is a regular

ε-code of P , and λP = sup(λ(ε, P ) : ε > 0).
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6.10. Proposition. Let P ∈ S ∪ W, let U be a pure partition of P and let
d(U) = 0. Then δP , respectively λP (if P ∈ W), are equal to the infimum of all
δf , respectively λf , where f is a regular ε-code of P such that (f−1v : v ∈ fP )
refines U .

We omit the proof since it is similar to that of 6.7.

6.11. Proposition. If P ∈ W0, then δP and λP are equal to the infimum of all
δf ad λf , respectively, where f is a regular ε-code of P .

This follows easily from 6.10.

6.12. Fact. Let P = (Pu : u ∈ D) be a d.e. (w.s.) of a W -space P and let

d(P ′′) = a < ∞. Then there is a d.e. (w.s.) P̂ = (P̂u : u ∈ D̂) of P such that

P̂ ⊂ P , d(P̂ ′′) = a and d(Pu) > a whenever u ∈ D̂′.

6.13. Definition. A) Let P be aW -space, let d(P ) <∞ and let U = (Ut : t ∈ T )
be a partition (w.s.) of P . Then P/U will denote the W -space 〈T, σ, ν〉, where
ν({t}) = µ̄Ut for all t ∈ T , σ(s, t) = d(Us + Ut) for t 6= s. We will say that P/U
is the quotient of P with respect to U . — B) If P = 〈Q, ̺〉 is a semimetric space,
d(P ) < ∞ and U = (Ut : t ∈ T ) is a partition of P , then P/U will denote the
semimetric space 〈T, σ〉, where σ(t, s) = d(Ut ∪ Us) for t 6= s.

6.14. Fact. Let P ∈ W, d(P ) <∞; let U be a pure partition of P and let d(U) = 0.
Then E∗(P/U) ≥ E∗(P ).

Proof: Put U = (Ut : t ∈ T ), S = P/U = 〈T, σ, ν〉. Let S = (Sv : v ∈ D) be
a pure d.e. of S such that all Sv, v ∈ D′′, are of the form {t} · S, t = t(v) ∈ T .
For v ∈ D′′, put Pv = Ut(v); for k ∈ D, let Pk = Σ(Pv : v ∈ D′′, k ≺ v). Then

P = (Pk : k ∈ D) is a pure d.e. of P . It is easy to see that E(P) = E(S), d(P ′′) = 0
and therefore, by 6.7, E(P) ≥ E∗(P ), hence E(S) ≥ S∗(P ). Since S was arbitrary,
we get E∗(P/U) ≥ E∗(P ). �

6.15. Lemma. Let P be a W0-space. If P is a d.e. (w.s.) of P and d(P
′′) = 0,

then E(P) ≥ E(P ) ∨ E∗(P ).

Proof: By 6.8, E(P) ≥ E(P ). Thus we have only to prove E(P) ≥ E∗(P ). We
can assume that d(P ) <∞ and wPu > 0 for all u ∈ D. Let fv, v ∈ D′′, be functions
such that Pv = fv ·P . Then there are disjoint µ-measurable sets Qt, t ∈ T , T finite,
such that, for every v ∈ D′′,

(∗) {q ∈ Q : fvq > 0} =
⋃
(Qt : t ∈ T (v)),

where T (v) = {t ∈ T : fvq > 0 for all q ∈ Qt}.
Put Mt = Qt · P , M = (Mt : t ∈ T ), S = P/M, St = {t} · S for t ∈ T . For

v ∈ D′′, t ∈ T , put bvt = w(Qt ·Pv); evidently, bvt > 0 iff t ∈ T (v). For v ∈ D′′, put
S(v) = Σ(bvtSt : t ∈ T (v)). If x, y ∈ D′′, then s(S(x) + S(y)) = w(Px + Py) and,
by (∗), d(S(x)+S(y)) = d(Px+Py). Hence E(P) = E(S), where S = (Su : u ∈ D),
Su = Σ(S(x) : x ∈ D′′, u ≺ x).
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Since d(Pv) = 0 for v ∈ D′′, we get d(S′′) = 0 and therefore, by 6.8, E(S) ≥ E(S).
Since S ∈ WF , we have, by 6.2, E(S) = E∗(S). By 6.14, E∗(S) ≥ E∗(P ), which
proves E(P) ≥ E∗(P ). �

6.16. Proposition. If P is a W0-space, then E(P ) = E
∗(P ).

Proof: By 6.15, E(P) ≥ E(P ) ∨ E∗(P ) whenever P is a d.e. (w.s.) of P and
d(P ′′) = 0. Hence, by 6.7, E(P ) ≥ E(P ) ∨ E∗(P ). This proves the proposition,
since by 6.8, E(P ) ≤ E∗(P ). �

6.17. Fact. If P = (Pu : u ∈ D) is a d.e. (w.s.) of a W -space P , U = (Ut :
t ∈ T ) is a partition (w.s.) of P , and |T | ≤ 2m, then there exists a d.e. (w.s.)

P̂ = (P̂u : u ∈ D̂) ⊃ P of P such that P̂ ′′ refines U and, for every u ∈ D′′,

E(Su,x : x ∈ Du) ≤ m · wP · d(Pu), where Du = {x : ux ∈ D̂}, Su,x = P̂ux.

