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Extreme compact operators from Orlicz spaces to C(Ω)

Shutao Chen, Marek Wis la

Abstract. Let Eϕ(µ) be the subspace of finite elements of an Orlicz space endowed with
the Luxemburg norm. The main theorem says that a compact linear operator T : Eϕ(µ) →
C(Ω) is extreme if and only if T ∗ω ∈ Ext B((Eϕ(µ))∗) on a dense subset of Ω, where Ω
is a compact Hausdorff topological space and 〈T ∗ω, x〉 = (Tx)(ω). This is done via the
description of the extreme points of the space of continuous functions C(Ω, Lϕ(µ)), Lϕ(µ)
being an Orlicz space equipped with the Orlicz norm (conjugate to the Luxemburg one).
There is also given a theorem on closedness of the set of extreme points of the unit ball
with respect to the Orlicz norm.

Keywords: extreme points, vector valued continuous functions, compact linear operators,
Orlicz spaces

Classification: 46E30, 46B20

Introduction.

Let Ω be a compact Hausdorff topological space. By C(Ω, X) we denote the
Banach space of all X-valued continuous functions on Ω equipped with the standard
supremum norm ‖f‖ = supω∈Ω ‖f(ω)‖. If X = R then, as usual, we shall write
C(Ω) instead of C(Ω, R). The aim of this paper is to give the description of all
extreme compact linear operators (i.e., compact linear operators which are extreme
points of the unit ball with respect to the standard operator norm) from a subspace
Eϕ(µ) of an Orlicz space Lϕ(µ) equipped with the Luxemburg norm ‖ · ‖ϕ (cf.
Section 1) to the space C(Ω). It is well known [4, p. 490] that the space K(X, C(Ω))
of all compact linear operators is isometric to the space C(Ω, X∗) of all continuous

functions. Since the dual of (Eϕ(µ), ‖ · ‖ϕ) is isometric to the Orlicz space Lϕ∗

(µ)

(ϕ∗ stands for the conjugate function to ϕ) equipped with the Orlicz norm ‖ · ‖0
ϕ∗ ,

the problem stated above will be solved if we can give the description of all extreme
points of the unit ball of the space C(Ω, (Lϕ∗

(µ), ‖ · ‖0
ϕ∗)). Having that description

at hand, we also will be able to give, in Section 3, sufficient conditions under which
any extreme compact linear operator from the unit ball of K((Eϕ(µ), ‖ · ‖ϕ), C(Ω))
is nice in the sense of Morris and Phelps [11].

1. Closedness of the set Ext B(Lϕ(µ), ‖ · ‖0
ϕ).

In the following, ϕ : R → [0,+∞) will stand for a function which is convex,
even, vanishing only at 0 and satisfying the conditions: ϕ(u)/u → 0 as u → 0 and
ϕ(u)/u → +∞ as u → +∞. The conjugate function ϕ∗ to ϕ is defined by

ϕ∗(v) = sup{u|v| − ϕ(u) : u ≥ 0}.
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By the Orlicz space Lϕ(µ) ([13]) we mean the set of all µ-measurable functions
x : S → R over a non-negative, complete and σ-finite measure space (S,Σ, µ) such
that Iϕ(λx) :=

∫

S ϕ(λx(s)) dµ is finite for some λ > 0. The linear subspace of Lϕ(µ)
consisting of all measurable functions satisfying the last condition for all λ > 0 is
called the space of finite elements and will be denoted by Eϕ(µ).
In this paper we shall consider two norms defined on Lϕ(µ):

the Luxemburg norm [9]:

‖x‖ϕ = inf{λ > 0 : Iϕ(λ
−1x) ≤ 1}

and the Orlicz norm [13]

‖x‖0
ϕ = sup{|

∫

S
u(s)v(s) dµ| : Iϕ∗(v) ≤ 1}.

As it was pointed out in Introduction, the Orlicz and Luxemburg norms are conju-
gate to each other, i.e.,

(Eϕ(µ), ‖ · ‖ϕ)
∗ = (Lϕ∗

(µ), ‖ · ‖0
ϕ∗)

and

(Eϕ(µ), ‖ · ‖0
ϕ)

∗ = (Lϕ∗

(µ), ‖ · ‖ϕ∗).

In this paper we shall use the fact that the Orlicz norm is equal to the Amemiya
norm, i.e.,

‖x‖0
ϕ = inf

k>0

1

k
· (1 + Iϕ(kx))

(cf. [6] or [18]). Moreover, for every x 6= 0, that infimum is attained on some k > 0,
because ϕ(u)/u → ∞ as u → ∞. (For further details concerning Orlicz spaces we
refer to [6], [8], [12], [18].)

Let us define the set valued function K : Lϕ(µ) \ {0} → 2(0,∞) by

K(x) = {k ∈ (0,∞) : ‖x‖0
ϕ =

1

k
· (1 + Iϕ(kx))}.

