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A direct factor theorem for commutative group algebras

William Ullery

Abstract. Suppose F is a field of characteristic p 6= 0 and H is a p-primary abelian A-
group. It is shown that H is a direct factor of the group of units of the group algebra
FH.
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Classification: Primary 20C07; Secondary 20K10

1. Introduction.

Suppose F is a field of characteristic p 6= 0 and H is a multiplicative p-primary
abelian group. If α = c1h1+ · · ·+ cnhn (ci ∈ F, hi ∈ H) is an element of the group
algebra FH of H over F , recall that the augmentation of α is defined by aug α =
∑

ci. Note that the group of normalized units V (FH) = {α ∈ FH : aug α = 1} is
a p-primary subgroup of the unit group U(FH) of FH . In fact, as is easily seen,
U(FH) = F ∗ × V (FH) is a direct product of the multiplicative group of F with
the group of normalized units.
In this brief note we consider a condition on H which guarantees that H itself is

a direct factor of U(FH), but first we summarize some known results in Theorem 1
below. Note that H is a direct factor of U(FH) if and only if H is a direct factor
of V (FH).

Theorem 1. In each of the following cases, H is a direct factor of U(FH) and, if
F is perfect, the complementary factor of H in V (FH) is totally projective.

(a) ([M2]) H is totally projective.
(b) ([HU]) H is a coproduct of groups with the cardinality of each factor not
exceeding ℵ1.

We shall prove a version of Theorem 1 for the class of p-primary A-groups,
a class which includes the totally projective groups and Warfield’s S-groups [W] as
subclasses. The relevant definitions are included below, but at this point we hasten
to add that the importance of the class of A-groups is due to the fact that it is
the largest class of p-primary abelian groups that have been satisfactorily classified
by numerical invariant and a corresponding existence theorem. This was done by
P. Hill [H2]. We now state our main result.

Theorem 2. Suppose F is a field of characteristic p 6= 0 and H is a p-primary
abelian group. If H is an A-group, then H is a direct factor of U(FH).
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Our method in proving Theorem 2 will involve applications of W. May’s result
quoted above as Theorem 1 (a), P. Hill’s classification of A-groups, and the compu-
tation of the Ulm-Kaplansky invariants of V (FH) by T.Zh. Mollov [M]. Unfortu-
nately, our methods will yield no information on the complement of H in V (FH)
in case F is perfect.
In the sequel, F always denotes a field of characteristic p 6= 0 and all groups are

multiplicative abelian groups. Once the reader makes the appropriate translation to
the multiplicative setting, all abelian group notation and terminology not explicitly
defined herein are in agreement with Fuchs [F]. For example, H [p] = {h ∈ H :
hp = 1}.

2. A-groups and invariants.

If G is a p-group and σ is an ordinal we define Gσ inductively as follows. Set
G0 = G. If σ is isolated, define Gσ = (Gσ−1)p and, if σ is a limit, Gσ =

⋂

α<σ Gα.

If µ is the smallest ordinal with Gµ = Gµ+1, recall that µ is the length of G.
If G has length µ, then Gµ is the maximal divisible subgroup of G and we write
Gµ = G∞ with the convention that σ < ∞ for all ordinals σ. Observe that if σ is
an ordinal and F is perfect, then V (FG)σ = V (FGσ). Therefore, in this case, the
lengths of V (FG) and G are the same.
Suppose that G is a p-group of limit length µ. We call an isotype subgroup H

of G almost balanced in G if (G/H)σ = GσH/H for all σ < µ. A pair of p-groups
(H, G) is a µ-elementary pair and H is a µ-elementary A-group if G is totally
projective (of length µ), H is almost balanced in G, and G/H is totally projective.
We do not require that totally projective groups be reduced. By [H2, Theorem 1],
every µ-elementary A-group is totally projective if µ is cofinal with ω0. Finally, an
A-group is a coproduct of µ-elementary A-groups for various limit ordinals µ not
cofinal with ω0.
Suppose H =

∐

i∈I Hi is an A-group with (Hi, Gi) a µ(i)-elementary pair for
distinct limit ordinals µ(i) not cofinal with ω0. We recall from [H2] that the A-

invariants fH(α, β) ofH are defined as follows. For each i ∈ I, set Ei = (Gi/Hi)
µ(i).

Then, if all dimensions are computed over the field with p elements,

fH(α, β) =



















dim(Hα[p]/Hα+1[p]), if α < ∞ and β = 0.

dim(H∞[p]), if α =∞ and β = 0.

dim(Eα
i [p]/Eα+1

i [p]), if α < ∞ and β = µ(i).

dim(E∞
i [p]), if α =∞ and β = µ(i).

In all other cases, fH(α, β) = 0.
By [H2, Lemma B], fH(α, β) is an isomorphism invariant of H , independent of

the choices of the Gi’s, and two A-groups are isomorphic if and only if they have
the same A-invariants [H2, Theorem 3].
In order to apply the theory of A-groups to our direct factor problem, we need

some additional notation. If H is a subgroup of the p-group G, the natural map
G → G/H induces a group-epimorphism V (FG) → V (F (G/H)) with kernel we
denote by K(FH). Our first result follows from Lemma 3 in the author’s paper [U]
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and a result of [M2] which states that V (FG) is totally projective if and only if G
itself is totally projective.

Proposition 1. Suppose F is perfect and µ is a limit ordinal. Then (H, G) is
a µ-elementary pair if and only if (K(FH), V (FG)) is a µ-elementary pair.