6.18. Lemma. Let U be a partition (w.s.) of a W -space P and let ε > 0. Then,
for some ϑ > 0,

(1) E(P) + ε ≥ η(U) for every d.e. (w.s.) P of P satisfying d(P ′′) ≤ ϑ,
(2) if U is pure, then E(P) + ε ≥ η∗(U) for every pure d.e. P of P satisfying

d(P ′′) ≤ ϑ.

Proof: We are going to prove (1); the proof of (2) is similar. Let U = (Ut : t ∈ T ),
|T | = n and let m be the least integer such that n ≤ 2m. Put ϑ = ε/m · wP . Let

P = (Pu : u ∈ D) be a d.e. (w.s.) of P , d(P ′′) ≤ ϑ. Let P̂ be a d.e. (w.s.) of P

with the properties stated in 6.17. Clearly, E(P̂) ≤ E(P) + ε. Since P̂ ′′ refines U ,

we have η(U) ≤ E(P̂) ≤ E(P) + ε. �

6.19. Proposition. For every W -space P , E(P ) = sup(E(ϑ ⊙ P ) : ϑ > 0),
E∗(P ) = sup(E∗(ϑ⊙ P ) : ϑ > 0).

Proof: We are going to prove the first equality; the second equality is proved
in an analogous way. By 6.18, the following is true: for every ε > 0, there is
a ϑ > 0 such that E(ϑ ⊙ P ) + ε ≥ η(U) for every partition (w.s.) U of P , hence
E(ϑ ⊙ P ) + ε ≥ E(P ). This proves that sup(E(ϑ ⊙ P ) : ϑ > 0) ≥ E(P ). The
reverse inequality is evident. �

6.20. Proposition. Let P ∈ W and let ε > 0. Then E(ε ⊙ P ) = inf{E(P) : P
is a d.e. (w.s.) of P , d(P ′′) ≤ ε}, E∗(ε ⊙ P ) = inf{E(P) : P is a pure d.e. (w.s.)
of P , d(P ′′) ≤ ε}.

Proof: We prove only the first assertion. For every d.e. (w.s.) P = (Pu : u ∈ D)
of P , we put ε⊙P = (ε⊙Pu : u ∈ D); clearly, S = ε⊙P is a d.e. (w.s.) of ε⊙P and
d(S′′) = 0 iff d(P ′′) ≤ ε. On the other hand, it is easy to see that every d.e. (w.s.)
S = (Sv : v ∈ D) of S = ε ⊙ P is of the form ε ⊙ P , P being a d.e. (w.s.) of P .
By 6.8, we have E(ε⊙P ) = inf{E(S) : S = (Ev : v ∈ D) is a d.e. (w.s.) of ε⊙P ,
d(S′′) = 0}. Hence, by 6.12, E(S) is equal to the infimum of all E(S), S being
a d.e. (w.s.) of S such that d(S′′) = 0 whereas d(Sv) > 0 for v ∈ D′. Evidently, for
every S = ε⊙P satisfying the condition just stated, we have E(S) = E(P). Thus,
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E(S) is equal to the infimum of all E(P), where P = (Pv : v ∈ D) is a d.e. (w.s.)
of P , d(P ′′) ≤ ε, d(Pv) > ε for v ∈ D′. It is easy to see that this infimum is equal
to inf{E(P) : P is a d.e. (w.s.) of P , d(P ′′) ≤ ε}. �

6.21. Fact. Let f be a strongly branching well-fitting regular ε-code of a W -
space P in K∞ = 〈A∗, π, λ〉, A∗ = {0, 1} × R+. If u = (ui : i < k) ∈ A∗, put
πu = (πui : i < k). For every u ∈ [fP ], put Pπu = {x ∈ P : u ≺ fx}. Put
D = {πu : u ∈ [fP ]}. Then P = (Pv : v ∈ D) is a pure d.e. of P , E(P) = E(f),
d(P ′′) ≤ ε.

6.22. Fact. Let P ∈ W, ε > 0. Then E(ε, P ) = E∗(ε⊙ P ).

Proof: By 5.17, E(ε, P ) is equal to the infimum of all E(f), where f is a strongly
branching well-fitting regular ε-code of P . Hence, by 6.21, E(ε, P ) is equal to the
infimum of all E(P), where P is a pure d.e. of P and d(P ′′) ≤ ε. Hence, by 6.20,
E(ε, P ) = E∗(ε⊙ P ). �

6.23. Theorem. For every W -space P , the coding entropy Ê(P ) coincides with
E∗(P ) and E(P ).

Proof: By 6.16 and 6.19, we have E∗(P ) = E(P ) for every P ∈ W. Due to

Ê(P ) = sup(E(ε, P ) : ε > 0), we have, by 6.22 and 6.16, Ê(P ) = E∗(P ) for every
P ∈ W. �

6.24. Convention. In what follows, we will write, for every W -space P , E(P )

instead of Ê(P ) and E∗(P ).

7.

This section contains characterization theorems for the functionals δ, λ and E
defined onW (the analogous theorems concerning the restrictions of δ, λ and E to
WF have been proved in Section 3 of [1]).

7.1. Proposition. Let ϕ be one of the functionals δ, λ and E. Then ϕP =
sup(ϕ(ε ⊙ P ) : ε > 0) whenever either (1) P ∈ S ∪ W, ϕ = δ, or (2) P ∈ W,
ϕ = λ or ϕ = E.

