
Commentationes Mathematicae Universitatis Carolinae

Pavol Quittner
On global existence and stationary solutions for two classes of semilinear
parabolic problems

Commentationes Mathematicae Universitatis Carolinae, Vol. 34 (1993), No. 1, 105--124

Persistent URL: http://dml.cz/dmlcz/118561

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118561
http://project.dml.cz


Comment.Math.Univ.Carolin. 34,1 (1993)105–124 105

On global existence and stationary solutions

for two classes of semilinear parabolic problems

Pavol Quittner

Abstract. We investigate stationary solutions and asymptotic behaviour of solutions of two
boundary value problems for semilinear parabolic equations. These equations involve both
blow up and damping terms and they were studied by several authors. Our main goal is
to fill some gaps in these studies.
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Classification: 35K60, 35J65, 35B40

1. Introduction.

Consider the following two problems

(NBC)















ut = △u− aup in (0,∞)× Ω,
∂u

∂n
= uq on (0,∞)× ∂Ω,

u(0, x) = u0(x) x ∈ Ω,

(DGT)











ut = △u− |∇u|q + λup in (0,∞)× Ω,
u = 0 on (0,∞)× ∂Ω,

u(0, x) = u0(x) x ∈ Ω,

where Ω is a smoothly bounded domain in R
N , p, q > 1, a, λ > 0 and u0 ∈W 1,∞(Ω)

is a non-negative function. These problems were studied by many authors (see
e.g. [CFQ], [E], [FQ1], [LGMW] in the case of (NBC) and [AW], [C], [CW1], [CW2],
[F], [KP], [Q1] in the case of (DGT)). In both problems there is a blow-up term
(uq and λup) and a damping term (−aup and −|∇u|q). These terms cause that the
corresponding solutions admit an interesting asymptotic behaviour which strongly
depends on the parameters p, q, a, λ. The main purpose of this paper is to fill
some gaps in the studies of these problems; i.e. to investigate the behaviour of the
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solutions for those parameters p, q, a, λ or N for which the results in the above
mentioned papers are not satisfactory.
In the case of (NBC) (the problem with Nonlinear Boundary Conditions), the

study was almost completely done in [CFQ] for N = 1. Particularly, it was shown
that the exponent p = 2q − 1 is critical for the blow up in the following sense:
(i) if p < 2q − 1 (or p = 2q − 1 and a < q) then there exist solutions of (NBC)
which blow up in finite time,

(ii) if p > 2q − 1 (or p = 2q − 1 and a > q) then all solutions of (NBC) exist
globally and are globally bounded,

(iii) if p = 2q − 1 and a = q then all nontrivial solutions of (NBC) exist glob-
ally but they are unbounded; they tend pointwise to a singular stationary
solution.

The assertions (i) and (ii) were shown also for Ω being a ball in R
N , N > 1.

However, if Ω is a general bounded domain in R
N , N > 1, then [CFQ] or [E] imply

blow up of suitable solutions of (NBC) only for p ≤ q and the global existence and

boundedness is shown in [CFQ] only for p > c(q), q < N+1
N−1 , where

c(q) :=
N − q(N − 2)

N + 1− q(N − 1)(q + 1)− 1 > 2q − 1.

The main result of this paper concerning the global existence for (NBC) in the case
of a general domain Ω is the following:

(a) if p > 2q − 1 then all solutions of (NBC) exist globally and are globally
bounded,

(b) if p < 2q − 1 (or p = 2q − 1 and a is sufficiently small) then there exist
initial functions u0 such that the corresponding solutions of (NBC) blow up
in L∞(Ω)-norm.

It has to be mentioned that in the case (b) we do not know whether the blow up
occurs in finite or infinite time. We find only a subsolution u+ such that any positive
stationary solution has to intersect u+ so that the solution of (NBC) starting at
u+ cannot be bounded. In the case (a) we show that a simple substitution leads
to the case p > c(q) which was already solved in [CFQ]. Hence, for p > 2q − 1 we
obtain global existence, boundedness and also the existence of a positive stationary
solution of (NBC).
Considering the (positive) stationary solutions of (NBC) we are mainly interested

in the case q < p < 2q − 1, N > 1. The results of [CFQ] imply that in this case
there exists a0 ≥ 0 such that the stationary problem corresponding to (NBC) has
(j) no positive solutions for a < a0,
(jj) at least one positive solution for a > a0,

(jjj) in the subcritical case (q < N
N−2 ) at least two positive solutions for a ∈

{a1, a2, · · · }, where ak → ∞.
Moreover, if Ω is a ball then a0 > 0 and (NBC) has at least one positive stationary
symmetric solution for a = a0 and at least two positive stationary symmetric solu-
tions for a > a0 (see [CFQ] for a more precise information for N = 1). The main
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difficulty in proving this additional property for a general domain is the absence of
apriori estimates for stationary solutions. In this paper we show that for a general
domain Ω

(α) a0 > 0,
(β) in the subcritical case, (NBC) has at least two positive stationary solutions
for almost all a > a0.

