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Characteristic of convexity of Musielak-Orlicz

function spaces equipped with the Luxemburg norm

Henryk Hudzik, Thomas Landes

Abstract. In this paper we extend the result of [6] on the characteristic of convexity of
Orlicz spaces to the more general case of Musielak-Orlicz spaces over a non-atomic measure
space. Namely, the characteristic of convexity of these spaces is computed whenever the
Musielak-Orlicz functions are strictly convex.

Keywords: Musielak-Orlicz space, modulus of convexity, characteristic of convexity, the
∆2-condition

Classification: Primary 46E30; Secondary 46B20

In the sequel, (S,Σ, µ) denotes a non-atomic σ-finite measure space and Φ de-
notes a Musielak-Orlicz function, i.e. a function from S × R into R+ satisfying the
Carathéodory conditions which means that Φ(s, ·) is convex, even, continuous, and
vanishing at 0, left continuous on the whole R+ and not identically equal to 0 for
µ-a.e. s ∈ S and Φ(·, u) is a Σ-measurable function for every u ∈ R. For any A ∈ Σ,
1A denotes the characteristic function of A.
The Musielak-Orlicz space LΦ = LΦ(µ) is defined to be the space of all (equiva-

lence classes of) Σ-measurable functions x : S → R such that

IΦ(λx) =

∫

S
Φ(s, λx(s)) dµ < ∞

for some λ > 0 depending on x. This space endowed with the Luxemburg norm

‖x‖ = ‖x‖Φ = inf{λ > 0 | IΦ(
x

λ
) ≤ 1}

is a Banach space (cf. [10], [11] and in the case of Orlicz spaces also [7], [9]).
We further denote by G(Φ) (G(Φ, ε)) the set of all non-negative Σ-measurable

functions g on S such that IΦ(g) < ∞ (IΦ(g) ≤ ε).
The Musielak-Orlicz function Φ is said to satisfy the ∆2-condition if there are

a null-set S0, a positive constant K and h ∈ G(Φ) such that

Φ(s, 2u) ≤ KΦ(s, u) for all s ∈ S \ S0, u ≥ h(s).

For any Banach space X , we denote by δX and ε0(X) the modulus of convexity
and the characteristic of convexity of X , i.e.

δX(ε) = inf{1−
1

2
‖x+ y‖ | x, y ∈ X, ‖x‖ = ‖y‖ = 1, ‖x− y‖ > ε}
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for any ε ∈ [0, 2], and

ε0(X) = sup{ε ∈ [0, 2] | δX (ε) = 0},

see [1], [2], [8]. To compute ε0(L
Φ) for LΦ generated by strictly convex Musielak-

Orlicz functions we start with the following

Lemma 1. Let Φ satisfy the ∆2-condition and vanish only at 0 for µ-a.e. s ∈ S.

Then, for every ε > 0 and c > 0, there are a null-set S0, a constant K = K(ε, c) > 0
and a function h ∈ G(Φ) such that

ch ∈ G(Φ, ε),

Φ(s, 2u) ≤ KΦ(s, u) for all s ∈ S \ S0, u ≥ h(s).

Proof: By Lemma 1.6 in [4], there are a null-set S0, a sequence {hn} with hn ∈

G(Φ, 1n) for every n ∈ N, and a sequence {Kn} of positive reals such that

Φ(s, 2u) ≤ KnΦ(s, u) for all s ∈ S \ S0, u ≥ hn(s), n ∈ N.

In virtue of the ∆2-condition we have IΦ(chn) → 0 as n → ∞ for every c > 0
(cf. [5, Theorem 3.3.I]). Therefore, it suffices to put h = hn and K(ε, c) = Kn for
sufficiently large n depending on ε and c. �

We define for every c, σ ∈ (0, 1) and s ∈ S:

q(s, u, v) =







0 if Φ(s, 12 (u+ v)) = 0

2Φ(s, 1
2
(u+v))

Φ(s,u)+Φ(s,v)
otherwise,

A(c, σ, s) = {u > 0 | q(s, u, cu) > 1− σ},

hc,σ(s) = sup{u > 0 | u ∈ A(c, σ, s)},

p(Φ) = sup{c ∈ (0, 1) | hc,σ ∈ G(Φ) for some σ ∈ (0, 1)}.

Theorem 2. Assume that Φ(s, ·) is a strictly convex function on R for µ-a.e. s ∈ S

and let a ∈ (0, 2). Then the following statements are equivalent:

1. δLΦ(µ)(a) > 0.

2. (a) p(Φ) > 2−a
2+a ,

(b) Φ satisfies the ∆2-condition.

Proof: 2⇒ 1. If 2 (a) holds, then there is a number b ∈ (0, 2), b < a, such that

p(Φ) > c >
2− a

2 + a
, c =

2− b

2 + b
.