Proof: If ϕ = δ or ϕ = λ, then the assertion follows, by 2.6, from the definitions
(see 2.8). For the case ϕ = E, see 6.19. �

7.2. Proposition. Let P be a W -space and let (P0, P1) be a pure partition of P .
Then

(1) δP ≤ d(P ) + δP0 ∨ δP1,
(2) λP ≤ d(P ) · wP + λP0 + λP1,
(3) E(P ) ≤ d(P )H(wP0, wP1) + E(P0) + E(P1).

The inequality (1) is also valid if P is a semimetric space.

Proof: I. Let P = 〈Q, ̺, µ〉 be a W -space. Let U = (Ut : t ∈ T ) be a pure
partition of P refining (P0, P1) and satisfying d(U) = 0. Let ϕ be one of the
functionals δ, λ and E. Put Tj = {t ∈ T : Ut ≤ Pj}, j = 0, 1. Then Uj = (Ut :
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t ∈ Tj) is a pure partition of Pj . We can assume that ϕ(Pj) < ∞, j = 0, 1. Let
ε > 0. By 6.10 and 5.17, there exist (1) strongly branching well-fitting codes f0
and f1 of P0 and P1 such that δfj ≤ δPj + ε and (f

−1
j u : u ∈ fjPj) refines Uj ,

j = 0, 1; (2) strongly branching well-fitting codes g0 and g1 of P0 and P1 such that

λgj ≤ λPj + ε and (g
−1
j u : u ∈ gjPj) refines Uj ; (3) dyadic expansions P0 and P1

of P0 and P1 such that E(Pj) ≤ E(Pj) + ε and P ′′
j refines Uj , j = 0, 1.

In the case (1) and, respectively, (2) define f and g as follows: let Pj = Qj · P ,
where Q0 ∪ Q1 = Q, Q0 ∩ Q1 = ∅; for x ∈ Qj put f(x) = (aj) · fj(x), g(x) =
(aj) · gj(x), where aj = (j, d(P )). Then f and g are regular codes of P , δf =
d(P )+δf0+δf1, λg = d(P ) ·wP +λg0+λg1, hence δf ≤ d(P )+δP0∨δP1+ε, λg ≤
d(P )·wP+λP0+ε+λP1+ε. Evidently, d(f

−1u : u ∈ fP ) = 0, d(g−1u : u ∈ gP ) =
0 and therefore, by 6.11, δP ≤ d(P )+δP0∨δP1+ε, λP ≤ d(P )·wP+λP0+λP1+2ε.
Since these inequalities hold for every ε > 0, we have shown that the inequalities
(1) and (2) stated in the proposition are valid whenever P ∈ W0.
Consider the case (3). Define a dyadic expansion P of P as follows: if P0 =

(P
(0)
u : u ∈ D0), P1 = (P

(1)
u : u ∈ D1), let D consist of ∅, all (0) · v, where v ∈ D0,

and all (1) · v, where v ∈ D1. Put P∅ = P , P(0)·v = P
(0)
v , P(1)·v = P

(1)
v ; put

P = (Pu : u ∈ D). Then P ′′ refines U , E(P) = d(P )H(wP0, wP1)+E(P0)+E(P1)
and therefore E(P) ≤ d(P )H(wP0, wP1)+E(P0) + ε+E(P1) + ε. By 6.8, we have
E(P ) ≤ E(P); since ε > 0 is arbitrary, we get E(P ) ≤ d(P )H(wP0, wP1)+E(P0)+
E(P1).
II. Let P be an arbitrary W -space. Then, for every ε > 0, ε⊙ P is a W0-space

and therefore we obtain the inequalities (1)–(3) with P replaced by ε ⊙ P , ε > 0
arbitrary. By 7.1, we get the inequalities (1)–(3) for every P ∈ W.
III. The proof of (1) for P ∈ S is analogous and can be omitted. �

7.3. Characterization theorem for δ. Let P = S or P = W. The functional
δ (defined on P) is the largest of all functionals ϕ on P satisfying the following
conditions for all P ∈ P:

(1) ϕP = 0 whenever d(P ) = 0,
(2) ϕP = sup(ϕ(ε⊙ P ) : ε > 0),
(3) ϕP ≤ d(P ) + ϕP0 ∨ ϕP1 for all pure partitions (P0, P1) of P .

Proof: We consider the case P =W; the other case is analogous.
I. Evidently, δ satisfies (1). By 7.1 and 7.2, it satisfies (2) and (3).
II. Let ϕ be a functional on W satisfying (1)–(3). By 7.1, it is sufficient to

prove that ϕP ≤ δP whenever P is of the form ε⊙ S for some S (hence P ∈ W0).
— Let P = 〈Q, ̺, µ〉 ∈ W0. Let f be an arbitrary strongly branching well-fitting
code of P such that d(f−1u : u ∈ fP ) = 0 and w(f−1u) > 0 for all u ∈ fP . For
every v ∈ [fP ] put Pu = {x ∈ Q : v ≺ fx} · P , and for every u ∈ [fP ] \ fP put
au = (0, d(Pu)) if ϕPu0 ≥ ϕPu1, au = (1, d(Pu1)) if ϕPu0 < ϕPu1, s(u) = u · (au).
Then there exists exactly one v ∈ fP such that v ↾ (n + 1) = s(v ↾ n) for n < |v|.
It is easy to see that, by (3) and (1), we have ϕP ≤ Σ(d(Pu) : u ≺ v). Since f is
well-fitting, we get ϕP ≤ λv, hence ϕP ≤ δf . Since f is arbitrary, we get ϕP ≤ δP .