Moreover, for Ω being a ball in R
2 we find apriori estimates for all positive sta-

tionary solutions (note that the apriori estimates in [CFQ] for N > 1 concern only
symmetric solutions).

The proof of (α) is based on the apriori estimate of min {u(x) ; x ∈ ∂Ω}, where u
is any positive stationary solution. The proof of (β) is based on a trick of M. Struwe
[S1].
Concerning the problem (DGT) (the problem with Damping Gradient Term), it

is known that for p > q > 1 blow-up of solutions in L∞-norm in finite time can occur
(see [CW1], [KP], [F], [Q1]) while for p ≤ q any solution u is bounded in [0, T )×Ω,
where T is the maximal existence time for u (see [F]). In this paper we show that if
the existence time T of a solution u of (DGT) is finite then limt→T− ‖u(t, ·)‖L∞(Ω) =

+∞. Consequently, the solution exists globally if p ≤ q.
Our main results concerning the stationary solutions of (DGT) are the following:

(k) if q ≥ p then there exists λ0 > 0 such that the stationary problem corre-
sponding to (DGT) has
(k1) no positive solutions for λ < λ0,

(k2) at least one positive solution for λ = λ0,
(k3) at least two positive solutions for λ > λ0,

(kk) if p < (N +2)/(N−2) (in the case N > 2) and q < min{2, (N+2)/N} then
there exists λ0 ≥ 0 such that (DGT) has at least one positive stationary
solution for any λ > λ0 (see Theorem 6.2 and Remark 6.2).

The stationary problem for (DGT) was studied also in [AW], [C], [CW1], [CW2],

[FQ2], [SZ]. However, these studies concern mostly the case where Ω is a ball in R
N

or Ω = R
N when one can make use of the symmetry of the solution and apply time

map technique (shooting method). Let us also emphasize that in the case (k) we
do not need any subcriticality condition for p or q since we work with dynamical
methods in this case. The proof of (kk) is based on the use of Leray-Schauder degree
and the apriori estimates from [BT] and [FLN]. Finally, let us mention that in the
case (k), i.e. q ≥ p,

(kα) if p = q then λ0 ≥ p diam(Ω)−p (see [C, Theorem 4]),
(kβ) if q = 2 and N = 1 then there are exactly two positive solutions for λ > λ0

(see [S, Example 3.2.2])

and in the case p < (N + 2)/(N − 2) and Ω being a ball in R
N

(kkα) if q < 2p/(p+1) ( ⇒ q < min(2, (N +2)/N)) then there exists a positive
solution for any λ > 0. Moreover, this solution is unique if N = 1 (see [C,
Theorem 3]).

(kkβ) If q = 2p/(p + 1) and λ ≤ (2p)p/(p + 1)2p+1 then (DGT) does not have
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positive stationary solutions. The estimate on λ is precise if and only if
N = 1 (see [C, Theorem 3], [FQ2]).

(kkγ) If q > 2p/(p + 1) and λ > 0 is small then (DGT) does not have positive
stationary solutions (see the proof of Theorem 3 (iii) in [C]).

2. Global existence for (NBC).

In this section we show that the assumption p > 2q−1 implies the global existence
and boundedness of solutions of (NBC). Our results also imply the existence of
a positive stationary solution for (NBC), since the zero solution is unstable.
Due to the results of [CFQ], it is sufficient to consider the case N > 1. As shown

in [CFQ], (NBC) generates a local semiflow in {u ∈W 1,r(Ω) ; u ≥ 0} for any r > N .
Hence, we shall suppose u0 ∈W 1,r(Ω) for some r > N , u0 ≥ 0.
In [CFQ], the estimates from [FK] were used to get the global existence and

boundedness results for (NBC) under the assumption

(2.1) q <
N + 1

N − 1 , p > c(q) :=
N − q(N − 2)

N + 1− q(N − 1)(q + 1)− 1.

We use this information and a simple substitution to get the desired result.

Theorem 2.1. If p > 2q − 1 > 1 then any solution of (NBC) exists globally and
stays uniformly bounded.

Proof: Let u be a maximal solution of (NBC), m ≥ 1. Then v := um solves the
problem

(2.2)























vt = △v − m− 1
m

1

v
|∇v|2 −mavp∗ in (0, T )× Ω,

∂v

∂n
= mvq∗ on (0, T )× ∂Ω,

v(0, x) = um
0 (x) x ∈ Ω,

where p∗ = (p +m − 1)/m, q∗ = (q +m − 1)/m and T is the maximal existence
time for u. Using the comparison principle one simply gets v ≤ w, where w solves
the problem

(2.3)



















wt = △w −mawp∗ in (0, T )× Ω,
∂w

∂n
= mwq∗ on (0, T )× ∂Ω,

w(0, x) = um
0 (x) x ∈ Ω.