The set of those k’s at which the function x 6= 0 attains its Orlicz norm forms
a closed interval [19], so every K(x) is convex and compact. The natural question
arises: does K admit a continuous selector? If the answer were affirmative, it would
be quite easy to solve the problem stated in Introduction. The first part of this
section is devoted to answering the above question.
From now on, by k∗(x) and k∗(x) we shall denote the minimum and maximum

of the set K(x), respectively. The following lemma, which will be quoted several
times in the sequel, provides formulae which enable us to calculate the numbers
k∗(x) and k∗(x).
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Lemma 1 ([18], [19]). For any function x ∈ Lϕ(µ) \ {0},

k∗(x) = inf{k > 0 : Iϕ∗(ϕ′
+(k|x|)) ≥ 1}

and

k∗(x) = sup{k > 0 : Iϕ∗(ϕ′
+(k|x|)) ≤ 1},

where ϕ′
+ denotes the right-hand side derivative of ϕ.

Lemma 2. For any sequence {xn : n ∈ N} ⊂ Lϕ(µ) \ {0} norm convergent to
x ∈ Lϕ(µ) \ {0} we have

[lim inf
n→∞

k∗(xn), lim sup
n→∞

k∗(xn)] ⊂ K(x).

Proof: First we show that {k∗(xn) : n ∈ N} is bounded from above. Indeed, if it
contains a subsequence (k∗(xni

)) tending to infinity, then by

1

k∗(xni
)
+

1

k∗(xni
)
· Iϕ(k

∗(xni
)xni
) = ‖xni

‖0
ϕ → ‖x‖0

ϕ < ∞

and ϕ(u)/u → ∞ as u → ∞ we must have xni

µ
→ 0 as i → ∞. But xni

χA
µ
→ xχA

on every set A of finite measure, so we have x = 0 — a contradiction.
Secondly, since

1

k∗(xn)
<

1

k∗(xn)
+

1

k∗(xn)
· Iϕ(k∗(xn)xn) = ‖xn‖

0
ϕ → ‖x‖0

ϕ > 0,

we have lim infn→∞ k∗(xn) ≥ limn→∞(‖xn‖0
ϕ)

−1 = (‖x‖0
ϕ)

−1 > 0.

Now, choose (xni
) ⊂ (xn) such that k∗(xni

) → k∗ := lim infn→∞ k∗(xn). We
show that k∗ ∈ K(x), i.e.,

‖x‖0
ϕ =

1

k∗
· (1 + Iϕ(k∗x)).

If not, then, by the Levy theorem,

‖x‖0
ϕ < ‖x‖0

ϕ + ε ≤
1

k∗
· (1 + Iϕ(k∗xχAp

)) < ∞

for some p ∈ N and ε > 0, where Ap = {s ∈ Sp : ϕ(k∗x(s)) ≤ p} and (Sp) is an
increasing sequence of sets of finite measure such that

⋃

p Sp = S. Now, we can

choose o < δ < 1
2 · µ(Ap) such that

1

k∗
·

∫

E
ϕ(k∗x(s)χAp

(s)) dµ <
ε

2
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for every measurable set E with µ(E) < δ. Since xni
χAp

→ xχAp
in Lϕ(µ) as

i → ∞, there exists a subsequence (yj) of (xni
) such that yjχAp

→ xχAp
µ-a.e. as

j → ∞. Therefore, by the Egoroff theorem, we can choose E0 ⊂ Ap with µ(E0) < δ
such that yj → x uniformly on Ap \ E0. Then we have

‖yj‖
0
ϕ ≥

1

k∗(yj)

(

1 + Iϕ(k∗(yj)yjχAp\E0)
)

→
1

k∗

(

1 + Iϕ(k∗xχAp\E0)
)

=
1

k∗

(

1 + Iϕ(k∗xχAp
)
)

−
1

k∗

(

1 + Iϕ(k∗xχAp∩E0)
)

≥ ‖x‖0
ϕ +

ε

2

contradicting the fact that ‖xnij
‖0
ϕ → ‖x‖0

ϕ as j → ∞.

Similarly, we can show that lim supn→∞ k∗(xn) ∈ K(x). �

As an immediate consequence of Lemma 2 we obtain

Proposition 1. The set valued function K is upper-semicontinuous.

An interval (α, β) is called an affine structural interval of ϕ if ϕ is affine
on (α, β) but ϕ is neither affine on (α − ε, β) nor (α, β + ε) for any ε > 0. Since
ϕ(u)/u → 0 as u → 0, we can always assume that 0 /∈ [α, β].

Lemma 3. Let (α, β) be an affine structural interval of ϕ and let x ∈ Lϕ(µ) \ {0}.
Then, for every k1, k2 ∈ Int K(x) we have µ(Ak1 ÷ Ak2) = 0, where Ak = {s ∈ S :
kx(s) ∈ (α, β)} and A ÷ B denotes the symmetric difference of the sets A and B.