Choose σ ∈ (0, 1) such that f = hc,σ ∈ G(Φ). We first prove the following property
of Φ:

(1) There is a number ε ∈ (0, 1) such that q(s, u, v) ≤ 1− ε

whenever max{|u|, |v|} ≥ f(s) and 2|u − v| ≥ a(1− ε)|u+ v|.
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First, assume that 0 ≤ v ≤ cu. Then, in view of the definition of p(Φ), we have
q(s, u, v) ≤ 1 − σ if u ≥ f(s). Here and in the sequel all inequalities in which the
parameter s is used are to be understood in the sense “for µ-a.e. s ∈ S”. The
inequality 0 ≤ v ≤ cu is equivalent to: u−v

a ≥ b
2a (u + v) and u, v ≥ 0. Since

b < a we obtain (1) for non-negative u, v. In the same way, the condition (1) can
be proved for negative u, v. It remains to prove (1) in the case u · v ≤ 0. So, fix u, v

with u · v ≤ 0. Since the function

fΦ(t) = ess sup
s∈S

sup
u>f(s)

q(s, u, tu)

is increasing in (0,1], it follows that η = fΦ(0) < 1. Thus

Φ(s,
1

2
(u+ v)) ≤ Φ(s,

1

2
max{|u|, |v|})

≤
1

2
Φ(s,max{|u|, |v|})

≤
1

2
[Φ(s, u) + Φ(s, v)].

Combining this with the previous case, we obtain (1) with

ε = min{1−
b

a
, σ, , 1 − η}.

Let λ ∈ (0, 1) be such that IΦ(
2λ
a f) ≤ ε

12 . Define

Ak = {s ∈ S | q(s, u, v) ≤ 1−
1

k
if λf(s) ≤ max{|u|, |v|} ≤ f(s)

and 2|u − v| ≥ a(1− ε)|u+ v|}.

Then, Ak ↑ U with µ(S \ U) = 0 by the strict convexity of Φ. Thus, in virtue of
the Beppo-Levi theorem, we have

IΦ(
2

a
f1Ak

)→ IΦ(
2

a
f) as k → ∞.

Therefore, we can pick n ∈ N with IΦ(
2
a1S\An

) ≤ ε
12 . Defining

g1 = λf1An
+ f1S\An

we estimate

IΦ(
2

a
g1) = IΦ(

2

a
λf1An

) + IΦ(
2

a
f1S\An

)

≤
ε

12
+

ε

12
=

ε

6
.
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Let h be a function from Lemma 1 corresponding to ε
6 instead of ε and

2
a instead

of c. Define g̃ = max{g1, h}. Then we obtain

IΦ(
2

a
g̃) ≤ IΦ(

2

a
g1) + IΦ(

2

a
h) ≤

ε

6
+

ε

6
=

ε

3
.

Denoting γ = min{ε, 1n}, we obtain

(2) q(s, u, v) ≤ 1−γ whenever max{|u|, |v|} ≥ g̃(s) and 2|u−v| ≥ a(1−ε)|u+v|.

Fix x, y ∈ LΦ(µ) with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ ≥ a. Then IΦ(x) ≤ 1,

IΦ(y) ≤ 1 and IΦ(
x−y

a ) ≥ 1.
Put A = S \ (B ∪ C) where the sets B, C are defined by

B = {s ∈ S | 2|x(s)− y(s)| < a(1− ε)|x(s) + y(s)|},

C = {s ∈ S | max{|x(s)|, |y(s)|} < g̃(s)}.

Then

IΦ(
x − y

a
1B) ≤

1− ε

2
[IΦ(x1B) + IΦ(y1B)] ≤ 1− ε,

IΦ(
x − y

a
1C) ≤ IΦ(

2

a
g̃) ≤

ε

3

so that

IΦ(
x − y

a
1A) ≥ 1− IΦ(

x − y

a
1B)− IΦ(

x − y

a
1C) ≥ 2

ε

3
.

Define further

D = {s ∈ A |
|x(s)− y(s)|

2
≤ g̃(s)} and E = A \ D.

A repeated application of Φ(s, 2u) ≤ KΦ(s, u), u ≥ h(s), yields

Φ(s,
2

a
u) ≤ MΦ(s, u), u ≥ h(s), with M = K2−log2(a)

so that

2
ε

3
≤ IΦ(

x − y

a
1A) = IΦ(

x − y

a
1D) + IΦ(

x − y

a
1E)

≤ IΦ(
2

a
g̃1D) + IΦ(

2

a

x − y

a
1E)

≤
ε

3
+MIΦ(

x − y

a
1E)

≤
ε

3
+

M

2
[IΦ(x1A) + IΦ(y1A)].
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From this inequality, we conclude that

IΦ(x1A) + IΦ(y1A) ≥ r =
2ε

3M

which implies

1− IΦ(
1

2
(x + y)) ≥

1

2
[IΦ(x) + IΦ(y)]− IΦ(

1

2
(x+ y))

≥
1

2
[IΦ(x1A) + IΦ(y1A)]− IΦ(

1

2
(x+ y)1A)

≥
1

2
[IΦ(x1A) + IΦ(y1A)]−

1

2
(1− γ)[IΦ(x1A) + IΦ(y1A)]

=
γ

2
[IΦ(x1A) + IΦ(y1A)] ≥

1

2
γr = ϑ,

what is equivalent to

(3) IΦ(
1
2 (x+ y)) ≤ 1− ϑ.