Now it is sufficient to verify that the couple (p∗, q∗) fulfils the condition (2.1) iff

2m > (q−1)(N −1) and 2m(p+1−2q) > (q−1)
(

(p−1)(N−1)− (q−1)(N −2)
)

,

which is clearly true if m is sufficiently large. Hence, for m large one can apply
the results of [CFQ] for the solution w to get its global existence and boundedness
and, consequently, also the global existence and boundedness for v and u (it is
obvious that the linear factor m in (2.3) does not play any significant role in [CFQ,
Theorem 4.6]). �
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Corollary 2.1. If p > 2q − 1 then (NBC) has a positive stationary solution.
Proof: Put u0 ≡ ε, where ε > 0 is small enough. Since (NBC) possesses a Lya-
punov function Φ (see [CFQ]) and Φ(u0) < 0 = Φ(0), the ω-limit set of the solution
starting at u0 consists of (nonnegative) equilibria which are different from 0. Due
to the maximum principle, these equilibria are positive. �

3. Blow up for (NBC).

In this section we shall suppose that p ≤ 2q−1 (and a is small enough if p = 2q−1)
and we shall show that there exists a solution of (NBC) which blows up (in finite
or infinite time). As a by-product of our considerations we obtain also an apriori
bound for min

x∈∂Ω
u(x), where u is any positive stationary solution of (NBC).

Lemma 3.1. Let α > 2 be fixed and uδ(x) :=
[

1
ε

(

δ − dist(x, ∂Ω)
)+]α

, where

δ > 0, αεα(q−1) = δα(q−1)+1 and v+ := max(v, 0). If δ is sufficiently small then uδ
is a subsolution for (NBC) and any positive stationary solution u of (NBC) fulfils
min
∂Ω
(u− uδ) < 0.

Proof: One can easily verify that uδ fulfils the boundary condition in (NBC)
for any δ > 0. Further suppose that dist (x, ∂Ω) ≤ δ and δ is sufficiently small.

Denoting d(x) := dist (x, ∂Ω) and ϕ(d) :=
[

1
ε (δ − d)+

]α
one has uδ(x) = ϕ

(

d(x)
)

and
△uδ = (ϕ

′′ ◦ d)|∇d|2 + (ϕ′ ◦ d)△d.
Let y = y(x) ∈ ∂Ω be the closest point to x in ∂Ω and let n = n(x) be the unit
(outward) normal to ∂Ω at y(x). Then we have

|∇d|2 =
( ∂d

∂n

)2
= 1,

∂2d

∂n2
= 0, |△d| ≤ C,

where C is some constant depending only on the curvature of ∂Ω (cf. [GT, Lem-
mas 14.16 and 14.17]). Using these estimates and the inequality p ≤ 2q − 1 (and
a≪ 1 if p = 2q − 1) one can easily check that

△uδ ≥ 1
2
ϕ′′ ◦ d ≥ aϕp ◦ d = aup

δ

for δ sufficiently small, where the inequalities are strict if d(x) < δ. Hence uδ is

a (strict) subsolution for δ ≤ δ0 and uδ

∣

∣∂Ω =
(

δ
ε

)α → +∞ as δ → 0+.
Now suppose that u is a positive stationary solution, u ≥ uδ0 on ∂Ω. Put

Ω− := {x ∈ Ω ; u(x) < uδ0(x)}. If Ω− 6= ∅ then the function w := u − uδ0 fulfils

w = 0 on ∂Ω− and △w = △u −△uδ0 ≤ aup − au
p
δ0
< 0 in Ω−, i.e. w > 0 in Ω−

which is a contradiction. Hence Ω− = ∅ and u ≥ uδ0 in Ω.

Choose δ ≤ δ0 such that u ≥ uδ in Ω and u(x0) = uδ(x0) at some x0 ∈ Ω. This
choice leads to a contradiction with the maximum principle:
if x0 ∈ Ω then uδ(x0) 6= 0 and △u(x0) ≥ △uδ(x0) > aup

δ(x0) = au
p(x0);

if x0 ∈ ∂Ω then △uδ(x) ≥ au
p
δ(x) + η > aup(x) = △u(x) for some η > 0 and all

x ∈ Ω close to x0 which gives a contradiction with ∂(uδ−u)
∂n (x0) = 0, (uδ−u)(x0) = 0,

uδ ≤ u. �
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Corollary 3.1. The solution of (NBC) starting at uδ blows up.

Proof: Let u be the solution starting at uδ. Then ut ≥ 0 due to the maximum
principle. If u is bounded, then u(t, ·) has to converge to a stationary solution w ≥
uδ since the orbit {u(t, ·) ; t ≥ 0} is relatively compact in the appropriate Sobolev
space (see [CFQ]). However, this gives us a contradiction with min

∂Ω
(w − uδ) < 0.

�

4. Stationary solutions for (NBC).

Suppose q < p < 2q − 1, N > 1 and put

a0 := inf{a > 0 ; there exists a positive stationary solution of (NBC)}.
It follows from [CFQ] that a0 < ∞. First we prove the assertion (α) from the
introduction.

Theorem 4.1. If a > 0 is small enough then (NBC) does not have positive sta-
tionary solutions.