Proof: Since ϕ is convex,

2‖x‖0
ϕ =

1

k1
· (1 + Iϕ(k1x)) +

1

k2
(1 + Iϕ(k2x))

=
k1 + k2

k1k2

{

1 +

∫

S

[ k2

k1 + k2
· ϕ(k1x(s)) +

k1

k1 + k2
· ϕ(k2x(s))

]

dµ
}

≥
k1 + k2

k1k2

{

1 +

∫

S
ϕ
(

2 ·
k1k2

k1 + k2
· x(s)

)

dµ
}

≥ 2 · ‖x‖0
ϕ,

for every k1, k2 ∈ K(x). Thus

ϕ
(

2 ·
k1k2

k1 + k2
· x(s)

)

=
k2

k1 + k2
· ϕ(k1x(s)) +

k1

k1 + k2
· ϕ(k2x(s))

for µ-a.e. s ∈ S. This shows that, for µ-a.e. s ∈ S, x(s) 6= 0, k1x(s) 6= k2x(s) imply
that k1x(s) and k2x(s) are in the closure of the same affine structural interval of ϕ;
so, if k1, k2 ∈ Int K(x), k1x(s) 6= k2x(s) and k1x(s) ∈ (α, β) then k2x(s) ∈ (α, β)
for µ-a.e. s ∈ S. �

In the following, by SCϕ we will denote the set of all points of strict con-
vexity of ϕ, i.e., the set of those points u ∈ R such that (u, ϕ(u)) is a point of
strict convexity of the epigraph of ϕ. Since ϕ vanishes only at 0, we have 0 ∈ SCϕ.
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Corollary 1. If µ({s ∈ S : kx(s) ∈ SCϕ \ {0}}) > 0 then k /∈ Int K(x). In
particular, if ϕ is strictly convex then K is a single-valued mapping and, hence, K
is continuous.

Proof: Suppose that k ∈ Int K(x). Then there exists k′ ∈ K(x) with k′ 6= k.
Thus

Iϕ∗(ϕ′
+(k

′|x|)) 6= Iϕ∗(ϕ′
+(k|x|)) = 1,

since ϕ′
+(k

′|x(s)|) is strictly greater or less than ϕ′
+(k|x(s)|) for almost every s ∈

{s ∈ S : kx(x) ∈ SCϕ \ {0}}. Hence k′ /∈ Int K(x) by virtue of Lemma 1 —
a contradiction. �

Unfortunately, if the measure µ is atomless, the set valued function K cannot
be lower-semicontinuous — this is a consequence of the Michael selection theorem
([1], [10]) and the following proposition which brings the answer to the above stated
question.

Proposition 2. Let (S,Σ, µ) be an atomless measure space. The set valued func-
tion K admits a continuous selector if and only if K is single valued.

Proof: The sufficiency part of the proof follows from Proposition 1.
Suppose that Int K(x) 6= ∅ for some x ∈ Lϕ(µ) \ {0}. By Corollary 1,

µ({s ∈ S : k0x(s) /∈ SCϕ \ {0}}) > 0,

where ko :=
1
2 (k∗(x)+ k∗(x)). Thus, we can find an affine structural interval (α, β)

of ϕ such that 0 < α < β and µ(E) > 0, where E = {s ∈ S : k0|x(s)| ∈ (α, β)}.
Let (En) be a sequence of subsets of E with µ(En)→ 0 as n → ∞ and define

xn = xχS\En
+

β

k∗(x)
· χEn

; yn = xχS\En
+

α

k∗(x)
· χEn

,

for n = 1, 2, . . . . We have

Iϕ(λχEn
) = ϕ(λ)µ(En) −→

n→∞
0

for any λ > 0, so (cf. [12]) ‖χEn
‖ϕ → 0 and, since the Luxemburg and Orlicz norms

are equivalent, ‖χEn
‖0
ϕ → 0 as n → ∞. Since, moreover,

sup
s∈E

{∣

∣

∣

β

k∗(x)
− x(s)

∣

∣

∣
,

∣

∣

∣
x(s)−

α

k∗(x)

∣

∣

∣

}

< ∞,

xn → x and yn → x as n → ∞. Further, by Lemma 3,

k

k∗(x)
· α < α < k|x(s)| < β <

k

k∗(x)
· β
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for every k ∈ Int K(x) and µ-a.e. s ∈ S. Thus, applying Lemma 1 and the fact
that (α, β) is an affine structural interval of ϕ,

Iϕ∗(ϕ′
+(k|yn|)) < Iϕ∗(ϕ′

+(k|x|)) = 1 < Iϕ∗(ϕ′
+(k|xn|))

for every k ∈ Int K(x). Therefore, once again by Lemma 1,

k∗(xn) ≤ k∗(x) < k∗(x) ≤ k∗(yn).

If k(·) : Lϕ(µ)\{0} → (0,∞) were a continuous selector ofK, then limn→∞ k(xn) =
k(x) = limn→∞ k(yn), so k∗(x) = k∗(x) — a contradiction. �

Before we present the theorem on closedness of the set of extreme points of the
unit ball B(Lϕ(µ), ‖ · ‖0

ϕ) we recall the description of those points.

Lemma 4 ([7], [15]). A function x ∈ Lϕ(µ) is an extreme point of the unit ball
B(Lϕ(µ), ‖ · ‖0

ϕ) if and only if ‖x‖
0
ϕ = 1 and one of the following conditions is

satisfied:

– µ({s ∈ S : kx(s) /∈ SCϕ}) = 0 for every k ∈ K(x);
– supp x := {s ∈ S : x(s) 6= 0} is an atom.

Note. By Corollary 1, K(x) is a one-point set for every extreme point x of
B(Lϕ(µ), ‖ · ‖0

ϕ) provided the support of x does not reduce to an atom.

Theorem 1. (a) If one of the following conditions is satisfied:

– Lϕ(µ) is finite dimensional
– the set valued function K is single valued,

then the set Ext B(Lϕ(µ), ‖ · ‖0
ϕ) is closed.