�
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7.4. Characterization theorem for λ. The functional λ (defined on W) is
the largest of all functionals ϕ on W satisfying the following conditions for all W -
spaces P :

(1) ϕP = 0 whenever d(P ) = 0,
(2) ϕP = sup(ϕ(ε⊙ P ) : ε > 0),
(3) ϕP ≤ d(P ) · wP + ϕP0 + ϕP1 for all pure partitions (P0, P1) of P .

Proof: We can proceed in the same way as in the proof of 7.3 except the part
concerning the inequality ϕP ≤ λP for P ∈ W0.
Let ϕ satisfy (1)–(3). Let P = 〈Q, ̺, µ〉 ∈ W0. Let f be an arbitrary strongly

branching well-fitting code of P such that d(f−1u : u ∈ fP ) = 0 and w(f−1u) > 0
for all u ∈ fP . For every v ∈ [fP ] put Pv = {x ∈ Q : v ≺ fx} · P . By (3), we
have ϕPu ≤ d(Pu) · wPu + ϕPu0 + ϕPu1 for every u ∈ [fP ] \ fP . This implies
ϕP ≤ Σ(d(Pu)wPv : v ∈ [fP ] \ fP ), since, by (1), ϕPv = 0 for v ∈ fP . Due
to the fact that f is well-fitting, we have, for any u ∈ fP and any x ∈ f−1v,
λ(fx) = Σ(d(Pv) : v ≺ u). Consequently, λf = Σ(w(f−1u)Σ(d(Pv) : v ≺ u) : u ∈
fP ) = Σ(d(Pv)Σ(w(f

−1u) : u ∈ fP, v ≺ u) : v ∈ [fP ] \ fP ) = Σ(d(Pv)wPv : v ∈
[fP ] \ fP ) and therefore ϕP ≤ λf . Since f is arbitrary, we get ϕP ≤ λP . �

7.5. Characterization theorem for E. The functional E (defined on W) is
the largest of all functionals ϕ on W satisfying the following conditions for all W -
spaces P :

(1) ϕP = 0 whenever d(P ) = 0,
(2) ϕP = sup(ϕ(ε⊙ P ) : ε > 0),
(3) ϕP ≤ d(P )H(wP0, wP1) + E(P0) + E(P1) for all pure partitions (P0, P1)
of P .

Proof: As with 7.4, we prove only that ϕP ≤ E(P ) whenever P ∈ W0 and ϕ
satisfies (1)–(3).
Let P = 〈Q, ̺, µ〉 ∈ W0. Let P = (Pu : u ∈ D) be an arbitrary pure dyadic

expansion of P such that d(P ′′) = 0. By (3), we have ϕPu ≤ d(Pu)H(wPu0, wPu1)+
ϕPu0 + ϕPu1 for each u ∈ D′; by (1), ϕPu = 0 for u ∈ D′′. Consequently, ϕP ≤
Σ(d(Pu)H(wPu0, wPu1) : u ∈ D′) = E(P). By 6.8, this proves ϕP ≤ E(P ).

7.6. It is possible to generalize Proposition 7.2 quite substantially, namely to prove
the corresponding assertions for an arbitrary partition (w.s.) instead for a pure
binary partition. To this end, we need some auxiliary definitions and some lemmas.

7.7. Notation. If P = (Pu : u ∈ D) is a dyadic expansion (w.s.) of a W -space
P , we put (1) for any v ∈ D′′, λ(P , v) = Σ(d(Pu) : u ≺ v, u 6= v);
(2) λP = Σ(λ(P , v) · wPw : v ∈ D′′); (3) δP = max(λ(P , v) : v ∈ D′′, wPv > 0).

7.8. Fact. If P = (Pu : u ∈ D) is a dyadic expansion (w.s.) of a W -space P , then
λP = Σ(d(Pu) · wPu : u ∈ D′).

7.9. Fact. If P ∈ W0, then λP (respectively, δP ) is equal to the infimum of all λP
(respectively, δP), where P is a pure dyadic expansion of P satisfying d(P ′′) = 0.
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Proof: By 6.11 and 5.17, λP is equal to the infimum of all λf , where f is a strongly
branching well-fitting exact code of P . To every such code, there corresponds (as
it is easy to show) a pure dyadic expansion P of P such that d(P ′′) = 0, λP = λf .
Hence λP is not less than the infimum (of λP) in question. On the other hand, for
every pure dyadic expansion P = (Pu : u ∈ D) of P satisfying d(P ′′) = 0 there is
a strongly branching well-fitting code f of P such that λf = λP . This proves the
equality in question for λ; for δ, the proof is similar. �

7.10. Lemma. Let P = 〈Q, ̺, µ〉 be a W -space and let (P0, P1) =
(〈Q, ̺, µ0〉, 〈Q, ̺, µ1〉) be a partition (w.s.) of P . Let P

∗ denote the W -space
〈Q∗, ̺∗, µ∗〉, where Q∗ = Q×{0, 1}, ̺∗(〈x, i〉, 〈y, j〉) = ̺(x, y), domµ∗ consists of all
sets of the form (X0×{0})∪(X1×{1}), X0, X1 ∈ domµ, and µ

∗(X×{j}) = µj(X).
Then δP ∗ = δP , λP ∗ = λP , E(P ∗) = E(P ).