Let w be a function from (0, 1) into itself such that ‖x‖ ≤ 1 − w(δ) whenever
IΦ(x) ≤ 1 − δ (such a function exists by the ∆2-condition, cf. [4, Lemma 1.5]).
Then inequality (3) yields

‖
1

2
(x+ y)‖ ≤ 1− w(ϑ), i.e., δLΦ(µ)(a) ≥ w(ϑ) > 0

which finishes the proof of the implication 2⇒ 1.

1⇒ 2. If Φ does not satisfy the ∆2-condition, then LΦ(µ) contains an isometric
copy of ℓ∞ (cf. [3]). Therefore δLΦ(µ)(a) ≤ δℓ∞(a) = 0 for any a ∈ (0, 2].

Assume now that Φ satisfies the ∆2-condition but not 2 (a). Fixing an arbitrary

b ∈ (0, a) we then get p(Φ) < c = 2−b
2+b and therefore

IΦ(hc,σ) =∞ for all σ ∈ (0, 1).

Take an arbitrary such σ and denote g = hc,σ. From the definition of g and the
continuity of Φ we can conclude that q(s, g(s), cg(s)) = 1− σ whenever g(s) < ∞.
Put H = {s | g(s) = ∞}. If H is a null-set, then we put f = g, otherwise

we choose u0 > 0 and C ⊂ H with IΦ(u01C) = 2 and define f(s) by inf{u > u0 |
q(s, u, cu) > 1−σ} on C and by 0 on S\C. In any case, f is real valued, measurable
and satisfies IΦ(f) ≥ 2 and

(4) Φ(s, 1+c
2 f(s)) ≥ 1−σ

2 [Φ(s, f(s)) + Φ(s, cf(s))].

We choose B ∈ Σ with IΦ(f1B) + IΦ(cf1B) = 2 and put

r(s) = Φ(s, f(s))− Φ(s, cf(s)).
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There is a set A ⊂ B such that

∫

A
r(s) dµ =

∫

B\A
r(s) dµ

which is equivalent to

IΦ(f1A) + IΦ(cf1B\A) = IΦ(cf1A) + IΦ(f1B\A) = 1.

Define x = f1A + cf1B\A and y = cf1A + f1B\A. We then have

IΦ(x) = IΦ(y) = ‖x‖ = ‖y‖ = 1,

|x − y| = (1 − c)f1B =
2b

2 + b
f1B,

x+ y = (1 + c)f1B =
4

2 + b
f1B

and hence
|x − y|

b
=

x+ y

2
.

So, in view of the inequality (4), we get

IΦ(
x − y

b(1− σ)
) = IΦ(

x+ y

2(1− σ)
)

≥
1

1− σ
IΦ(

x + y

2
)

≥
1

2
[IΦ(x) + IΦ(y)] = 1,

whence ‖x − y‖ ≥ b(1− σ) and ‖12 (x+ y)‖ ≥ 1− σ. This means that

δLΦ(µ)(b(1− σ)) ≤ σ.

Letting σ → 0 and b → a we obtain the desired conclusion δLΦ(µ)(a) = 0 and the

proof is finished. �

As an immediate consequence of Theorem 2 we obtain

Theorem 3. If Φ is strictly convex then

ε0(L
Φ(µ)) =

{

2(1−p(Φ))
1+p(Φ)

if Φ satisfies the ∆2-condition

2 otherwise.
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Remark 1. Theorem 3 is not true when the strict convexity condition for Φ is
dropped as the following example shows:
Take S = [0, 2) with the Lebesgue measure µ and

Φ(s, u) =

{

|u| |u| ≤ 1

u2 |u| > 1.

Straightforward calculations show that Φ satisfies the ∆2-condition and p(Φ) = 1

so that
2(1−p(Φ))
1+p(Φ)

= 0. But, for x = 1[0,1) and y = 1[1,2), we have ‖x‖ = ‖y‖ = 1

and ‖x+ y‖ = ‖x − y‖ = 2 whence ε0(L
Φ(µ)) = 2.

Remark 2. The parameter p(Φ) can also be computed in the following way:

p(Φ) = sup{p(Φ, g) | g ∈ G(Φ)}

where

p(Φ, g) = sup{c ∈ (0, 1) | fΦ,g(c) < 1},

fΦ,g(c) = ess sup
s
sup{q(s, u, cu) | u > g(s)}.

Indeed, if p(Φ) > c, then g = hc,σ ∈ G(Φ) for some σ ∈ (0, 1) so that fΦ,g(c) ≤ 1−σ

and p(Φ, g) ≥ c.
Vice versa, if p(Φ, g) > c for g ∈ G(Φ) then fΦ,g(c) = 1− σ < 1 whence hc,σ ≤ q

µ-a.e. so that hc,σ ∈ G(Φ) and p(Φ) ≥ c.
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