Proof: By contradiction. Suppose that for am ↓ 0 there exist positive stationary
solutions um. By Lemma 3.1 we have min∂Ω um = um(xm) ≤ K for some xm ∈
∂Ω and a positive constant K. Let Ωm be the component of the set {x ∈ Ω ;
um(x) < 2um(xm)} containing xm in its closure. Let vm be the solution of the

problem △vm = 0 in Ωm, vm = um on ∂Ωm. Then
∂vm
∂n (xm) ≤ 0 since vm attains

its minimum at xm (and ∂Ωm ∩ Um = ∂Ω ∩ Um for some neighbourhood Um of
xm). On the other hand, putting wm := um − vm we have wm = 0 on ∂Ωm,
0 ≤ △wm = amu

p
m ≤ am2

pu
p
m(xm) in Ωm ⊂ Ω. The standard regularity theory

implies now

(4.1) uq
m(xm) =

∂um

∂n
(xm) ≤

∂wm

∂n
(xm) ≤ Cam2

pup
m(xm) ≤ Cam2

pKp

for suitable C > 0, hence um(xm) → 0 as m → ∞. Using (4.1) again, we get
1 ≤ Cam2

pup−q
m (xm)→ 0, which is a contradiction. �

Now suppose q < p < 2q − 1, q < N
N−2 if N > 2, and a > a0. Then it follows

from [CFQ] that there exists a positive stationary solution u of (NBC) which is
a local minimizer of the corresponding functional

Φ(u) = Φa(u) =
1

2

∫

Ω
|∇u|2 dx+ a

p+ 1

∫

Ω
|u|p+1 dx− 1

q + 1

∫

∂Ω
|u|q+1 dS

in the Sobolev space W 1,2(Ω).

Putting wε(x) := ε
− q+δ

q−1
(

ε−dist (x, ∂Ω)
)+
, where 0 < δ < 2q−1−p

p−q , one can straight-

forwardly check that Φ(wε+u)→ −∞ as ε→ 0+. Hence to obtain a second critical
point of Φ (lying above u) one can use the mountain pass theorem for Φ with respect
to the convex set {w ∈ W 1,2(Ω) ; w ≥ u} similarly as in the proof of Theorem 2.1 (i)
in [CFQ]. The difficulty consists in verifying the corresponding Palais-Smale condi-
tion (cf. also Remark 2.4 in [CFQ]). Using a trick of M. Struwe we are able to do
this only for almost all a ≥ a0.
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Theorem 4.2. Let q < p < 2q − 1, q < N
N−2 . Then for a.a. a ≥ a0, the problem

(NBC) has at least two positive stationary solutions.

Proof: Fix a2 > a1 > a0 and let ua1 be a positive solution corresponding to a1. As
shown in [CFQ], choosing ua2 a global minimizer of Φa2 in K1 := {u ∈ W 1,2(Ω) ;
0 ≤ u ≤ ua1} we get a stationary solution of (NBC) with 0 < ua2 < ua1 in Ω,
Φa2(ua2) < Φa2(0) = 0. Put S := {u ∈ K1 ; Φa2(u) = Φa2(ua2)}. Then Φ′a2(u) = 0
for any u ∈ S and the set S is compact since Φ′a2 has the form identity+F , where
F maps K1 into a compact set. Moreover, ν0 := 12 dist (S, {u ; u ≥ ua1}) > 0. Next
we show by contradiction that there exists ν > 0 (ν ≤ ν0) such that

δ := δ(ν) := inf{Φa2(u) ; dist(u, S) = ν} − Φa2(ua2) > 0.

Hence assume that δ(νn) ≤ 0 for some νn ↓ 0. Let n be fixed and ν := νn. Then
there exist um such that dist (um, S) = ν and lim supm→∞ Φa2(um) ≤ Φa2(ua2).

Consequently, um = uS
m + vm, where u

S
m ∈ S and ‖vm‖ = ν. We may suppose

uS
m → uS ∈ S and vm ⇀ v, ‖v‖ ≤ ν.

If vm → v then dist (uS + v, S) = ν, Φa2(u
S + v) ≤ Φa2(ua2).

If vm 6→ v then Φa2(u
S + v) < lim supm→∞ Φa2(u

S
m + vm) ≤ Φa2(ua2) so that

uS + v /∈ S, 0 < dist (uS + v, S) ≤ ‖v‖ ≤ ν.

