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On global existence and stationary solutions
for two classes of semilinear parabolic problems

PAvOL QUITTNER

Abstract. We investigate stationary solutions and asymptotic behaviour of solutions of two
boundary value problems for semilinear parabolic equations. These equations involve both
blow up and damping terms and they were studied by several authors. Our main goal is
to fill some gaps in these studies.

Keywords: global existence, blow up, semilinear parabolic equation, stationary solution

Classification: 35K60, 35J65, 35B40

1. Introduction.

Consider the following two problems

ut = Au — au? in (0,00) x Q,
(NBC) % =uf on (0,00) x 09,
u(0,2) = up(x) z€Q,

ut = Au — [Vul|? 4+ AP in (0,00) x Q,
(DGT) u=20 on (0,00) x 09,
u(0,z) = up(x) T €Q,

where 2 is a smoothly bounded domain in RY, p, ¢ > 1, a, A > 0 and ug € W1H>°(Q)
is a non-negative function. These problems were studied by many authors (see
e.g. [CFQ], [E], [FQ1], [LGMW] in the case of (NBC) and [AW], [C], [CW1], [CW2],
[F], [KP], [Q1] in the case of (DGT)). In both problems there is a blow-up term
(u? and AuP) and a damping term (—auP and —|Vu|?). These terms cause that the
corresponding solutions admit an interesting asymptotic behaviour which strongly
depends on the parameters p,q,a,A. The main purpose of this paper is to fill
some gaps in the studies of these problems; i.e. to investigate the behaviour of the
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solutions for those parameters p,q,a, A\ or N for which the results in the above
mentioned papers are not satisfactory.

In the case of (NBC) (the problem with Nonlinear Boundary Conditions), the
study was almost completely done in [CFQ] for N = 1. Particularly, it was shown
that the exponent p = 2¢ — 1 is critical for the blow up in the following sense:

(i) f p<2¢—1 (or p=2¢—1anda < q) then there exist solutions of (NBC)
which blow up in finite time,
(ii) if p > 2¢ —1 (or p = 2¢ — 1 and a > ¢) then all solutions of (NBC) exist
globally and are globally bounded,
(iii) if p = 2¢ — 1 and a = ¢ then all nontrivial solutions of (NBC) exist glob-
ally but they are unbounded; they tend pointwise to a singular stationary
solution.

The assertions (i) and (ii) were shown also for Q being a ball in RY, N > 1.
However, if Q0 is a general bounded domain in RN, N > 1, then [CFQ] or [E] imply
blow up of suitable solutions of (NBC) only for p < ¢ and the global existence and

boundedness is shown in [CFQ)] only for p > ¢(q), ¢ < %, where

(g) = I = 2)

= 1)—1>2¢— 1.
N+l-qw_putt-1>2%

The main result of this paper concerning the global existence for (NBC) in the case
of a general domain €2 is the following:

(a) if p > 2¢ — 1 then all solutions of (NBC) exist globally and are globally
bounded,

(b) if p < 2¢—1 (or p = 2g — 1 and a is sufficiently small) then there exist
initial functions ug such that the corresponding solutions of (NBC) blow up
in L*°(Q)-norm.

It has to be mentioned that in the case (b) we do not know whether the blow up
occurs in finite or infinite time. We find only a subsolution u™ such that any positive
stationary solution has to intersect ut so that the solution of (NBC) starting at
u™ cannot be bounded. In the case (a) we show that a simple substitution leads
to the case p > ¢(¢) which was already solved in [CFQ]. Hence, for p > 2¢ — 1 we
obtain global existence, boundedness and also the existence of a positive stationary
solution of (NBC).

Considering the (positive) stationary solutions of (NBC) we are mainly interested

in the case ¢ < p < 2¢ —1, N > 1. The results of [CFQ] imply that in this case
there exists ag > 0 such that the stationary problem corresponding to (NBC) has

(j) no positive solutions for a < ag,
(jj) at least one positive solution for a > ag,
(3jj) in the subcritical case (¢ < %) at least two positive solutions for a €
{a1,a9,- -}, where a, — 0.
Moreover, if € is a ball then ag > 0 and (NBC) has at least one positive stationary
symmetric solution for a = ag and at least two positive stationary symmetric solu-
tions for @ > ag (see [CFQ] for a more precise information for N = 1). The main
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difficulty in proving this additional property for a general domain is the absence of
apriori estimates for stationary solutions. In this paper we show that for a general
domain
(a) ag >0,
(B) in the subcritical case, (NBC) has at least two positive stationary solutions
for almost all a > ag.

Moreover, for Q being a ball in R? we find apriori estimates for all positive sta-
tionary solutions (note that the apriori estimates in [CFQ] for N > 1 concern only
symmetric solutions).

The proof of («) is based on the apriori estimate of min {u(x); z € 9Q}, where u
is any positive stationary solution. The proof of (3) is based on a trick of M. Struwe
[S1].

Concerning the problem (DGT) (the problem with Damping Gradient Term), it
is known that for p > ¢ > 1 blow-up of solutions in L°°-norm in finite time can occur
(see [CW1], [KP], [F], [Q1]) while for p < ¢ any solution u is bounded in [0,T) x Q,
where T is the maximal existence time for u (see [F]). In this paper we show that if
the existence time 7" of a solution u of (DGT) is finite then limy 7 [[u(t, )| o (@) =
+o00. Consequently, the solution exists globally if p < g.

Our main results concerning the stationary solutions of (DGT) are the following:

(k) if ¢ > p then there exists A\g > 0 such that the stationary problem corre-

sponding to (DGT) has
(k1) no positive solutions for A < Ag,
(k2) at least one positive solution for A = Ag,
(k3) at least two positive solutions for A > Ag,

(kk) if p < (N+2)/(N —2) (in the case N > 2) and ¢ < min{2, (N +2)/N} then
there exists A\g > 0 such that (DGT) has at least one positive stationary
solution for any A > Ao (see Theorem 6.2 and Remark 6.2).