(b) If the measure µ is atomless then the set Ext B(Lϕ(µ), ‖ · ‖0
ϕ) is closed if

and only if K is single valued.

Proof: (a) Assume that Lϕ(µ) is finite dimensional, i.e., S consists of finite
number, say p, of atoms. Moreover, let (xn) be a sequence of extreme points of
B(Lϕ(µ), ‖ · ‖0

ϕ) which is norm convergent to an element x of Lϕ(µ). Obviously,

‖x‖0
ϕ = 1. Moreover, x ∈ Ext B(Lϕ(µ), ‖ · ‖0

ϕ) provided supp x is an atom.
Assume that supp x is not an atom. Since xn → x uniformly on S, supp xn

cannot reduce to an atom as well, soK(xn) are one-point sets for every n sufficiently
large. By Lemma 2, passing to a subsequence if necessary, we can assume that
K(xn) ∋ k(xn) → k0 ∈ K(x) as n → ∞. Since k(xn)xn(s) ∈ SCϕ for every s ∈ S
and the set SCϕ is closed, k0x(s) ∈ SCϕ for every s ∈ S.
We claim that K(x) = {k0}, i.e., x is an extreme point. Suppose that Int K(x)

6= ∅. Then, by Lemma 3 and Lemma 1, there exists a finite number, say m, of affine
structural intervals (αi, βi) ⊂ (0,∞) of ϕ with

m
∑

i=1

ϕ∗(ϕ′
+(αi))µ(Si) = 1
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where Si = {s ∈ S : k · |x(s)| ∈ (αi, βi)}, i = 1, . . . , m and k 6= k0 is an element of
Int K(x). Evidently, supp x ⊆

⋃m
i=1 Si. Since S is finite, we can find ε > 0 such

that
k · (|x(s)| ± ε) ∈ (αi, βi)

for every s ∈ Si and i = 1, . . . , m. Applying once more the fact that ‖xn−x‖ℓ∞p
→ 0,

we infer that, for every s ∈ Si and i = 1, . . . , m,

k · (|xn(s)|) ∈ (αi, βi),

for every n sufficiently large, i.e., xn are not extreme.
Now, assume that K is single valued, i.e., k(x) := k∗(x) = k∗(x) for every

x ∈ Lϕ(µ)\{0} and, by Proposition 1, k is continuous. Suppose Ext B(Lϕ(µ), ‖·‖0
ϕ)

is not closed, i.e., there exists sequence (xn) of extreme points and x which is not
an extreme point but ‖xn − x‖0

ϕ → 0 as n → ∞. Evidently ‖x‖0
ϕ = 1 and supp x is

not an atom.
Since x is not an extreme point, there exists an affine structural interval (α, β)

of ϕ such that
µ({s ∈ S : k(x) · x(s) ∈ (α, β)}) > 0.

Then we can find 0 < ε < (β − α)/2 and a set

A ⊆ {s ∈ S : k(x) · x(s) ∈ (α+ ε, β − ε)}

such that 0 < µ(A∩S) < ∞. By the Egoroff theorem, there exists a set E ⊂ A and

a subsequence (xnp) of (xn) such that µ(E) < 1
2 · µ(A) and xnp → x uniformly on

the set A \ E. Thus

µ({s ∈ A \ E : k(xnp) · xnp ∈ (α, β)}) > 0

for every sufficiently large p, i.e., xnp are not extreme points — a contradiction.

(b) Let us assume that the measure µ is atomless and suppose that K is not
single valued, i.e., Int K(y) 6= ∅ for some y ∈ Lϕ(µ) \ {0}. By virtue of Lemma 1,

∑

i∈N

ϕ∗(ϕ′
+(αi))µ(Si) = 1,

where N ⊂ N is the set of all indices such that (αi, βi), i ∈ N, are all affine structural
intervals of ϕ, Si = {s ∈ S : k|y(s)| ∈ (αi, βi)} for i ∈ N and k is an element of
Int K(y). Note that, by Lemma 3, supp y ⊆

⋃

i∈N Si.
Define

x := d ·
∑

i∈N

αiχSi
,

where d > 0 is such a number that ‖x‖0
ϕ = 1. Then

[k∗(y)/d, k∗(y)/d] ⊂ K(x),
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so x is not an extreme point of B(Lϕ(µ), ‖ · ‖0
ϕ). Since µ is atomless and µ(Sp) > 0

for some p ∈ N, we can choose a sequence (An) of pairwise disjoint subsets of Sp of

positive measure with µ(An)→ 0 as n → ∞. Hence ‖χAn
‖0
ϕ → 0 as n → ∞.

Let us define, for n = 1, 2, . . . ,

xn :=
1

kn
·
(

∑

i∈N\{p}

αiχSi
+ αpχSp\An

+ βpχAn

)

,

where kn > 0 are such numbers that ‖xn‖0
ϕ = 1. It is easy to check that

Iϕ∗(ϕ′
+(kxn)) < 1 for k < kn and Iϕ∗(ϕ′

+(kxn)) > 1 for every k ≥ kn. There-
fore, K(xn) = {kn} and, since knxn(s) ∈ SCϕ for every s ∈ S, xn are extreme

points of B(Lϕ(µ), ‖ · ‖0
ϕ) for every n ∈ N.