Let wS be a local minimizer of Φa2 in {u ; ‖u − uS‖ ≤ dist (uS + v, S)} such
that wS /∈ S. By the definition of S we have wS /∈ K1. By the same way as in the
end of the proof of [CFQ, Lemma 2.4] one gets wS ∈ C1(Ω), ‖wS − uS‖C1(Ω) → 0
for ν = νn → 0. Since distC1(Ω)(S,C1(Ω)\K1) > 0 by the maximum principle and
wS /∈ S, we get a contradiction.
Now choose ν and δ = δ(ν) with the properties above and fix ε > 0 such that

Φa2(ua1+wε) < Φa2(ua2). Further fix α ∈ (0, a2−a1) such that α
p+1

∫

Ω u
p+1 dx ≤ δ

3
for any u ∈ {v ; dist (v, S) ≤ ν} ∪ {ua1 + wε} and let ua2+α be a fixed positive
stationary solution for a = a2 + α lying below ua2 . Put

K2 := {u ∈W 1,2(Ω) ; u ≥ ua2+α}
P := {p̃ ∈ C([0, 1],K2) ; p̃(0) = ua2 , p̃(1) = ua1 + wε}
γa := inf

p̃∈P
sup

u∈p̃([0,1])
Φa(u) for |a− a2| < α.

Then, obviously, γ : (a2 − α, a2 + α) → R is a nondecreasing function so that γ is
differentiable almost everywhere. Choose a ∈ (a2−α, a2+α) such that there exists
γ′a. We shall show that there exists a positive stationary solution u of (NBC) with
Φa(u) = γa. Since any global minimizer ua of Φa in K1 fulfils

Φa(ua) ≤ Φa(ua2) ≤ Φa2(ua2) +
δ

3
= inf{Φa2(u) ; dist (u, S) = ν} −

2δ

3
< inf{Φa(u) ; dist (u, S) = ν} ≤ γa,

we find two positive solutions for (NBC) and we are done.
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We shall proceed similarly as in [S1, Lemma 6.3]. Let am ∈ (a2 − α, a), am ↑ a,
and let pm ∈ P be such that supu∈pm

Φa(u) ≤ γa+(a−am) (where pm = pm([0, 1])).
The definition of γam implies now that Sm := {u ∈ pm ; Φam(u) ≥ γam−(a−am)} 6=
∅. Since Φa(u) ≥ Φam(u) we get also that

Wm0 := {u ∈ K2 ; γam − (a− am) ≤ Φam(u) ≤ Φa(u) ≤ γa + (a− am)

for some m ≥ m0}

is nonempty, Wm+1 ⊂Wm. It is easy to see that for u ∈ Wm0 we have

1

p+ 1

∫

Ω
up+1 dx ≤ γa − γam

a− am
+ 2 for suitable m ≥ m0,

so that Wm0 is bounded in L
p+1(Ω).

For u ∈ K2, put

g(u) := sup
v∈K2

‖u−v‖≤1

〈Φ′a(u), u− v〉, gm(u) := sup
v∈K2

‖u−v‖≤1

〈Φ′am
(u), u− v〉.

Let K(u) := u − Φ′a(u) and let P2 be the orthogonal projection in W 1,2(Ω) onto
K2. Then K is a compact map and

〈u−K(u), u− P2K(u)〉 ≤ g(u)max(1, ‖u− P2K(u)‖).

Using the characterization of the projection P2 we get

〈K(u)− P2K(u), u− P2K(u)〉 ≤ 0 for any u ∈ K2

and adding the last two inequalities we obtain

(4.2) ‖u− P2K(u)‖ ≤ max(g(u),
√

g(u)) for any u ∈ K2.

Suppose that there exist um ∈ Wm such that g(um) → 0. Choosing v = um +
um

‖um‖
in the definition of g(um) we get −〈Φ′a(um), um〉 ≤ g(um)‖um‖. Adding this

inequality to the inequality (q + 1)Φa(um) ≤ C and using the boundedness of Wm

in Lp+1(Ω) we get

∫

Ω
|∇um|2 dx ≤ 1

q − 1g(um)‖um‖+ C̃,

which gives the boundedness of {um} in W 1,2(Ω). Hence we may suppose that
(a subsequence of) {um} converges weakly to some u ∈ K2. Now the compactness
of K and (4.2) give us um → u = P2K(u), Φa(u) = γa. Since ua2+α is a strict
subsolution for (NBC) we get Φ′a(u) = 0 (cf. the proof of Lemma 2.4 in [CFQ]).
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Now assume that the sequence {um} above does not exist, i.e. g(u) ≥ 4κ for
some κ > 0 and any u ∈ Wm1 . We may suppose that ua2 , ua1 + wε /∈ Wm1 and

that g(u) ≥ 3κ, g(u)− g(um) ≤ κ for some neighbourhood W̃ of Wm1 in K2 such

that ua2 , ua1 + wε /∈ W̃ and W̃ is bounded in Lp+1(Ω). By [S2, Lemma 1.6], there

exists a Lipschitz continuous vector field ẽ : W̃ →W 1,2(Ω) such that

ẽ(u) + u ∈ K2,

‖ẽ(u)‖ < 1,

〈Φ′a(u), ẽ(u)〉 < −min
{g(u)2

C
, 1

}

for any u ∈ W̃ , where C > 0 is a fixed constant. Consequently, if m is sufficiently
large then 〈Φ′am

(u), ẽ(u)〉 < −β for some β > 0 and any u ∈ W̃ .