The stationary problem for (DGT) was studied also in [AW], [C], [CW1], [CW2],
[FQ2], [SZ]. However, these studies concern mostly the case where Q is a ball in RY
or @ = RY when one can make use of the symmetry of the solution and apply time
map technique (shooting method). Let us also emphasize that in the case (k) we
do not need any subcriticality condition for p or ¢ since we work with dynamical
methods in this case. The proof of (kk) is based on the use of Leray-Schauder degree
and the apriori estimates from [BT] and [FLN]. Finally, let us mention that in the
case (k), i.e. ¢ > p,

(ka) if p = g then Ag > pdiam ()P (see [C, Theorem 4]),

(k@) if ¢ =2 and N =1 then there are exactly two positive solutions for A > \g

(see [S, Example 3.2.2])

and in the case p < (N + 2)/(N — 2) and Q being a ball in RY

(kka) if g < 2p/(p+1) ( = q<min(2,(N +2)/N)) then there exists a positive
solution for any A > 0. Moreover, this solution is unique if N =1 (see [C,
Theorem 3)).

(kkB) If ¢ = 2p/(p + 1) and X < (2p)P/(p + 1)?PT! then (DGT) does not have

107



108

P. Quittner

positive stationary solutions. The estimate on A is precise if and only if
N =1 (see [C, Theorem 3], [FQ2]).

(kkvy) If ¢ > 2p/(p + 1) and A > 0 is small then (DGT) does not have positive
stationary solutions (see the proof of Theorem 3 (iii) in [C]).

2. Global existence for (NBC).

In this section we show that the assumption p > 2¢g—1 implies the global existence
and boundedness of solutions of (NBC). Our results also imply the existence of
a positive stationary solution for (NBC), since the zero solution is unstable.

Due to the results of [CFQ)], it is sufficient to consider the case N > 1. As shown
in [CFQ], (NBC) generates a local semiflow in {u € W17(Q); u > 0} for any r > N.
Hence, we shall suppose ug € W17 (Q) for some r > N, ug > 0.

In [CFQ], the estimates from [FK] were used to get the global existence and
boundedness results for (NBC) under the assumption

N+1 N — (N -2)

(2.1) 1< 57 p>c(q)::N+1_q(N_1)(q—|—1)—1.

We use this information and a simple substitution to get the desired result.

Theorem 2.1. If p > 2¢ — 1 > 1 then any solution of (NBC) exists globally and
stays uniformly bounded.

PROOF: Let u be a maximal solution of (NBC), m > 1. Then v := u™ solves the
problem

vy = Ao — ——=| V|2 — mav?” in (0,7T) x Q,
m v
(2.2) % = mo?" on (0,T) x 09,
v(0,z) = ug'(z) T €Q,

where p* = (p+m —1)/m, ¢* = (g+m — 1)/m and T is the maximal existence
time for u. Using the comparison principle one simply gets v < w, where w solves
the problem

wy = Aw — mawP” in (0,7) x Q,
(2.3) g—: = muw?’ on (0,T) x O,
w(0,2) = ug'(x) z € Q.

Now it is sufficient to verify that the couple (p*,¢*) fulfils the condition (2.1) iff
2m > (¢—1)(N—1) and 2m(p+1-2¢) > (¢—1)((p— DN -1)—(¢-1)(N -2)),

which is clearly true if m is sufficiently large. Hence, for m large one can apply
the results of [CFQ] for the solution w to get its global existence and boundedness
and, consequently, also the global existence and boundedness for v and u (it is
obvious that the linear factor m in (2.3) does not play any significant role in [CFQ,
Theorem 4.6]). O
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Corollary 2.1. Ifp > 2q — 1 then (NBC) has a positive stationary solution.

PROOF: Put ug = ¢, where £ > 0 is small enough. Since (NBC) possesses a Lya-
punov function @ (see [CFQ]) and ®(ug) < 0 = ®(0), the w-limit set of the solution
starting at ug consists of (nonnegative) equilibria which are different from 0. Due
to the maximum principle, these equilibria are positive. 0

3. Blow up for (NBC).

In this section we shall suppose that p < 2¢g—1 (and a is small enough if p = 2¢—1)
and we shall show that there exists a solution of (NBC) which blows up (in finite
or infinite time). As a by-product of our considerations we obtain also an apriori
bound for Iélla]fgl) u(z), where u is any positive stationary solution of (NBC).

x

Lemma 3.1. Let a@ > 2 be fixed and ug(x) := [%(5 - dist(a:,@Q))+]a, where
6> 0, aea=1) = gala=D+1 and ot .= max(v,0). If § is sufficiently small then ug
is a subsolution for (NBC) and any positive stationary solution u of (NBC) fulfils
Ig;zn(u —ug) < 0.

PROOF: One can easily verify that ug fulfils the boundary condition in (NBC)
for any § > 0. Further suppose that dist (z,0Q) < § and § is sufficiently small.
Denoting d(z) := dist (x,09Q) and ¢(d) := [%(6 —d)*]” one has us(z) = ¢(d(z))
and
NAug = (" o d)|vd|2 + (¢ o d)Ad.
Let y = y(x) € 9 be the closest point to x in 0N and let n = n(x) be the unit
(outward) normal to 02 at y(z). Then we have
dd 2 02d
2 _ (Y% — et
[Vl” = (371) " On?
where C' is some constant depending only on the curvature of 9Q (cf. [GT, Lem-
mas 14.16 and 14.17]). Using these estimates and the inequality p < 2¢ — 1 (and
a < 1if p=2q—1) one can easily check that

—0, |Adl<C,

1
Bug 2 St/ 0> agtod =

for ¢ sufficiently small, where the inequalities are strict if d(z) < . Hence ug is
é

a (strict) subsolution for § < dg and us|gQ = (E)a — 400 as § — 0+.

Now suppose that u is a positive stationary solution, u > ugs, on 0f2. Put
O = {z € Qs u(x) < wugs,(x)}. If Q7 # 0 then the function w := u — ug, fulfils
w = 0on Q" and Aw = Au — Aug, < aup—au‘go <0in Q7 ,ie. w>0in Q~
which is a contradiction. Hence Q™ =0 and u > Ug, in Q.