Since infn kn ≥ 1, we have

‖x‖0
ϕ = 1 = limn→∞

‖xn‖
0
ϕ = limn→∞

1

knd
‖xχS\An

‖0
ϕ = limn→∞

1

knd
‖x‖0

ϕ,

so knd → 1 as n → ∞. Therefore,

‖xn − x‖0
ϕ ≤ |

1

knd
− 1| · ‖xχS\An

‖0
ϕ + ‖(βpk

−1
n − dαp)χAn

‖0
ϕ ≤

≤ |
1

knd
− 1| · ‖x‖0

ϕ + |βpk
−1
n − dαp| · ‖χAn

‖0
ϕ → 0

as n → ∞, i.e., the set Ext B(Lϕ(µ), ‖ · ‖0
ϕ) is not closed. �

The next proposition gives other conditions equivalent to those in Theorem 1
and Proposition 2.

Proposition 3. Let µ be an atomless measure. The set valued function K is single
valued if and only if

(a) ϕ is a strictly convex function (i.e., (Lϕ(µ), ‖ · ‖0
ϕ) is a strictly convex space

— cf. [19]) provided µ(S) =∞;

(b) ϕ∗(ϕ′
+(αn))µ(S) < 1 for every n ≥ 1, provided µ(S) < ∞ and {(αn, βn) :

n ≥ 1} is the family of all affine structural intervals of ϕ included in (0,∞).

Proof: If either (a) or (b) is not satisfied then there exists an affine structural
interval (α, β) ⊂ (0,∞) of ϕ and a set E ⊂ S such that ϕ∗(ϕ′

+(α))µ(E) = 1. Thus
K(χE) = [α, β], i.e., K is not a single valued function. It is also evident that K is
single valued provided (a) is satisfied.
Now, assume that (b) holds and suppose that K is not single valued. Let x ∈

Lϕ(µ) be such that Int K(x) 6= ∅. Then, by Lemma 1, Iϕ∗(ϕ′
+(kx)) = 1 for every

k ∈ Int K(x). Hence, by Lemma 3,

k0|x(s)| ∈
⋃

n∈N

(αn, βn) for µ-a.e. s ∈ supp x,
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where k0 =
1
2 (k∗(x)+ k∗(x)), N ⊆ N∪{∞} and {(αn, βn) : n ∈ N} is the family of

all affine structural intervals of ϕ included in (0,∞). Put Sn = {s ∈ S : k0|x(s)| ∈
(αn, βn)} for n ∈ N and let α = supn∈N αn.
If α =∞ then ϕ′

+(αnp) ≥ ϕ(αnp)/αnp → ∞, so

ϕ∗(ϕ′
+(αnp))µ(S)→ ∞

for some subsequence αnp → ∞ — a contradiction.
Now, assume that α < ∞. We claim that ϕ′

+(α) = ϕ′
+(αnp) for some n ∈ N .

Our claim is obvious if N is finite. In the other case choose a subsequence (αnp)
such that αnp → α as p → ∞. Without loss of generality, we can assume that
infp αnp > 0. Let ε be any positive number with 0 < ε < (k∗(x)/k0 − 1) · infp αnp .
Then there exists np ∈ N such that

αnp ≤ α < αnp + ε < k∗(x) · αnp/k0 ≤ k∗(x) · |x(s)| ≤ βnp

for every s ∈ Snp (cf. Lemma 3) and that proves our claim.

Therefore, by (b), ϕ∗(ϕ′
+(α))µ(S) < 1, so

1 =
∑

n≥1

ϕ∗(ϕ′
+(αn))µ(Sn) ≤ ϕ∗(ϕ′

+(α))µ(
⋃

n

Sn) ≤ ϕ∗(ϕ′
+(α))µ(S) < 1

and we have arrived at a contradiction which ends the proof. �

2. Extreme points of the unit ball in C(Ω, (Lϕ(µ), ‖ · ‖0
ϕ)).

For any Banach space X it is evident that

f ∈ Ext B(C(Ω, X)) =⇒ ‖f(ω)‖ = 1 for every ω ∈ Ω.

It is also easy to prove that if f(ω) ∈ Ext B(X) on a dense subset of Ω, then
f ∈ Ext B(C(Ω, X)). Therefore the natural conjecture is the following one

(†) f ∈ Ext B(C(Ω, X))⇐⇒ f(ω) ∈ Ext B(X) on a dense subset of Ω.

It should be pointed out that (†) does not hold in general. Extreme points of
B(C(Ω, X)) can have nothing to do with the set Ext B(X). Blumenthal, Linden-
strauss and Phelps [2] have presented an example of a four-dimensional space X
and a function f ∈ Ext C([0, 1], X) such that f(ω) /∈ Ext B(X) for all ω ∈ [0, 1].
However, a wide class of Banach spaces satisfies (†). Take, for example, Banach

spaces with stable unit ball, i.e., in which the mapping Φ : B(X)×B(X)→ B(X);

Φ(x, y) = 1
2 (x + y) is open (cf. [3], [14]). Thanks to the Michael selection theorem