Now let η : W 1,2(Ω) → [0, 1] be a Lipschitz function such that η = 1 on Wm1 and

η = 0 outside W̃ . Extend ẽ to K2 by letting e(u) := η(u)ẽ(u) for u ∈ W̃ , e(u) := 0

for u /∈ W̃ . The function e is Lipschitz and

〈Φ′am
(u), e(u)〉











< −β for u ∈ Wm1 ,

≤ 0 for u ∈ K2,

= 0 for u /∈ W̃ .

Let ψ : [0,∞)×K2 → K2 be the solution of the initial value problem







∂

∂t
ψ(t, u) = e

(

ψ(t, u)
)

,

ψ(0, u) = u.

Let pt
m := ψ(t, pm), q

t
m := {u ∈ pt

m ; Φam(u) ≥ γam−(a−am)}. Since d
dtΦam

(

ψ(t, u)
)

≤ 0 for any u and d
dtΦam

(

ψ(t, u)
)

∣

∣

∣t=0
≤ −β for u ∈ qtm, we get infu∈pt

m
Φam(u) <

γam for t large enough which gives us a contradiction with the definition of γam .
�

In the rest of this section suppose that N = 2, q < p < 2q − 1.
Lemma 4.1. Let un be positive stationary solutions of (NBC) with a = an ≤ A <
∞ such that Un := max

Ω
un → +∞ as n→ ∞. Put Vn := max

Ω
|∇un| and let ε > 0.

Then

lim
n→∞

U
q
n

Vn
= lim

n→∞

Vn

U
q+ε
n

= 0.

Proof: If u is a positive stationary solution of (NBC) then w := |∇u|2 fulfils

△w = 2pup−1w + 2
∑

i,j

( ∂2u

∂xi∂xj

)2
> 0 in Ω,
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hence w attains its maximum on the boundary ∂Ω. Consequently, Vn = |∇un(x̃n)|
and Un = un(xn) for some xn, x̃n ∈ ∂Ω. Put α :=

q − 1
q − 1 + ε/2 and choose a unit

vector νn such that νn is not tangential to ∂Ω at x̃n and
∣

∣

∣

∂un

∂νn
(x̃n)

∣

∣

∣
≥ 1
2
Vn. We may

suppose that x̃n + tνn ∈ Ω for t > 0 small (t < 4U1−q
n ). The estimate 0 < un ≤ Un

implies that there exist tn ∈
(

0,
4Un

Vn

]

such that
∣

∣

∣

∂u

∂νn
(x̃n + tnνn)

∣

∣

∣
≤ 1
4
Vn so that

the C1,α(Ω)-norm of un can be estimated below by

(4.3) ‖un‖C1,α ≥ 1

4α+1
V 1+α

n U−α
n .

On the other hand, the Lr-estimates (with r > N
1−α ) imply

(4.4)
‖un‖C1,α ≤ C1‖un‖W 2,r ≤ C2

(

‖anu
p
n‖Lr + ‖uq

n‖W 1,r

)

≤ C3 (U
p
n + U

q−1
n Vn) ≤ C4U

q−1
n Vn,

since Vn ≥ Uq
n and p < 2q − 1. Using (4.3) and (4.4) we get Vn ≤ C U

(q−1+α)/α
n =

C U
q+ε/2
n , so that lim

n→∞

Vn

U
q+ε
n

= 0.

To show U
q
n/Vn → 0, suppose the contrary, i.e. Vn ≤ C U

q
n for suitable C > 0

(and a suitable subsequence of {Vn}). Put y := An(x−xn)U
q−1
n and vn = vn(y) :=

un(x)/Un, where An is an orthogonal 2 × 2 matrix such that the transformation
x 7→ y maps the tangent to ∂Ω at xn to the line {y = (y1, y2) ∈ R

2 ; y2 = 0} and
the point xn − νn (where νn is the unit outward normal to ∂Ω at xn) to the point
(0, 1). Then vn fulfils

△vn =
an

U
2q−p−1
n

vp
n in Ωn,

∂vn
∂y2

= −vq
n on ∂Ωn,

where Ωn := {y = y(x) ; x ∈ Ω}. Moreover, vn > 0, maxΩn vn = vn(0) = 1 and
|∇vn| ≤ C. Passing to the limit we get vn → v, where v is a nonnegative harmonic
function in the halfspace [y2 > 0] fulfilling the boundary condition ∂v/∂y2 = −vq.

Moreover, v(0) = 1, v ≤ 1 and |∇v| ≤ C. Hence, w := − ∂v

∂y2
is harmonic, bounded

by C and w = vq on [y2 = 0]. The Poisson’s formula ([SW, Theorem II.2.1]) gives
us

w(0, λ) = c

∫

[y2=0]

vq(y)λ

λ2 + |y|2 dy ≥ c

∫

[y2=0]∩[|y1|≤1/(2C)]

(1

2

)q λ

λ2 + |y|2 dy ≥ c̃/λ,

since v(y) ≥ 1
2 for |y| ≤ 1/(2C). This estimate gives us a contradiction, since

ϕ(·) := v(0, ·) : R+ → [0, 1] fulfils ϕ′(λ) = −w(0, λ) ≤ −c̃/λ. �
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Theorem 4.3. Let Ω = {x ∈ R
2 ; |x| < 1} and q < p < 2q − 1. Then all positive

stationary solutions of (NBC) are uniformly bounded for a varying in a bounded
subset of R

+.