Choose § < &g such that u > ugs in Q and u(xg) = us(zg) at some xg € Q. This
choice leads to a contradiction with the maximum principle:

if 29 € Q then us(zg) # 0 and Au(xg) > Aug(zg) > auk(xg) = auP(x);

if 9 € 9Q then Aug(x) > auf(z) + 1 > auP (z) = Au(x) for some n > 0 and all
x € Q close to x¢ which gives a contradiction with a—(%&g—u)(xo) =0, (usg—u)(zg) =0,
us < u.
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Corollary 3.1. The solution of (NBC) starting at ug blows up.

PROOF: Let u be the solution starting at us. Then u; > 0 due to the maximum
principle. If u is bounded, then u(t, -) has to converge to a stationary solution w >
ug since the orbit {u(t,-); t > 0} is relatively compact in the appropriate Sobolev
space (see [CFQ]). However, this gives us a contradiction with nal}zn(w —ug) <0.

O

4. Stationary solutions for (NBC).
Suppose ¢ <p < 2¢—1, N > 1 and put

ag = inf{a > 0; there exists a positive stationary solution of (NBC)}.

It follows from [CFQ] that ap < oo. First we prove the assertion («) from the
introduction.

Theorem 4.1. If a > 0 is small enough then (NBC) does not have positive sta-
tionary solutions.

PRrROOF: By contradiction. Suppose that for a,, | 0 there exist positive stationary
solutions uy,. By Lemma 3.1 we have mingg uym = um(zm) < K for some zp, €
00 and a positive constant K. Let Q, be the component of the set {x € Q;
um(x) < 2um(zm)} containing x,, in its closure. Let vy, be the solution of the
problem Avy,, = 0 in Q,, Uy = U, on IQy,. Then 85’7’7 (zm) < 0 since vy, attains
its minimum at xy, (and 9Q,, N Uy, = 0Q N Uy, for some neighbourhood Uy, of
Zm). On the other hand, putting wy, := upm — vy, we have wy, = 0 on Iy,
0 < Awp, = amuh, < am2Pub,(zm) in Qy, C Q. The standard regularity theory
implies now

Oou ow
(4.1) ud (xm) = 6—;:(xm) < 6—£n(xm) < Cam2Pul, (zm,) < Cam2PKP
for suitable C' > 0, hence um(zm) — 0 as m — oo. Using (4.1) again, we get
1 < Cam?2Puby, (xp,) — 0, which is a contradiction. O

Now suppose ¢ < p < 2¢—1,¢q < NA_T2 if N > 2, and a > ag. Then it follows

from [CFQ] that there exists a positive stationary solution u of (NBC) which is
a local minimizer of the corresponding functional

1 2 a 1
B(u) = Dg(u) = = do + —— Prlgy - — e+l gg
) alu) 2 /Q [Vul” da + p+1 /Q lu ! q+1 Jon [

2q

in the Sobolev space W12(Q).
__1q_p , one can straight-

Putting we (x) := 5_%(15 (e—dist (z, 8(2))+, where 0 <4 < =
forwardly check that ®(we +u) — —o0 as € — 0+. Hence to obtain a second critical
point of @ (lying above u) one can use the mountain pass theorem for ® with respect
to the convex set {w € W1H2(Q); w > u} similarly as in the proof of Theorem 2.1 (i)
in [CFQ]. The difficulty consists in verifying the corresponding Palais-Smale condi-
tion (cf. also Remark 2.4 in [CFQ)]). Using a trick of M. Struwe we are able to do
this only for almost all a > ag.
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Theorem 4.2. Let g <p<2q—1,¢9< % Then for a.a. a > ag, the problem
(NBC) has at least two positive stationary solutions.

PRrROOF: Fix ag > a1 > ag and let ug, be a positive solution corresponding to aj. As
shown in [CFQ], choosing ug, a global minimizer of @, in K7 := {u € Wh2(Q);
0 < u < ug, } we get a stationary solution of (NBC) with 0 < ug, < ug, in Q,
Py (tay) < Pay(0) =0. Put S :={u € K1 ; g, (u) = Pyy (tay)}. Then &, (u) =0
for any u € S and the set S is compact since @gz has the form identity + F, where
F maps K1 into a compact set. Moreover, vy := %dist (S, {u; u > uq,}) > 0. Next
we show by contradiction that there exists v > 0 (v < 1) such that

0 :=6(v) = inf{Pg, (u) ; dist(u, S) = v} — Pgy (ugy) > 0.

Hence assume that §(vy,) < 0 for some vy, | 0. Let n be fixed and v := vp,. Then
there exist uy, such that dist (um,S) = v and limsup,,,_, . Pay (um) < P, (tay)-
Consequently, wm = uy, + Um, where us, € S and |jvy| = v. We may suppose
us, — u® € 8 and vy, — v, |v]| < v

If vy, — v then dist (v +v,8) = v, @y (u¥ +v) < B, (Uay).

If vy, A v then @y (U + v) < Hmsup,,_ oo Pay (U5 + vm) < Pay (Uay) so that
u® +v ¢S, 0<dist (u® +v,85) < |jv]| <wv.

Let w® be a local minimizer of ®,, in {u; |u — u°| < dist (u® + v,5)} such
that w® ¢ S. By the definition of S we have w® ¢ K. By the same way as in the
end of the proof of [CFQ, Lemma 2.4] one gets w® € C1(Q), |[w® — USHC1(§) —0
for v = v, — 0. Since distcl(ﬁ) (S,C1(Q)\K1) > 0 by the maximum principle and
w’ ¢ S, we get a contradiction.