Proof: By [U, Lemma 3], H is almost balanced in G if and only if K(FH) is
almost balanced in V (FG). That G (respectively, G/H) is totally projective if and
only if V (FG) (respectively, V (FG)/K(FH) ∼= V (F (G/H))) is totally projective
follows from Theorem 1 (a) and [M2, Proposition 9]. �

3. The direct factor theorem.

In [M1, Lemma 2], W. May proved that H is a direct factor V (FH) if H is
isomorphic to a direct factor of V (FH ′) for some group H ′. We shall find the
following modification of this result to be useful.

Proposition 2. Suppose A and H are subgroups of a p-group G and A is iso-
morphic to a direct factor of K(FH). Then, A is a direct factor of V (FA). In
particular, if H is isomorphic to a direct factor of K(FH), then H is a direct factor
of V (FH).

Proof: Suppose K(FH) = B × C for some subgroups B and C. If ϕ : A → B
is an isomorphism, Then B ⊆ U(FG) implies that ϕ induces an F -algebra homo-
morphism f : FA → FG with f | A = ϕ. Note that f(V (FA)) ⊆ K(FH). Indeed,
suppose α = c1a1 + · · · + cnan where each ai ∈ A, ci ∈ F and

∑

ci = 1. Then,
f(α) =

∑

ciϕ(ai) with each ϕ(ai) ∈ B ⊆ K(FH). From this it follows easily that
f(α) ∈ K(FH) as desired. Finally, if π : K(FH)→ B is the projection along C, the
composition ϕ−1πf : V (FA)→ A restricts to the identity map on A. Therefore, A
is a direct factor of V (FA). �

If G is a p-group and σ is an ordinal, let fσ(G) denote the σ-th Ulm-Kaplansky
invariant of G. If F is both infinite and perfect and if G has length µ, it was shown
by Mollov [M] that

fσ(V (FG)) =



















|F ||Gσ |, if σ < µ.

|F ||G∞|, if σ =∞ and G∞ 6= 1.

0, if µ ≤ σ < ∞.

0, if σ =∞ and G∞ = 1.

Proposition 3. Suppose µ is a limit ordinal not cofinal with ω0. If H is a µ-
elementary A-group, then H is a direct factor of V (FH).

Proof: Select a totally projective group G of length µ such that (H, G) is a µ-
elementary pair and let κ be an infinite cardinal with κ > |G|. Let F be a perfect
extension field of F with |F | ≥ κ. One way to construct such an F is to take a set
of commuting indeterminates X = {Xα}α∈I over F with |I| ≥ κ and let F be an
algebraic closure of the function field F (X).
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We now use the result of [M] mentioned above to compute the A-invariants of
K(FH) and K(FH) × H . Let λ be the length of H and observe that fσ(H) ≤
|H | < κ if σ < λ and fσ(H) = 0 if λ ≤ σ < ∞. Since V (FH) is isotype
in K(FH), κ ≤ |F | = fσ(V (FH)) ≤ fσ(K(FH)) for all σ < λ. Moreover,
f∞(K(FH)) = f∞(K(FH)) + f∞(H) since either f∞(H) = 0 or else f∞(H) <
κ ≤ f∞(V (FH)) ≤ f∞(K(FH)). We conclude that the Ulm-Kaplansky invariants
of K(FH) and K(FH)× H are equal.

If λ is the length of (G/H)µ, observe that fσ((G/H)µ) ≤ |G| < κ if σ < λ
and fσ((G/H)µ) = 0 if λ ≤ σ < ∞. Moreover, for every σ < λ, κ ≤ |F | =
fσ(V (F (G/H)µ)) = fσ((V (FG)/K(FH))µ). Note also that the Ulm-Kaplansky
invariants at∞ of (G/H)µ and V (F (G/H)µ) have sum equal to f∞(V (F (G/H)µ)).
It follows that the Ulm-Kaplansky invariants of (V (FG)/K(FH))µ and
(V (FG)/K(FH))µ × (G/H)µ are the same for all σ. We conclude that the A-
invariants of K(FH) and K(FH)× H are equal.
Since bothK(FH) andK(FH)×H are µ-elementary A-groups by Proposition 1,

K(FH) ∼= K(FH)×H . It now follows from Proposition 2 that H is a direct factor
of V (FH). Since V (FH) is a subgroup of V (FH) which contains H , we have that
H is also a direct factor of V (FH). �

We are now in position to prove our main result.

Proof of Theorem 2: As observed in the introduction, it suffices to show that
H is a direct factor of V (FH). Since H is an A-group, H =

∐

i∈I Hi where
each Hi is a µ(i)-elementary A-group for distinct limit ordinals µ(i) not cofinal
with ω0. Define a homomorphism f : V (F (

∐

Hi))→
∐

V (FHi) as follows. Given
α = c1h1 + · · · + cnhn with c1, . . . , cn ∈ F ,

∑

ci = 1, and h1, . . . , hn ∈
∐

Hi, let
hji denote the component of hj in Hi, 1 ≤ j ≤ n. Define f(α) to be the element
in the coproduct

∐

V (FHi) whose component in V (GHi) is c1h1i + · · · + cnhni.
By Proposition 3, for each i there exists a projection πi : V (FHi) → Hi. These
projections induce a map π :

∐

V (FHi) →
∐

Hi = H . Clearly πf : V (FH) → H
restricts to the identity map on H . Therefore, H is a direct factor of V (FH) and
the proof is complete. �

We recall from [H1] that if (H, G) is an ω1-elementary pair with (G/H)ω1+1 = 1,
then H is a coproduct of ω1-elementary A-groups each of cardinality not exceed-
ing ℵ1. Therefore, in this case, Theorem 1 (b) applies and we conclude that if F is
perfect, the complementary factor of H in V (FH) is totally projective. We conjec-
ture that this holds for arbitrary µ-elementary A-groups (and hence for A-groups
generally).
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