Proof: Suppose the contrary and let u = un be as in Lemma 4.1 (we shall fix n
and omit the index n). Let (r, ϕ) be the polar coordinates in R

2 and let ũ be the
solution of the problem

△ũ = 0 in Ω,

ũ = u on ∂Ω.

Then ũ ≥ u, hence ũr :=
∂ũ

∂r
≤ ∂u

∂r
= uq on ∂Ω.

Put w := rũr. Then w is a harmonic function in Ω, w ≤ uq ≤ Uq on ∂Ω (where

U := maxΩ u). Hence w ≤ Uq in Ω and ũr = w/r ≤ 2Uq in {x ∈ R
2 ; 12 ≤ |x| ≤ 1}.

Since ũ is harmonic in Ω, we have |∇ũ(x)| ≤ U/dist (x, ∂Ω) ≤ 2U ≤ 2Uq for |x| ≤ 1
2 .

Hence,

(4.5) ũr ≤ 2Uq in Ω.

Choose α ∈ (0, 1) and ε > 0 such that

(4.6) p < 2q − 1− (1− α)(q − 1)− αε.

Since

△(u− ũ) = aup ≤ AUp in Ω,

u− ũ = 0 on ∂Ω,

the Lr-estimates imply

(4.7) ‖u− ũ‖C1,α ≤ C ‖u− ũ‖W 2,r ≤ C̃ Up

for any r > 2/(1− α). Using (4.5)–(4.7) we obtain the estimate

∂u

∂r
(x) ≤ C1U

q if |x| > 1− U1−q+ε.

Now our assumptions and Lemma 4.1 imply U
q
n/Vn → 0, hence V = |∇u(x̃)| =

(K + 1)Uq for some x̃ = x̃n ∈ ∂Ω and K = Kn → ∞. Consequently, denoting
uϕ :=

∂u
∂ϕ we have |uϕ(x̃)| ≥ KUq and we may suppose uϕ(x̃) ≥ KUq. Let (1, ϕ̃)

be the polar coordinates of x̃ and choose ϕ̂ := sup{ϕ < ϕ̃ ; uϕ(1, ϕ) ≤ K
4 U

q} (using
obvious identification 0 ≡ 2π). Then uϕ(1, ϕ̂) =

K
4 U

q and ω := |ϕ̃ − ϕ̂| < 4
KU1−q

since u is bounded by U . Now the Schauder estimates imply

‖u− ũ‖C2,µ ≤ C‖aup‖C0,µ ≤ CaUp + Ca(2Up)1−µ(

pUp−1(K + 1)Uq)µ

≤ q(K + 1)U2q−1
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for µ sufficiently small and U large. Since |uϕr| = |quq−1uϕ| ≤ q(K + 1)U2q−1

on ∂Ω, we have also |ũϕr| ≤ 2q(K + 1)U2q−1 on ∂Ω. Now ũϕ is harmonic and,

similarly as in the case of ũ, the last estimate implies |ũϕr| ≤ 4q(K + 1)U2q−1 in
Ω. Consequently, |uϕr| ≤ 5q(K + 1)U2q−1 in Ω.
Put S := {(r, ϕ) ∈ Ω ; ϕ̂ < ϕ < ϕ̃, 1 − κ < r < 1}, where κ := K

20q(K+1)
U1−q.

Then

uϕ(r, ϕ̃) ≥ KUq − (1− r)5q(K + 1)U2q−1 ≥ 3
4
KUq for r ≥ 1− κ,

uϕ(r, ϕ̂) ≤ K

4
Uq + (1− r)5q(K + 1)U2q−1 ≤ 1

2
KUq for r ≥ 1− κ.

Hence,

(4.8)

∫

S

1

r2
uϕϕdϕdr =

∫ 1

1−κ

1

r2
(

uϕ(r, ϕ̃)− uϕ(r, ϕ̂)
)

dr ≥ κKUq

4(1− κ)2
≥ 4U

if K (or U) is sufficiently large. On the other hand, we know that ur ≤ C1U
q in S,

hence

(4.9)

∫

S
urrdr dϕ ≥ −

∫ ϕ̃

ϕ̂
C1U

q dϕ = −ωC1Uq ≥ −4C1
K

U ≥ −U

for K sufficiently large. By Lemma 4.1 we have |ur| ≤ |∇u| ≤ U2q−1 for n suffi-
ciently large so that

(4.10)
∣

∣

∣

∫

S

1

r
urdr dϕ

∣

∣

∣
≤ 1

1− κ
U2q−1ωκ =

1

2q(1− κ)K2
U ≤ U

for K large enough. Using (4.8)–(4.10) we get
∫

S △u dx ≥ 2U . However,
∫

S
△u dx = a

∫

S
up dx ≤ aUpκω ≤ U

for U and/or K large enough, which gives a contradiction. �

5. Global existence for (DGT).

In this section we shall suppose that Ω is a smoothly bounded domain in R
N ,

N ≥ 1, p, q > 1, r > N max(1, q − 1) and

u0 ∈ W
1,r
0 (Ω)

+ := {u ∈W 1,r(Ω) ; u ≥ 0 in Ω and u = 0 on ∂Ω}.