Now choose v and § = §(v) with the properties above and fix € > 0 such that
Pay (uay +we) < Pay(tay ). Further fix v € (0, az—ay) such that ;2 JouPtldz < %
for any v € {v; dist (v,5) < v} U{uq, + we} and let uqy+a be a fixed positive
stationary solution for a = ag + « lying below u4,. Put

Ky:={ueW"2(Q); u> ugyrat
P:={peC(0,1], K2); (0) = tgy,D(1) = ta, + we}
Vg := Inf  sup  D4(u) for |a —as| < a.
PEP uep([0,1])

Then, obviously, 7 : (a2 — a, a2 + a) — R is a nondecreasing function so that ~ is
differentiable almost everywhere. Choose a € (ag — a, ag + @) such that there exists
4. We shall show that there exists a positive stationary solution u of (NBC) with
D, (u) = 4. Since any global minimizer u, of ®, in K fulfils

o . . 26
Do (ug) < Pg(ugy) < Pay(tay) + 3= inf{®q, (u); dist (u,S) = v} — —

3
< inf{®,(u); dist (u,S) = v} < vq,

we find two positive solutions for (NBC) and we are done.
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We shall proceed similarly as in [S1, Lemma 6.3]. Let an, € (a2 — o, a), am T a
and let pp, € P be such that sup,c,,  ®a(u) < Ya+(a—am) (where pr, = prm ([0, 1])).
The definition of 74, implies now that Sy, == {u € Py ; Pa,, (4) > Ya,, —(a—am)} #
(). Since ®q4(u) > P, (u) we get also that

Wing == {u € K25 Ya,,, — (@ — am) < Pq,, (u) < Pa(u) <o+ (a— am)

for some m > mg}

is nonempty, Wy,11 C Wy, It is easy to see that for u € Wy, we have
1 _
— [ wPtldz < Ja = Yam +2 for suitable m > my,
p+1Jo a— Gm
so that Wiy, is bounded in LPT1(0).
For u € Ks, put

gw) = sup  (@h(wu—v) gl swp (@ (u)u—v).
vEKo vEK?2
lu—v[<1 [lu—v||<1

Let K(u) := u — ®),(u) and let Py be the orthogonal projection in W12(Q) onto
K. Then K is a compact map and

(u— K (u),u— Py (u)) < glu) max(1L, [u— PoK(u)]).
Using the characterization of the projection Pp we get

(K(u) — PoK(u),u — PoK(u)) <0 for any u € Ko
and adding the last two inequalities we obtain
(4.2) lu— P (u)]| < max(g(u), /g(w))  for any u € Ko.

Suppose that there exist uy, € Wy, such that g(u;,) — 0. Choosing v = uy, +
”Z—m” in the definition of g(um,) we get —(®, (um), um) < g(um)||um]|. Adding this

inequality to the inequality (¢ + 1)®q(um) < C and using the boundedness of Wy,
in LPT1(Q) we get

1 ~
/ |Vum|2 dr < ——g(um)|lum|| + C,
Q qg-1

which gives the boundedness of {u;,} in W12(Q). Hence we may suppose that
(a subsequence of) {un,} converges weakly to some u € Ko. Now the compactness
of K and (4.2) give us uy — u = PoK(u), Pq(u) = 4. Since ugy+q is a strict
subsolution for (NBC) we get ®/,(u) = 0 (cf. the proof of Lemma 2.4 in [CFQ)).
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Now assume that the sequence {u;,} above does not exist, i.e. g(u) > 4« for
some k > 0 and any u € Wy,,. We may suppose that gy, g, + we ¢ Wi, and
that g(u) > 3k, g(u) — g(um) < & for some neighbourhood W of Wy, in Ky such
that gy, ta, + we ¢ W and W is bounded in LPH1(Q). By [S2, Lemma 1.6], there
exists a Lipschitz continuous vector field & : W — W12(Q) such that

é(u) +u € Ko,
el <1,

(@, (u), &(u)) < —min{g(g)2 : 1}

for any u € W, where C' > 0 is a fixed constant. Consequently, if m is sufficiently
large then (®}, (u),é(u)) < —f for some > 0 and any u € w.

Now let i : Wh2(Q) — [0, 1] be a Lipschitz function such that = 1 on Wy, and
n = 0 outside . Extend & to Ko by letting e(u) := n(u)é(u) for u € W, e(u) := 0
for u ¢ W. The function e is Lipschitz and

< -0 for u € Wi,
(@, (u),e(u))q <0 for u € Ko,
=0 for u ¢ w.

Let ¢ : [0,00) X Ko — K3 be the solution of the initial value problem

0]
Ed}(ta u)

$(0, u)

e(¥(tu),

u.

113

Let pgn = w(t7pm)7 Cﬁn = {’U, € pgn? (I)am (U) 2 /yam_(a’_a/m)}’ Since %(I)am (w(t7u))

< 0 for any u and %‘Dam (¥(t,u)) ‘t—o < —p for u € g¢t,, we get infyepe Pa,, (1) <

Ya,, for t large enough which gives us a contradiction with the definition of v, -
O

In the rest of this section suppose that N =2, ¢ < p < 2q — 1.

Lemma 4.1. Let uy, be positive stationary solutions of (NBC) witha = ap < A <
oo such that Uy, := maxu, — +00 as n — co. Put V;, := max |Vuy| and let € > 0.
Q Q

Then

b U Ve
eV i e = O

PROOF: If u is a positive stationary solution of (NBC) then w := |Vu|? fulfils

D%u \2
Aw = 2puP " w + 2 >0 in Q,
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hence w attains its maximum on the boundary 092. Consequently, Vi, = |Vuy,(Zy,)|
g—1

m and choose a unit

and U, = up(xy) for some zy, &y € 0. Put a :=

ou 1
vector vy, such that v, is not tangential to 9 at Z,, and ‘8—n(5cn)‘ > iVn. We may
Un

suppose that &, + tvy, € Q for t > 0 small (¢ < 4U71L_q). The estimate 0 < u, < U,
4U, 0 1

implies that there exist ¢, € (0, —n} such that ’—u(in + tnl/n)’ < -V, so that
VTL 8Vn 4

the C1®(Q)-norm of uy, can be estimated below by

1 o
(4.3) lunllot,e > 4a+1Vn+aUna.