Proof: We prove only λP ∗ = λP since the proof of δP ∗ = δP is analogous
whereas E(P ∗) = E(P ) is easily proved using 6.7 (for the case P ∈ W0), the
equality E∗ = E, and 6.19. By 6.19, it is sufficient to prove λP ∗ = λP for the case
P ∈ W0.
It is easy to show that λP ∗ ≤ λP . Hence we have to prove λP ≤ λP ∗ only.

To this end, it is sufficient, by 7.9, to find, for any given pure dyadic expansion
P = (Pu : u ∈ D) of P ∗ satisfying d(P ′′) = 0, a pure dyadic expansion Z of P such
that d(Z) = 0, λZ ≤ λP . It is easy to see that there is a partition (Tm : m ∈M)

of Q and a pure dyadic expansion S = (Su : u ∈ D̂) of P ∗ such that D ⊂ D̂,

Su = Pu for u ∈ D, µTm > 0 for all m ∈M , and the set of all Su, u ∈ D̂′′, coincides
with the set of all Vmj · P

∗, where Vmj = Tm × {j}, m ∈ M , j = 0, 1. Obviously,
λS = λP .
Let ψ : M × {0, 1} → D̂′′ be a bijection. Define Xu, u ∈ D′′, as follows. If

u = ψ(m, j), put (1) Xu = Tm if λ(S, u) ≤ λ(S, ψ(m, 1 − j)), (2) Xu = ∅ if

λ(S, u) > λ(S, ψ(m, 1 − j)). Put Zu = Xu · P for u ∈ D̂′′, Zu = Σ(Zv : v ∈

D̂′′, u ≺ v) for u ∈ D̂′. Clearly, Z = (Zu : u ∈ D̂) is a pure dyadic expansion of P .

It is not difficult to show that d(Zu) ≤ d(Su) for all u ∈ D̂, hence λ(Z, v) ≤ λ(S, v)

for all v ∈ D̂′′.
Let u, v ∈ D̂′′, u = ψ(m, 0), v = ψ(m, 1). We shall treat only the case λ(S, u) ≤

λ(S, v) (the case λ(S, v) ≥ λ(S, v) is analogous). We have wZu = wSu + wSv,
wZv = 0, and therefore wZu · λ(Z, u) + wZv · λ(Z, v) ≤ (wSu + wSv)λ(S, u) ≤
wSu · λ(S, u) + wSv · λ(S, u) ≤ wSu · λ(S, u) + wSv · λ(S, v). This proves that

Σ(wZv · λ(Z, v) : v ∈ D̂′′) ≤ Σ(wSv · λ(S, v) : v ∈ D̂′′). Thus λZ ≤ λS = λP ,
which proves the lemma. �

7.11. Proposition. Let P be a W -space and let (P0, P1) be a partition (w.s.)
of P . Then

(1) δP ≤ d(P ) + δPo ∨ δP1,
(2) λP ≤ d(P ) · wP + λP0 + λP1,
(3) E(P ) ≤ d(P ) ·H(wP0, wP1) + E(P0) + E(P1).

Proof: Let P = 〈Q, ̺, µ〉. Let P ∗ = 〈Q∗, ̺∗, µ∗〉 denote the space described in 7.10.
Put Qj = Q×{j}, j = 0, 1. Then Qj ·P

∗ is isomorphic to Pj and (Q0 ·P
∗, Q1 ·P

∗)
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is a pure partition of P ∗. Then, by 7.2, (1) δP ∗ ≤ d(P ∗)+ δ(Q0 ·P
∗)∨ δ(Q1 ·P

∗),
(2) λP ∗ ≤ d(P ∗)·wP ∗+λ(Q0 ·P

∗)+λ(Q1 ·P
∗), (3) E(P ∗) ≤ d(P ∗)·H(w(Q0 ·P

∗),
w(Q1 · P

∗)) +E(Q0 · P
∗) +E(Q1 · P

∗). By 7.10, this proves the proposition since,
evidently, d(P ∗) = d(P ) and wP ∗ = wP . �

7.12. Proposition. Let P be a W -space. Let U = (Ut : t ∈ T ) be a partition
(w.s.) of P . Then

(1) δP ≤ δ(P/U) + max(δUt : t ∈ T ),
(2) λP ≤ λ(P/U) + Σ(λUt : t ∈ T ),
(3) E(P ) ≤ E(P/U) + Σ(E(Ut) : t ∈ T ).