([1], [10]) , it is not difficult to prove (†) in that case. Since every strictly convex
Banach space has stable unit ball, (†) holds for that class of spaces. It should also
be noted that if B(X) is stable then Ext B(X) is closed, so the right-hand side
condition in (†) holds for every ω ∈ Ω.
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Although it is very convenient to prove (†) using stability arguments, stability
itself is far from being a necessary condition in order (†) to hold. For example
([16]) the Orlicz sequence space ℓϕ equipped with the Luxemburg norm ‖ · ‖ϕ has
stable unit ball if and only if ϕ satisfies the condition δ2 (i.e., there exist c, u0 > 0
such that ϕ(u0) > 0 and ϕ(2u) < cϕ(u) for every |u| ≤ u0). However, (†) holds
true for every Orlicz space (Lϕ(µ), ‖ · ‖ϕ) defined on an arbitrary complete and
σ-finite measure space (S,Σ, µ) — cf. [17]. The purpose for this section is to give
an analogous theorem concerning Orlicz spaces yielded with the Orlicz norm.
To simplify the notation, a set will be called decomposable if it contains two

disjoint subsets of positive measure.

Lemma 5. Let f be a continuous function from Ω into the unit sphere
S(Lϕ(µ), ‖·‖0

ϕ) and let us assume that there exist affine structural intervals (α1, β1)

and (α2, β2) of ϕ (not necessarily disjoint) and ω0 ∈ Ω such that either

(i) there exists ε > 0 such that

(k∗(f(ω0))− ε) · f(ω0)(s) ∈ (αi, βi)

and (k∗(f(ω0)) + ε) · f(ω0)(s) ∈ (αi, βi)

for every s from some decomposable set C and each i = 1, 2;

or

(ii) there exist k0 > 0 and an open neighborhood W of ω0 such that

k0 ∈
⋂

ω∈W

K(f(ω)) and k0f(ω0)(s) ∈ (αi, βi)

for every s from some decomposable set C and each i = 1, 2.

Then f is not an extreme point of the unit ball of the space C(Ω, (Lϕ(µ), ‖ · ‖0
ϕ)).

Proof: The following proof is a modification of the idea presented in [5]. Let ε be
either the number taken from (i) or an arbitrary positive one in the other case. Since
K is upper-semicontinuous at f(ω0), we can find an open neighborhood V ⊂ W of
ω0 such that

⋃

ω∈V K(f(ω0)) ⊂ [k∗(f(ω0))− ε, k∗(f(ω0)) + ε].
In the following, C will stand for a decomposable set of finite measure such that

the appropriate condition appearing in (i) or (ii) is satisfied for every s ∈ C. Let
A, B ⊂ C be disjoint subsets of positive measure chosen in the following way

– if C has an atomless subset, then A and B are assumed to be included in that
subset;

– if C consists only of atoms (at least two of them) then A and B are assumed
to be one-point sets.

In both cases, we can and do assume that the appropriate values of the function from
Lϕ(µ) \ {0} appearing in (i) and (ii) belong to the interval (α1, β1) (respectively, to
(α2, β2)) at the points from A (resp., from B).
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Moreover, if (i) is satisfied, denote

k∗,i = k∗(f(ω0))− ε, k∗i = k∗(f(ω0)) + ε if 0 < αi < βi,

k∗,i = k∗(f(ω0)) + ε, k∗i = k∗(f(ω0))− ε if αi < βi < 0;

and put k∗,i = k∗i = k0 provided (ii) holds (i = 1, 2).
Further, let ηA, ηB : L

ϕ(µ) → Lϕ(µ) be functions defined by the following for-
mulae:

ηA(x)(s) = χA(s) ·max{0,min{β1 − k∗1 · x(s), k∗,1 · x(s) − α1}},

ηB(x)(s) = χB(s) ·max{0,min{β2 − k∗2 · x(s), k∗,2 · x(s) − α2}}.

Then, for every x, y ∈ Lϕ(µ) and s ∈ S, we have

|ηA(x)(s) − ηA(y)(s)| ≤ κ · |x(s)− y(s)|,

where κ = max{k∗,1, k∗,2, k
∗
1, k∗2}, so ηA and, similarly, ηB are continuous functions.

By virtue of the Urysohn lemma, we can find a continuous function r : Ω→ [0, 1]
such that r(ω0) = 1 and r(ω) = 0 for every ω /∈ V . Now, let, for any x ∈ Lϕ(µ)
and ω ∈ Ω,

pA(x) = ϕ′
+(α1)

∫

S
ηA(x)(s) dµ, pB(x) = ϕ′

+(α2)

∫

S
ηB(x)(s) dµ,

γA(ω) =
pB(f(ω))r(ω)

1 + pA(f(ω)) + pB(f(ω))
, γB(ω) =

pA(f(ω))r(ω)

1 + pA(f(ω)) + pB(f(ω))
·

Then pA, pB : L
ϕ(µ)→ R are continuous, since

|pA(x)− pA(y)| ≤ ϕ′
+(α1) · κ · ‖(x − y)χA‖L1(µ)

≤ M · ϕ′
+(α1) · κ · ‖(x − y)‖Lϕ(µ)

for some constant M > 0 (the right-hand side inequality is a consequence of the
inclusion L1(µ |A) →֒ Lϕ(µ |A) which holds true because µ(A) < ∞ and the closed
graph theorem). Evidently, γA, γB : R → [0, 1] are also continuous functions.
Finally, let g, h : Ω→ Lϕ(µ) be defined as follows:

g(ω) = f(ω) + κ−1 · γA(ω) · ηA(f(ω))− κ−1 · γB(ω) · ηB(f(ω)),

h(ω) = f(ω)− κ−1 · γA(ω) · ηA(f(ω)) + κ−1 · γB(ω) · ηB(f(ω)).