On the other hand, the L"-estimates (with r > %) imply

lunllra < Cillunllwzr < Co (lanufllLr + lluflly.r)

(4.4) P q—1 q—1
< C3(UP 4+ U Vy) < CUI™ Vo,

since V;, > UZ and p < 2 — 1. Using (4.3) and (4.4) we get V,, < C' U~ To)/@

C’Ug+€/2, so that lim Vn_ =0.
n—00 Ug"‘a
To show Ug/Vn — 0, suppose the contrary, i.e. V;, < C U/ for suitable C' > 0
(and a suitable subsequence of {V,,}). Put y := Ay (x— a:n)Ug_l and vy, = vp(y) :=
tn(x)/Un, where Ay, is an orthogonal 2 x 2 matrix such that the transformation
& — y maps the tangent to dQ at z,, to the line {y = (y1,72) € R?; yo = 0} and
the point =, — vy, (where vy, is the unit outward normal to 9 at xy,) to the point

(0,1). Then vy, fulfils

Gn

A'Un = m’l}g in Qn,
Un

ov

— = on 90",

y2

where Q" := {y = y(z); * € Q}. Moreover, v, > 0, maxg; vn = vp(0) = 1 and

|[Vup| < C. Passing to the limit we get v, — v, where v is a nonnegative harmonic

function in the halfspace [yo > 0] fulfilling the boundary condition dv/dys = —v9.
0

Moreover, v(0) =1, v < 1 and |Vv| < C. Hence, w := - s harmonic, bounded

dy2
by C and w = v on [y = 0]. The Poisson’s formula ([SW, Theorem II1.2.1]) gives

us

w(O,/\):c/ Mdy>c !
(v

q A
) D dy > E/,
p=0] A+ [yl T T /[yz=o1n[y1|<1/<2cn(2) R

since v(y) > % for |y| < 1/(2C). This estimate gives us a contradiction, since
o(-) = 0(0,-) : RT — [0, 1] fulfils ¢/ (\) = —w(0,\) < —&/\. O



Global existence and stationary solutions 115

Theorem 4.3. Let Q = {z € R?; |z| < 1} and ¢ < p < 2q — 1. Then all positive
stationary solutions of (NBC) are uniformly bounded for a varying in a bounded
subset of RT.

PROOF: Suppose the contrary and let u = uy, be as in Lemma 4.1 (we shall fix n
and omit the index n). Let (r,¢) be the polar coordinates in R? and let @ be the
solution of the problem

Al =0 inQ,

U =u on J9).
Then @ > u, hence 4, := % < % = u? on O9.
or — Or

Put w := rt,. Then w is a harmonic function in Q, w < u? < UY on 9 (where
U := maxgu). Hence w <U?in @ and @ = w/r <2U% in {z € RZ; L <|z| <1}
Since @ is harmonic in €, we have |Vi(z)| < U/dist (z,09) < 2U < 204 for [z| < 3.
Hence,

(4.5) @ <207  in Q.

Choose a € (0,1) and & > 0 such that

(4.6) p<2¢g—1-(1-a)(g—1)— ae.
Since
Alu—a) = au? < AUP in Q,
u—14 =0 on 0,
the L"-estimates imply
(4.7) = il g < C llu—illyar < CUP

for any r > 2/(1 — «). Using (4.5)—(4.7) we obtain the estimate

Oy < Ut it fa] > 1— Ul

or
Now our assumptions and Lemma 4.1 imply Uyl /V;; — 0, hence V = |Vu(%)| =
(K 4+ 1)U? for some & = Tp, € 0 and K = K, — oo. Consequently, denoting

Uy = g—z we have |u,(Z)| > KU? and we may suppose uy,(Z) > KU9. Let (1,9)

be the polar coordinates of Z and choose ¢ :=sup{¢ < @¢; ux(1,¢) < %Uq} (using

obvious identification 0 = 27). Then u,(1, ) = %Uq and w:=|g — §| < %Ul_q
since u is bounded by U. Now the Schauder estimates imply

lu—a|c2n < Cllav?|| o < CaUP + Ca(2Up)1_“(pUp_1(K + 1)U+
< (K + 1)Ut
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for p1 sufficiently small and U large. Since |ugr| = |qu?™luy,| < g(K + 1)U?1
on 0%, we have also |iyy| < 2¢(K + 1)U~ on 9Q. Now 4, is harmonic and,
similarly as in the case of @, the last estimate implies |tgy| < 4¢(K + 1)U ! in
Q. Consequently, |ugr| < 5g(K +1)U?¢~1 in Q.

Put S :={(r,p) € Q; o < p <P, 1 —k <r <1}, where k := WUl_q.
Then

ug(r, 9)

Y
=

3
Uq—(l—r)5q(K+1)U2q_1ZZKU‘] forr >1—k,

1
Ul +(1—r)5g(K + 1)Ut < §KU‘1 for r >1— k.

u«P (Ta 90) S

| =

Hence,

1 Lo B} ) kKUY
(4.8) /S r—2uw,dg0 dr = / ) (ug(r, @) —up(r, @) dr > e >4U

11—k

if K (or U) is sufficiently large. On the other hand, we know that u, < C1U% in S,
hence

@ 4Cq
(4.9) / Upprdr dp > —/ CU%dp = —wCiUl > ——U > -U
s @ K

for K sufficiently large. By Lemma 4.1 we have |u,| < |Vu| < U247 for n suffi-
ciently large so that

1 1 1
410 } Zupdrd ‘ < - pUlye—— - <y
(4.10) /Sr“T“p—1—n Tl — w2

for K large enough. Using (4.8)-(4.10) we get [q Audz > 2U. However,
/Audxza/updeaUpﬁng
S S

for U and/or K large enough, which gives a contradiction. O

5. Global existence for (DGT).

In this section we shall suppose that  is a smoothly bounded domain in R,
N>1,pg>1,7r> Nmax(l,¢g—1) and

up € Wol’r(Q)"' ={ue W (Q);u>0 inQ and u =0 on Q}.

It is known (see e.g. [Al]) that (DGT) generates a local semiflow on WOI’T(Q)"‘
and that for any ug € VVO1 T(Q)F there exists a unique maximal solution u €
C([o,T7), WOI’T(Q)“‘), where T' = T'(up) is the maximal existence time for u. More-
over, this semiflow is order-preserving.