Proof: I. It follows easily from 7.9 that there is a pure dyadic expansion S =
(Tu · S : u ∈ D) of the space S = P/U = 〈T, σ, ν〉 such that δ(S) = max(λ(S, v) :
v ∈ D′′) = δS and all Tv, v ∈ D′′, are singletons. For every u ∈ D, put Pu =
Σ(Ut : t ∈ Tu). Then (Pu : u ∈ D′) is a dyadic expansion (w.s.) of P . By
7.11, we have δPu ≤ d(Pu) + δPu0 ∨ δPu1 for all u ∈ D′, which implies δP ≤
δP + max(δPv : v ∈ D′′). Clearly, for every u ∈ D′, we have |Tu| ≥ 2 and
therefore, by the definition of P/U , d(Tu · S) = d(Pu). Consequently, δP = δS
and therefore δP ≤ δS + max(δPv : v ∈ D′′). Since δS = δS and the collection
(Pv : v ∈ D′′) coincides, up to the indexing, with (Ut : t ∈ T ), we obtain the
inequality (1).
II. For the inequality (2), the proof is similar. We take a pure dyadic expansion

of S, denoted again by S = (Tu · S : u ∈ D), such that λS = λS; this is possible
by 7.9. For every u ∈ D, we put Pu = Σ(Ut : t ∈ Tu), and we denote (Pu : u ∈ D)
by P . By 7.11, we have λPu ≤ d(Pu) · wPu + λPu0 + λPu1 for all u ∈ D′. This
implies λP ≤ λP + Σ(λPv : v ∈ D′′). The inequality (2) then follows similarly as
in I. — As for the inequality (3), the proof is analogous and can be omitted. �

7.13. Notation. A) If fj is a function on Qj , j = 1, 2, then f1 × f2 denotes
the function on Q1 × Q2 defined by (f1 × f2)(q1, q2) = f1(q1)f2(q2). — B) Let
Pj = 〈Qj , ̺j , µj〉, j = 1, 2, be W -spaces. For j = 1, 2, let Uj = (fjm ·Pj : m ∈Mj)
be a partition (w.s.) of Pj . Then U1 × U2 denotes the partition (w.s.) U of
P = P1 × P2 defined as follows: U = (gkm · P : (k,m) ∈ M1 × M2), where
gkm = f1k × f2m. — If Uj = (Tjm · Pj : m ∈ Mj) are pure partitions, then
U1 × U2 = ((T1k × T2m) · P : (k,m) ∈M1 ×M2).

7.14. Fact. For j = 1, 2, let Pj be a W -space and let Uj = (Ujm : m ∈ Mj) be
a partition (w.s.) of Pj . Put P = P1 × P2, U = U1 × U2, P/U = 〈M1 ×M2, σ, ν〉,
Pj/Uj = 〈Mj , σj , νj〉. Then ν = ν1 × ν2, σ ≤ σ1 × σ2.

7.15. Lemma. Let P be a W0-space. Then λP is equal to the infimum of all
λ(P/U), where U is a pure partition of P and d(U) = 0.

Proof: I. Let ε > 0. By 7.9, there is a pure d.e. P = (Pu : u ∈ D) of P such
that d(P ′′) = 0 and λP ≤ λP + ε. Put S = P/P ′′. Let S denote the pure d.e.
(Su : u ∈ D) of S such that Sv = {v} ·S whenever v ∈ D′′. We have λS = λP and
therefore, by 7.9, λS ≤ λS = λP ≤ λP + ε. Hence the infimum in question does
not exceed λP .
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II. Let U = (Ut : t ∈ T ) be a pure partition of P , d(U) = 0. We are going
to show that λP ≤ λ(P/U). Put S = P/U . Since S is finite, there is a pure d.e.
S = (Su : u ∈ D) of S such that λS = λS and every Sv, v ∈ D′′, is of the form
{t(v)}·S, t(v) ∈ T . Let P = (Pu : u ∈ D) be the pure d.e. of P such that Pv = Ut(v)

for v ∈ D′′. We have λP = λS and d(P ′′) = 0. Hence, by 7.9, λP ≤ λS = λ(P/U).
�

7.16. Proposition. Let P = S or P = W. Let P1, P2 ∈ P. Then (1) δ(P1 ×
P2) ≤ δP1 + δP2, and if P = W, then (2) λ(P1 × P2) ≤ λP1 · wP2 + λP2 · wP1,
(3) E(P1 × P2) ≤ E(P1) · wP2 + E(P2) · wP1.

Proof: We will consider only the case P =W. By 7.1, it is sufficient to prove the
inequalities for the case P1 ∈ W0, P2 ∈ W0. We are going to prove (2); the proof
of (1) and (3) is similar. Clearly, we can assume wP1 = wP2 = 1, λPj <∞.
Since P1, P2 ∈ W0, λPj is equal, by 7.15, to the infimum of all λ(Pj/Uj), where

Uj is a pure partition of Pj and d(Uj) = 0. Choose an arbitrary ε > 0 and choose
a pure partition Vj of Pj such that d(Vj) = 0, λ(Pj/Vj) ≤ λPj + ε. Let Vj =
(Vjm : m ∈ Mj), V = V1 × V2, Pj/Vj = Sj = 〈Mj , σj , νj〉, (P1 × P2)/V = S =
〈M1×M2, σ, ν〉. By 4.1, λ(S1×S2) ≤ λS1+λS2. By 7.14, λS ≤ λ(S1×S2), hence
λ((P1×P2)/V) = λS ≤ λP1+λP2+2ε. By 7.15, this proves λ(P1×P2) ≤ λP1+λP2.

�

7.17. Remarks. 1) The connection between the functional δ on S and the Kol-
gomorov entropy Hε (see, e.g., [3] and [4]) is given by the following almost evident
formula: Hε(P ) ≤ δ(ε ∗ P ) ≤ Hε(P ) + 1. (Recall that ε ∗ 〈Q, ̺〉 = 〈Q, ε ∗ ̺〉,
where (ε ∗ ̺)(x, y) = 0 if ̺(x, y) ≤ ε, and (ε ∗ ̺)(x, y) = 1 if ̺(x, y) > ε).
— 2) Let Jn, n = 1, 2, . . . , denote the cube [0, 1]n equipped with the metric
̺((x1, . . . , xn), (y1, . . . , yn)) = max(|xi − yi| : i = 1, . . . , n). It is easy to see
that δ(Jn) ≤ 2n. It can be shown that δ(J1) = 2; however, I do not know whether
δ(Jn) = 2n for n = 2, 3, . . . .