Obviously, g, h are continuous functions and 1
2 (g + h) = f . Further, in both cases

(i) and (ii), the function ηA(f(ω)) is positive on the set A. Thus g(ω0) 6= h(ω0), so
g 6= h.
To finish the proof, we should show that ‖g(ω)‖0

ϕ ≤ 1 and ‖h(ω)‖0
ϕ ≤ 1 for every

ω ∈ Ω. These inequalities are evident if ω /∈ V . Now, let ω ∈ V and put

Aω = {s ∈ A : ηA(f(ω))(s) > 0}, Bω = {s ∈ B : ηB(f(ω))(s) > 0}.



74 S. Chen, M. Wis la

Obviously, Aω ⊂ A and Bω ⊂ B for every ω ∈ V . Moreover, let kω be any element
of K(f(ω)) if the assumption (i) is satisfied and put kω = k0 ∈ K(f(ω)) if (ii) holds.
Then kω · f(ω)(s) belongs to (α1, β1) (respectively, to (α2, β2)) for every s ∈ Aω

(resp., s ∈ Bω). Further, since kω · κ−1 · γA(ω) ≤ 1, we have

kω · f(ω)(s) + kω · κ−1 · γA(ω) · ηA(f(ω))(s) ∈ [α1, β1]

for every s ∈ Aω and, similarly,

kω · f(ω)(s) + kω · κ−1 · γA(ω) · ηA(f(ω))(s) ∈ [α2, β2]

for every s ∈ Bω. Since ηA(f(ω))(s) = ηB(f(ω))(s) = 0 for every s ∈ (A \ Aω) ∪
(B \ Bω), we have

Iϕ(kωg(ω)) =

Iϕ(kω · f(ω)χS\(Aω∪Bω)) + Iϕ(kω · f(ω)χAω
+ kω · κ−1 · γA(ω) · ηA(f(ω))χAω

)

+ Iϕ(kω · f(ω)χBω
− kω · κ−1 · γB(ω) · ηB(f(ω))χBω

)

= Iϕ(kω · f(ω)) + ϕ′
+(α1) · kω · κ−1 · γA(ω) ·

∫

Aω

ηA(f(ω))(s) dµ

− ϕ′
+(α2) · kω · κ−1 · γB(ω) ·

∫

Bω

ηB(f(ω))(s) dµ

= Iϕ(kω · f(ω)) + kω · κ−1 · [γA(ω)pA(ω)− γB(ω)pB(ω)]

= Iϕ(kω · f(ω)).

Thus

‖g(ω)‖0
ϕ ≤

1

kω
[1 + Iϕ(kω · g(ω))] =

1

kω
[1 + Iϕ(kω · f(ω))] = 1

and, analogously, ‖h(ω)‖0
ϕ ≤ 1. Therefore f is not extreme and the proof is finished.

�

In the following, by ℓ([a, b]) we shall denote the length of the interval [a, b].
Further, by Θf we shall denote the closure of all ω ∈ Ω such that the set supp f(ω)
is decomposable.

Proposition 4. If f is an extreme point of the unit ball in the space
C(Ω, (Lϕ(µ), ‖ · ‖0

ϕ)) then the set

Ω0 = {ω ∈ Θf : ℓ(K(f(ω))) > 0}

is of the first Baire category in Ω.

Proof: Let Ωn = {ω ∈ Θf : ℓ(K(f(ω))) ≥
1
n}, n = 1, 2, . . . . Since K is upper-

semicontinuous, each Ωn is closed. Obviously, Ω0 =
⋃

n Ωn. Let us suppose that
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Ω0 is not of the first Baire category in Ω. Then Int Ωn 6= ∅ for some (fixed from
now on) n ∈ N. Let

ℓ0 := inf{ℓ(K(f(ω))) : ω ∈ Int Ωn} ≥
1

n
·

Choose 0 < ε < 1
2 ℓ0 and ω̄ ∈ Int Ωn such that ℓ(K(f(ω0))) < ℓ0 + ε/2. Since K is

upper-semicontinuous we can find ω0 ∈ Int Ωn such that supp f(ω0) is decompos-
able and

ε < ℓ0 ≤ ℓ(K(f(ω0))) ≤ ℓ(K(f(ω̄))) + ε/2 < ℓ0 + ε.

Let k0 :=
1
2 ·[k∗(f(ω0))+k∗(f(ω0))] and choose δ such that 0 < δ < 1

2 ℓ(K(f(ω0)))−
ε. Moreover, let V ⊂ Ωn be an open neighborhood of ω0 such that K(f(ω)) ⊂
[k∗(f(ω0))− δ, k∗(f(ω0)) + δ], ω ∈ V . We have ℓ(K(f(ω))) ≥ ℓ0, so

ℓ(K(f(ω0)))− ℓ(K(f(ω))) < ℓ0 + ε − ℓ0 = ε

for every ω ∈ V . Therefore, for every ω ∈ V ,

k∗(f(ω0)) − δ ≤ k∗(f(ω)) ≤ k∗(f(ω0)) + δ + ε < k0

k0 < k∗(f(ω0))− δ − ε ≤ k∗(f(ω)) ≤ k∗(f(ω0)) + δ.