By || - ||loo we shall denote the norm in L>°(€2). The main result of this section is
the following
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Theorem 5.1. (i) IfT < oo then limsup;_,p_ ||u(t, -)|lco = +00.
(i) Ifq>p then T = +oc and sup;>q [|u(t, *)[lec < 00.
(ii) If ¢ > p and ur > 0 then sup;>y, [|Vu(t, -)|loo < 0o for any tg > 0.

PrOOF: To prove (i) it is sufficient to show that an L°°-estimate for u implies
also an L®°-estimate for Vu. More precisely, let 0 < tg < Ty < T < o0, C1 :=
max; <7, ||u(t, -)||co < 00 and Cp := ||Vu(t, -)||co. Then we shall show that Cy < oo
and that there exists a constant Cy = C2(Cp, C1,T) such that ||[Vu(t,)]|eo < Ca
for any ¢ € [tg, To].
By [A1, Theorem 14.6] we have u € C((0,t], W1"4(Q2)) hence |Vu|? € C((0, o],
L7(€)). Since WLT(Q) — C(Q), we have also u? € C([0,%o], L"(2)) and the
variation of constants formula for u on the interval [tg/2,%0] gives us u(tp,:) €
W2=87(Q) for any € > 0. Since W2757(Q) — C1(Q) for ¢ > 0 small enough, we
have Cy < oo.

Now put f(y) := y9, g(y) := MyP and choose C*°-functions fj,gr (k=1,2,...)
such that

* fr=/fand gy =g on [l 00),

o fr=fandgy<gonl0,1], f;(0)=0,

e f.— fand g, — g in Cl([O,oo)) as k — oo.
Let u; be the solution of the problem

vp = Lv = fr(IV]) +gr(v) i (to,00) x Q,
(DGT);, v=20 on (tg,00) x 09,
v(tg, z) = u(to, ) € Q.

Recall that u(tp,-) € W2757(Q) for any ¢ > 0. By [A2, Theorem 7.3 and

Corollary 9.4], the problem (DGT); generates a local semiflow in W01+5’T(Q)+ for
0<d< min(%, 1-— %, 1—(¢q— 1)%) and, denoting by T} the maximal existence
time of wy, in this space, we have uy € C°((to,Tf) x Q). We shall show that
Ty, > To and ||Vug(t, )|lo < Co for any t € [tg, Tp] where Co = Co(Cy,C1,T) is
independent of k. Then the variation of constants formula for zp := u — uyg, the
Gronwall’s inequality for [|zx(¢,-)|lyy2-<.r(q) and a pass to the limit for k — oo gives
us |Vu| < Co.

First notice that u; < u by the maximum principle and that it is sufficient to find
the estimate || Vug (¢, -)|loo < Co for any t € [tg, min(Tk, Tp)) since then the variation
of constants formula gives an apriori bound also in W1%" (Q), hence T}, > Ty.

Fix k and let T < T}, T < Tp. The function w := %|Vuk|2 fulfils the equation

J1.(Vug)
2% J
Since SUD, ¢ (1, 71 2g.(ug) < 2Apmax(2, Cf_l) =: C if k is large enough, the maxi-

mum principle implies that the function z := we_é(t_to) attains its maximum Z in
Q = [to, T] x Q on the parabolic boundary ({to} x Q) U ([tg, T] x 09).
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It Z < 002/2 then %|Vuk|2 =w< %CgeéT in () and we are done.
If 7 > 002/2 then Z = z(t, zg) for some t € (tg, T] and z¢ € dQ. Consequently,

%“k t, 0 }_|vu,€(t 70)| = max | Vuy(t, )| = V2Ze Clt—to)/2,
zeQ

Since uy, is smooth at (¢, 2g), we have
(5.2) 0 = (up)t(t, w0) = Aug(t, zo) — [Vu(t, zo)|?.
If v is any unit tangential vector to 02 at xg then, obviously,

—(t,x)‘gé‘%(t,x)‘u—xd for x € 092, © — xp,

where C is some constant depending only on the curvature of Q at zp. Conse-
quently,

(5.3) ‘(Auk - %

0
Since |Vug(t, )| attains its maximum at xg, we have a—u;(t, x0) < 0. This inequal-
n ~
ity together with (5.2) and (5.3) imply |Vuy(t,z0)|?~1 < C, which gives the desired
estimate.

(i) If ¢ > p then it follows from [F] that the function ¢ (z) := a2/(P—1) (3 #i+C)
is a supersolution for u if a and C' are large enough. Hence, u(t,r) < maxg for

any t < T and z € Q. Now the assertion (ii) follows from (i).
Note that choosing ¢(z) := min{¢(z), Kdist (z,00Q)} with K sufficiently large
we obtain a supersolution ¢ for u(t,-), ¢ > g, which gives us an apriori bound

0
|Vu| = ’8_11’ < K on the boundary 09.
n
(iii) Let ¢ > p and ut > 0. Then

Au=up + [Vul? — AP > |Vul? = Cy for some C1 > 0,
and, consequently,

Zuii%‘ > Cy(Au)? > C|Vu|?? — ¢y for some Co,C3,Cyq > 0.
iJ
By the note in the proof of (ii), the function w := %|Vu|2 is bounded on 02 so that

the last inequality together with (5.1), the boundedness of w and the maximum
principle imply the boundedness of w in [0, 00) x Q. O
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6. Stationary solutions for (DGT).

Throughout this section we suppose that € is a smoothly bounded domain in RY,
N > 1. By a (stationary) solution we mean always a classical positive stationary
solution.

Lemma 6.1. Let ¢ > p, A\; > 0. Then there exists K = K (A1) > 0 such that any
positive stationary solution u of (DGT) with A\ < Ay fulfils HUHcl(ﬁ) <K.