8.

In this section, we generalize the characterization theorems for ∆ and Λ proved
for the class WF in Part I, to a certain fairly wide subclass of W.

8.1. If P ∈ S ∪ W, then inf(δ(Pn)/n : n ∈ N, n > 0) is denoted by ∆(P ). If
P ∈ W, then inf(λ(Pn)/n(wP )n−1 : n ∈ N, n > 0) is denoted by Λ(P ). — See 4.6.

8.2. Fact. Let m,n ∈ N , m > 0, n > 0. If P ∈ S ∪ W, then δ(Pm+n) ≤
δ(Pm) + δ(Pn). If P ∈ W, wP = 1, then λ(Pm+n) ≤ λ(Pm) + λ(Pn).
This is a consequence of 7.16.

8.3. Fact. If P ∈ S ∪ W, then ∆(P ) = lim(δ(Pn)/n). If P ∈ W, wP > 0, then
Λ(P ) = lim(λ(Pn)/n(wP )n−1); in particular, Λ(P ) = lim(λ(Pn)/n) if wP = 1.
This is a consequence of 8.2 and 4.5.

8.4. Proposition. If P ∈ S∪W, then ∆(Pm) = m∆(P ) for everym ∈ N , m > 0.
If P, S ∈ S or P, S ∈ W, then ∆(P × S) ≤ ∆(P ) + ∆(S).
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Proof: From 4.7, ∆(Pm) = m∆(P ) follows at once. By 8.2, δ(Pm × Sn) ≤
δ(Pm) + δ(Sn), from which the inequality for ∆ follows easily, by 8.3. �

8.5. Proposition. If P ∈ S ∪ W and (P0, P1) is a pure partition of P , then
∆(P ) ≤ d(P ) + ∆(P0) ∨∆(P1).

The proof is the same, word for word, as the one of 4.10, except that instead of
4.7, 8.3 is used.

8.6. Facts. I. For every P ∈ W and every m ∈ N , m > 0, Λ(Pm) =
m(wP )m−1Λ(P ); in particular, Λ(Pm) = mΛ(P ), if wP = 1. — II. If P, S ∈ W,
then Λ(P × S) ≤ Λ(P ) · wS + Λ(S) · wP .

Proof: I. We can assume that wP = 1. By 8.3., Λ(Pm) = limn→∞(λ(P
mn)/n) =

m · limn→∞(λ(P
mn)/mn). Hence, again by 8.3, Λ(Pm) = mΛ(P ). — II. We can

assume that wP = wS = 1. By 8.3, Λ(P × S) = lim(λ(Pn × Sn)/n). Hence, by
7.16, Λ(P × S) ≤ lim(λ(Pn)/n) + limλ(Sn)/n = Λ(P ) + Λ(S). �

8.7. Proposition. For every W -space P and every partition (w.s.) of P , Λ(P ) ≤
d(P ) ·H(wP0, wP1) + Λ(P0) + Λ(P1).

Proof: It follows from 7.11 and 7.16 thatW satisfies the conditions stated in 4.13.
By 4.18, this proves the proposition. �

8.8. In the proof of characterization theorems for δ, λ and E (see 7.3, 7.4 and 7.5),
Proposition 7.1 plays a substantial role. I do not know whether there are analogous
propositions on ∆ and Λ, i.e., whether ∆(P ) = sup(∆(ε ⊙ P ) : ε > 0), Λ(P ) =
sup(Λ(ε⊙ P ) : ε > 0) for all P ∈ W. Therefore, the characterization theorems for
∆ and Λ will be proved only in a restricted form, namely for ∆ and Λ restricted to
certain subclasses.

8.9. Notation and definition. Let P ∈ S ∪ W. For every t ∈ R+, we put
Cδ[P ](t) = sup(δS : S ≤ P, d(S) ≤ t). — If P ∈ S ∪ W and the function Cδ[P ] is
continuous at 0 (i.e., Cδ[p](t) → 0 for t → 0), we will say that P is δ-regular. The
class of all δ-regular P ∈ S (respectively, P ∈ W) will be denoted by Sδ (by Wδ).

8.10. Facts. I. If P ∈ S∪W and S is a subspace of P , then Cδ[S] ≤ Cδ [P ]; hence
every subspace of a δ-regular space is δ-regular. — II. Let P = S or P = W. If
P, S ∈ P, then Cδ[P × S] ≤ Cδ[P ] + Cδ[S]. Hence, if P and S are δ-regular, then
so is P × S.

8.11. Facts. I. Every W0-space is δ-regular. — II. If 〈Q, ̺〉 is a subspace of
Rn, µ is the Lebesgue measure restricted to Q and µQ < ∞, then 〈Q, ̺〉 ∈ Sδ,
P = 〈Q, ̺, µ〉 ∈ Wδ.