Thus
[k∗(f(ω0)) + δ + ε, k∗(f(ω0))− δ − ε] ⊂ K(f(ω)),

so k0 ∈
⋂

ω∈V K(f(ω)). Since ℓ(K(f(ω))) > 0, either k0f(ω0)(s) /∈ SCϕ or
k0f(ω0)(s) = 0 for almost every s ∈ S. Therefore the set {s ∈ S : k0f(ω0)(s) /∈
SCϕ} ⊇ supp f(ω0) is decomposable, so Lemma 5 implies that f is not extreme —
a contradiction. �

Theorem 2. A function f is an extreme point of the unit ball of the space
C(Ω, (Lϕ(µ), ‖ · ‖0

ϕ)) if and only if f(ω) ∈ Ext B(Lϕ(µ), ‖ · ‖0
ϕ) on a dense sub-

set of Ω.

Proof: If supp f(ω) is an atom, then f(ω) is an extreme point of B(Lϕ(µ),
‖ · ‖0

ϕ). Thus, it suffices to prove that if f is an extreme point, the set supp f(ω)

is decomposable and K(f(ω)) is a one-point set, then f(ω) ∈ Ext B(Lϕ(µ), ‖ · ‖0
ϕ),

the rest of the proof is the consequence of Proposition 4 and the Baire category
theorem.
Assume that K(f(ω0)) = {k0} and suppose that the set {s ∈ S : k0f(ω0)(s) /∈

SCϕ} is of positive measure and it is not an atom at the same time. Then we can
find two affine structural intervals (α1, β1) and (α2, β2) of ϕ (maybe equal to each
other) such that the set

{s ∈ S : k0f(ω0)(s) ∈ (α1, β1) ∪ (α2, β2)}

is decomposable. Then, for some δ > 0, the set

C = {s ∈ S : k0f(ω0)(s) ∈ (α1 + δ, β1 − δ) ∪ (α2 + δ, β2 − δ)}

is decomposable as well. Evidently, we can find ε > 0 such that

(k0 ± ε) · f(ω0)(s) ∈ (α1, β1) ∪ (α2, β2)

for every s ∈ C. Therefore, by Lemma 5, f is not an extreme point and that
contradiction ends the proof of the theorem. �
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3. Compact nice operators from Eϕ(µ) into C(Ω).

If T is a linear operator from a Banach space X into C(Ω), then the map T ∗ :
Ω→ X∗ defined by

〈T ∗ω, x〉 = (Tx)(ω) x ∈ X, ω ∈ Ω,

is continuous from Ω into the weak∗-topology of X∗. Moreover, T ∗ is norm con-
tinuous if and only if T is compact [4]. T is called nice [11] provided T ∗(Ω) ⊆
Ext B(X∗). As a consequence of Theorem 2 we obtain

Theorem 3. Let T be a linear compact operator from (Eϕ(µ), ‖ · ‖ϕ) into C(Ω).
Then T is extremal if and only if

T ∗(ω) ∈ Ext B(Lϕ∗

(µ), ‖ · ‖0
ϕ∗)

on a dense subset of Ω.

Let K∗ : Lϕ∗

(µ) \ {0} → 2(0,∞) be defined by

K∗(x∗) = {k ∈ (0,∞) : ‖x∗‖0
ϕ∗ =

1

k
· (1 + Iϕ∗(kx∗))}.

Applying the results of Section 1 and Theorem 2 we obtain

Theorem 4. Let T be a linear compact operator from (Eϕ(µ), ‖ ·‖ϕ) into C(Ω). If
Eϕ(µ) is finite dimensional or the mapping K∗ is single valued then T is an extreme
operator if and only if T is nice.

Remark. The function ϕ is said to satisfy the condition ∆2 if:

(a) There exists a constant c > 1 such that ϕ(2u) ≤ cϕ(u) for every u (respec-
tively, every u ≥ u0, ϕ(u0) < ∞) provided µ is atomless and infinite (resp.,
finite);

(b) there exist constants c > 1, a > 0 (0 < ϕ(a) < ∞), and a sequence (dn) of
nonnegative numbers such that

∑

n
dn < ∞ and

ϕ(2u)µ(sn) ≤ cϕ(u)µ(sn) + dn

for every u with ϕ(u)µ(sn) ≤ a and every n ∈ N, if µ is a purely atomic
measure (S = {sn : n ∈ N}, µ(sn) > 0 for each n ∈ N);

(c) a combination of (a) and (b) if S has both an atomless and purely atomic
parts.

Note that if Lϕ(µ) is finite dimensional then Lϕ(µ) = Eϕ(µ). If dimLϕ(µ) =∞,
then the equality Lϕ(µ) = Eϕ(µ) holds if and only if ϕ satisfies the condition ∆2

(cf. [12, Theorem 3.18, p. 52]). Thus, assuming that either dimLϕ(µ) < ∞ or ϕ
satisfies the condition ∆2, Theorem 3 and Theorem 4 remain valid for the whole
Orlicz space Lϕ(µ).
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