PROOF: We shall use similar arguments as in the proof of Theorem 5.1 (ii), (iii).
One can easily find a function

o(x) = va(r) = min{yy(z), K dist (z,0Q)},

where 9o () = o/ (P13 7i+C) and K = K(a) is a continuous nondecreasing

function of a, lim K(«) = 400, such that for a > ag, ¢ is a strict supersolution
a— 00

for (DGT) with any A < A;. Now suppose that u is a positive stationary solution

of (DGT) with A < A; which does not lie below ¢q,. Choosing a; := inf{a;

0
Yo > u} we have o, > u and either Pau

(z1) = u(x1) for some x; € 90 or

Yy (x2) = u(z2) for some x9 € 2. Since both possibilities lead to the contradiction
with the maximum principle, we have u < g, i.e. we have an apriori bound (say

ou
%’ = |Vu| on 09.

Putting w := %|Vu|2 and assuming that w attains its maximum at some zg € €2,
we get by (5.1) (with w; = 0, Aw(xg) <0, wy;(z0) = 0) and (DGT)

Cq) for v in L*°(Q2) and an apriori bound for

2)\1p0f_1w(170) > 2)\pup_1(:170)w(170) > Zu%l% (z0)
i7j

> Co(Lu(0))? = Co(|Vu(wo)|? — AP (xp))*
> ngq(xo) — Cy,

which gives an apriori bound for w(xg). O

Remark 6.1. The apriori bound in C' 1(5) and standard regularity results for the
stationary problem related to (DGT) imply also an apriori bound in W27 (Q) for
any r > 1 so that the set of positive stationary solutions for A < A; is relatively
compact in C(Q).

Theorem 6.1. Let ¢ > p. Then there exists A\g > 0 such that the stationary
problem corresponding to (DGT)

(i) does not have positive solutions for A < Ag,
(ii) has at least one positive solution for A = \g and at least two positive solu-
tions for A > Ag.

PRrOOF: To prove (i) suppose the contrary, i.e. there exist solutions u, with A\ =

An | 0. By Lemma 6.1, these solutions are uniformly bounded in C(€2) by some con-
stant C. Denoting by 1, the norm of u, in W12 (Q), multiplying the (stationary)
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equation in (DGT) by uy, and integrating by parts we get

CV% S/ |Vun|2dz‘:—/ |Vun|qund:c—|—/\n/uﬁ+lda:
Q Q Q
(6.1)
< )\nC*f_l/ u? da < )\an_lug
Q

for suitable ¢ > 0, which gives us a contradiction.

(if) Suppose that (DGT) has a positive stationary solution ug for some Ag > 0
and let A > X\g. Then ug € W27 (Q) by Remark 6.1 and ug is a (strict) subsolu-
tion for (DGT). By the maximum principle, us > 0 for the solution u of (DGT)
starting at ug. Consequently, the function u(t,-) is bounded in W1>°(Q) by The-
orem 5.1 (iii). Standard parabolic regularity results imply now the boundedness
of u(t,-) in W275"(Q) for any r > 1 and £ > 0 so that the orbit {u(t, )};>¢ is
relatively compact in C1(Q). Since us > 0, we have u(t,-) — @ as t — +oo, where
@ is a positive stationary solution of (DGT).

To see that (DGT) has a positive stationary solution at least for some A, let
ug be a nonnegative C2(Q)-function such that ug = 0 on 9Q, Aug > |Vul|? in
a neighbourhood U of 92 and ug > € > 0 in Q\U (It is sufficient to choose ug(z) :=
w(dist (z, 00Q)) for x close to 9N, where w is the solution of O.D.E. w(0) = 0,
w'(0) = C > 1, w'(y) = 2w (y) for y € (0,6], uo(x) := w() for dist (z,00) > 4,
and then regularize ug in the §/2-neighbourhood of {z; dist (z,9) = ¢}.). Then
up is a subsolution for (DGT) if A is sufficiently large, hence (similarly as above)
we get the existence of a positive stationary solution.

Until now, we have shown the existence of a A\g > 0 such that the stationary
problem corresponding to (DGT) has

(j) no solutions for A < A,
(ji) at least one solution for A > Ag.

To prove the existence of a solution for A = \g, let u, be solutions corresponding
to Ap | Ag. Due to the apriori bounds (Lemma 6.1 and Remark 6.1) we know that
up, converge to some nonnegative stationary solution of (DGT) with A = Ag. To
show u # 0, suppose the contrary. Then similarly as in (6.1) we get

CI/T2L S/ |Vun|2 dr < )\n/ ufl""l dr < )\n(/ u%d:c) mgxuﬁ_l
Q Q Q Q

< Apv2 maxubl !
Q

and since u,, — 0 (even in C1()), we get a contradiction.

Now let A > Ag and let u) be the positive stationary solution which we have
got as the limit of the solution 4 of (DGT) starting at ug (= positive stationary
solution corresponding to Ag). Choose K > 0, K > sup;> ||(t, ')”Cl(ﬁ) and let fx
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be a smooth cut-off function for the function y — y9; more precisely, fi(y) = y?
for y € [0, K], fx(y) = K9+ 1fory > K+1, frp > 0on [K,K +1), fx(y) <y
for any y > 0. Consider the problem

ug = Au — fi(|Vul) + P in (0,00) x Q,
(DGT) g u=0 on (0,00) x 09,
u(0,2) = ui(x) z€Q,

where 0 < uy < uy, up € W2757(Q) N Wol’r(Q) for some r > N/(1 — 2¢). Since
fr(y) = y? for y < ||a(t, ')”cl(ﬁ)v the function u) is a positive stationary solution
of (DGT)k and 4(t,-) is a nondecreasing solution of (DGT)g connecting ug to
u). Moreover, 0 is a stable stationary solution of (DGT)g and one can easily find

0
a positive function @g such that % > 0 on 99 and the solution of (DGT) g starting

at g tends (in a monotone way) TcLo 0 as t — oco. Denoting S7uy := u(r,-) where u
is the solution of (DGT) starting at u1, we get that S7 is (for any 7 > 0) an order-
preserving discrete semigroup which maps the order interval [0,uy] € W2757(Q)
into a relatively compact subset of [0,u)]. Moreover, 0 or u) is an equilibrium of
ST which is stable from above or from below, respectively. Due to [AH, Lemma 5],
there exists another equilibrium u” of ST which lies between 0 and w). Since u”
lies neither above ug nor below ug, we have

(6.2) min{|u” — UA”(jl(ﬁ)a ||UT||(11@)} >cp>0

for some ¢y which is independent of 7. The variation of constants formula and
a straightforward estimate imply that the set {u” } ¢ (0,7, is bounded in W2=e7(Q)
and hence we may find a sequence 73, | 0 such that u™ — ug in WQ_QE’T’(Q). Due
to (6.2), ug is a positive stationary solution of (DGT) g which lies in [0, uy]\{0, u)}.
Put wg = %|VuK|2. We show that wg < %Kz for K sufficiently large so that up
is also a stationary solution of (DGT).