8.12. Fact. Let f be a regular ε-code of P ∈ S ∪ W. Put T = fP ; for t ∈ T , put
Ut = f−1t; put U = (Ut : t ∈ T ). For t ∈ T put f ′t = t. Then (1) f ′ is a regular
0-code of P/U , δf ′ = δf , (2) if P ∈ W, then λf ′ = λf .
This follows easily from the definition of P/U .
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8.13. Fact. For every P ∈ S∪W and every ε > 0, δ(ε⊙P ) is equal to the infimum
of all δf , where f is a regular ε-code of P .

Proof: By 5.17, δ(ε ⊙ P ) is equal to the infimum of all δf , where f is a strongly
branching well-fitting regular 0-code of ε ⊙ P . Clearly, every code of this kind is
a strongly branching well-fitting regular ε-code of P , and vice versa. By 5.17, this
proves the equality in question. �

8.14. Proposition. Let P ∈ S∪W. Let ε > 0. Let f be a regular ε-code of P . If
d(f−1v : v ∈ f · P ) ≤ ε, then (1) δP ≤ δ(ε⊙ P ) + Cδ[P ](ε), (2) if P ∈ W, then
λP ≤ λ(ε⊙ P ) + Cδ[P ](ε) · wP .

Proof: Let η > 0. By 8.13, there is a regular ε-code f of P such that δf ≤
d(ε ⊙ P ) + η. For v ∈ fP , put uv = (f

−1v) · P ; put U = (Uv : v ∈ fP ).
By 8.12, δf ≥ δ(P/U). By 7.12, δP ≤ δ(P/U) + max(δUv : v ∈ fP ), hence
δP ≤ δ(P/U) + Cδ[P ](ε). It follows that δP ≤ δ(ε ⊙ P ) + η + Cδ[P ](ε) for every
η > 0. This proves the inequality (1). The proof of (2) is analogous. �

8.15. Proposition. Let P ∈ S ∪ W be δ-regular. Then ∆(P ) = sup(∆(ε ⊙ P ) :
ε > 0), and if P ∈ W, then Λ(P ) = sup(Λ(ε⊙ P ) : ε > 0).

Proof: We prove only the first assertion, since the proof of the second one is
analogous. Let P ∈ W be δ-regular. By 8.14 and 8.10, we have |δ(Pn)/n − δ(ε ⊙
Pn)/n| ≤ Cδ [P ](ε). Since P is δ-regular, Cδ [P ](ε)→ 0 for ε→ 0, which proves the
assertion. �

8.16. Characterization theorem for ∆ restricted to δ-regular spaces. Let
P = Sδ orP =Wδ. The functional∆ restricted toP is the largest of all functionals
ϕ on this class satisfying the following conditions for all P ∈ P:

(1) ϕP = 0 whenever d(P ) = 0,
(2) ϕP = sup(ϕ(ε⊙ P ) : ε > 0),
(3) ϕP ≤ d(P ) + ϕP0 ∨ ϕP1 for all pure partitions (P0, P1) of P ,
(4) ϕ(Pn) = n · ϕP for all P ∈ P and all n ∈ N , n > 0.

Proof: I. By 8.15, 8.5 and 8.4, ∆ satisfies the conditions in question. — II. Let
ϕ satisfy the conditions. Then, by 7.3, ϕS ≤ δS for every S ∈ P and therefore
n · ϕP = ϕ(Pn) ≤ δ(Pn), ϕP ≤ δ(Pn)/n for all P ∈ P and n ∈ N , n > 0. This
implies ϕ ≤ ∆. �

8.17. Characterization theorem for Λ restricted to δ-regular spaces.
The functional Λ on the class Wδ of all δ-regular spaces is
A) the largest of all functionals ϕ on Wδ satisfying the following conditions for

all P ∈ Wδ:

(1) ϕP = 0 whenever d(P ) = 0,
(2) ϕP = sup(ϕ(ε⊙ P ) : ε > 0),
(3) ϕP ≤ d(P ) · wP + ϕP0 + ϕP1 for every pure partition (P0, P1) of P ,
(4) ϕ(Pn) = n · ϕP for n ∈ N , n > 0, provided wP = 1,
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B) the largest of all functionals on Wδ satisfying (1), (2), (4) and (3’) ϕP ≤
d(P ) ·H(wP0, wP1) + ϕP0 + ϕP1 for every pure partition (P0, P1) of P .

Proof: I. Clearly, Λ satisfies (1). By 8.15, Λ satisfies (2). By 8.7, Λ satisfies (3’)
and also (3); by 8.6, it satisfies (4). — II. Let a functional ϕ onWδ satisfy (1)–(4).
Then, by the same argument as in 7.4, we get ϕP ≤ λP for all P ∈ W0. By (4)
and 8.10, we have ϕP = ϕ(Pn)/n ≤ λ(Pn)/n for all W0 such that wP = 1 and all
n ∈ N , n > 0. It is easy to see that 4.7, asserting the convergence λ(Pn)/n→ Λ(P ),
does hold for all P ∈ W, wP = 1. It follows that ϕP ≤ Λ(P ) whenever P ∈ W0. By
(2), we get ϕP ≤ Λ(P ) for all P ∈ Wδ. — III. Evidently, (3’) implies (3). Therefore
every functional ϕ on Wδ for which (1), (2), (3’) and (4) are true, satisfies, by II,
the inequality ϕP ≤ Λ(P ) for all P ∈ Wδ. �
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