Since wi < %|Vu>\|2 < %Kz on the boundary 912, we may assume that wg

attains its maximum at some zg € 2. Suppose wg (zg) > %K 2. Using an analogue
to (5.1) we get, similarly as in the proof of Lemma 6.1,

Crwg (z0) > 22puh (wo)wic (20) > Y (ug)2,q, (w0) > Co(Aug (20))

(6.3) : ;
= Oy (fre(|Vug (0)]) — Mib-(20))? > C3K%7 — Cy

On the other hand, due to the L"-estimates for the stationary problem correspond-
ing to (DGT) g we have
lurcllw2r) < Cs+ Collf(IVur)lLr @)
(r—1)/r 1r
< Cs+ Co(K*+ )00/ (| f(IVuxc)) do)
Q

< Cr + CgK =1/,
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since

8uK
f(|Vug|) dx :/AuKd:v—i—)\/ ub dxz/ —dS’—i—)\/up dx
/Q ( ) Q Q K o on o X

S/\/Qu%d:vgag.

Consequently,
(6.4)  wg(x) < ||uK||Cl(Q < Crolluk[fy2.r(q) < Ci1 + Cr2K>40= D/,
Now (6.3) and (6.4) yield a contradiction if K is sufficiently large. O

Theorem 6.2. Let ¢ < min(2,(N +2)/N) and let p < (N +1)/(N —1) if N > 1.
Then there exists A\g > 0 such that (DGT) has at least one positive stationary
solution for any A > Ag.

PROOF: Let X := Wol’2 (Q) considered with the scalar product (u,v) := [, VuVv dz
and the norm ||u|| := /(u, u). Let the operators F,G : X — X be defined by

v) :/Q|u|pvda:, (G(u), v) ::/Q|Vu|qua:.

By the corresponding Sobolev imbedding theorems, F' and G are well defined and
compact. Put KT := {u € X; u >0} and let P* be the orthogonal projection in
X onto Kt. Consider the inequality

ue KT /(—Au—/\up+|Vu|q)(v—u)20 for any v € KT,
Q

which is equivalent to the operator equation
(6.5) u — PT(A\F(u) — G(u)) = 0.

In the same way as in [S3, Theorem 1.2.4] (cf. also [CFQ, Lemma 2.4]) one can easily
show that any solution of (6.5) is also a stationary solution of (DGT'). Now the proof
of Theorem 1 in [Q2, p. 582] (based on the apriori estimates of Brézis and Turner
[BT]) implies that the Leray-Schauder degree deg(id — PTF,0, B¢) or deg (id —
P1F,0, B:) is well defined and equals 0 or 1, respectively, where By = {u € X;
|lul| < n}, C islarge and € small. Fix C and e. Then deg (id— P (F—aG),0, B¢) =
0 and deg (id— P (F—aG), 0, B:) = 1 for a € (0, ap] so that there exists a nontrivial
solution u = wu(a) of the equation u = P*(F(u) — aG(u)) for any a € (0,ag]. By
our considerations above, u(a) solves also the equation 0 = Au — a|Vu|? + uP. Put
v = al/(@= Dy, Tt is easily seen that v is a positive stationary solution of (DGT)
_ 1\ (=1)/(g—1)
with A = (=) . 0

a
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Remark 6.2. The condition p < (N+1)/(N —1) in Theorem 6.2 can be weakened
top < (N +2)/(N —2) since then one can use [FLN, Theorem 1.2 and Remark 1.5]
in order to get apriori estimates for the solutions of the equation 0 = Au+uP + s®
(where s > 0 and ® is the first eigenfunction of the operator A in X) which are
sufficient for the determination of deg (id — PTF,0, Bo).

Remark 6.3. If the assumptions of Theorem 6.2 are fulfilled and ¢ > p then one
can use also the Leray-Schauder degree to get 2 positive stationary solutions of
(DGT) for A large enough (cf. Theorem 6.1). Using the notation from the proof of
Theorem 6.2, it is sufficient to use the homotopy

H(t,u) :==u— PT(tF(u) — agG(u)), t €10,1]

to show that deg (id — PT(F — agG),0, Bg) = 1 if K is large enough (K > C).
The admissibility of H follows from the following contradiction argument.

Suppose that H (tp,un) = 0 and |Jup| — co. Put vy, := up/||un|. We may sup-
pose that v, — v € X weakly. Multiplying the differential equation corresponding
to H(tn,un) = 0 by un/||un||97! gives Jo vn|Von|9dz — 0, which implies v = 0.
Integrating the equation corresponding to H (ty, un) = 0 we get

Cl”“"”?/[/Lq(Q) < GQ/Q [Vun|?de < tn‘/Qqu drx < Cg”unH%/l’q(Q),

which gives an apriori bound for ||unHW1,q(Q). Finally, multiplying the equation
corresponding to H (t,,un) = 0 by wy /||un||? we get

1/r 1/r

(66) 1<ty [ Bl de < ol oy lan sy oy

where we choose 1 < r < N/(N —2) and 1 < v/ < Nq/((N — ¢)(p — 1)) (if

N > 1), % + 1 =1, so that the right hand side in (6.6) can be estimated by

T
1/r 1/r’

||vn|\L2T(Q) ||UTL||W1,q(Q) — 0, which gives a contradiction.
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