It is known (see e.g. [A1]) that (DGT) generates a local semiflow on W
1,r
0 (Ω)

+

and that for any u0 ∈ W
1,r
0 (Ω)

+ there exists a unique maximal solution u ∈
C

(

[0, T ),W
1,r
0 (Ω)

+
)

, where T = T (u0) is the maximal existence time for u. More-
over, this semiflow is order-preserving.
By ‖ · ‖∞ we shall denote the norm in L∞(Ω). The main result of this section is

the following
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Theorem 5.1. (i) If T <∞ then lim supt→T− ‖u(t, ·)‖∞ = +∞.
(ii) If q ≥ p then T = +∞ and supt≥0 ‖u(t, ·)‖∞ <∞.
(iii) If q ≥ p and ut ≥ 0 then supt≥t0 ‖∇u(t, ·)‖∞ <∞ for any t0 > 0.
Proof: To prove (i) it is sufficient to show that an L∞-estimate for u implies
also an L∞-estimate for ∇u. More precisely, let 0 < t0 < T0 < T < ∞, C1 :=
maxt≤T0 ‖u(t, ·)‖∞ <∞ and C0 := ‖∇u(t0, ·)‖∞. Then we shall show that C0 <∞
and that there exists a constant C2 = C2(C0, C1, T ) such that ‖∇u(t, ·)‖∞ ≤ C2
for any t ∈ [t0, T0].
By [A1, Theorem 14.6] we have u ∈ C

(

(0, t0],W
1,rq(Ω)

)

hence |∇u|q ∈ C
(

(0, t0],

Lr(Ω)
)

. Since W 1,r(Ω) →֒ C(Ω), we have also up ∈ C
(

[0, t0], L
r(Ω)

)

and the
variation of constants formula for u on the interval [t0/2, t0] gives us u(t0, ·) ∈
W 2−ε,r(Ω) for any ε > 0. Since W 2−ε,r(Ω) →֒ C1(Ω) for ε > 0 small enough, we
have C0 <∞.
Now put f(y) := yq, g(y) := λyp and choose C∞-functions fk, gk (k = 1, 2, . . . )

such that
• fk = f and gk = g on [1,∞),
• fk ≥ f and gk ≤ g on [0, 1], f ′k(0) = 0,

• fk → f and gk → g in C1
(

[0,∞)
)

as k → ∞.
Let uk be the solution of the problem

(DGT)k











vt = △v − fk(|∇v|) + gk(v) in (t0,∞)× Ω,
v = 0 on (t0,∞)× ∂Ω,

v(t0, x) = u(t0, x) x ∈ Ω.

Recall that u(t0, ·) ∈ W 2−ε,r(Ω) for any ε > 0. By [A2, Theorem 7.3 and

Corollary 9.4], the problem (DGT)k generates a local semiflow in W
1+δ,r
0 (Ω)+ for

0 < δ < min(1r , 1 − N
r , 1 − (q − 1)Nr ) and, denoting by Tk the maximal existence

time of uk in this space, we have uk ∈ C∞
(

(t0, Tk) × Ω
)

. We shall show that
Tk > T0 and ‖∇uk(t, ·)‖∞ ≤ C2 for any t ∈ [t0, T0] where C2 = C2(C0, C1, T ) is
independent of k. Then the variation of constants formula for zk := u − uk, the
Gronwall’s inequality for ‖zk(t, ·)‖W 2−ε,r(Ω) and a pass to the limit for k → ∞ gives
us |∇u| ≤ C2.
First notice that uk ≤ u by the maximum principle and that it is sufficient to find

the estimate ‖∇uk(t, ·)‖∞ ≤ C2 for any t ∈ [t0,min(Tk, T0)) since then the variation

of constants formula gives an apriori bound also in W 1+δ,r(Ω), hence Tk > T0.

Fix k and let T̃ < Tk, T̃ ≤ T0. The function w :=
1
2 |∇uk|2 fulfils the equation

(5.1) wt = △w −
∑

i,j

(uk)
2
xixj

−
∑

j

f ′k(∇uk)

|∇uk|
(uk)xjwxj + 2g

′
k(uk)w

Since supt∈[t0,T̃ ]
2g′k(uk) ≤ 2λpmax(2, Cp−1

1 ) =: Ĉ if k is large enough, the maxi-

mum principle implies that the function z := we−Ĉ(t−t0) attains its maximum Z in
Q := [t0, T̃ ]× Ω on the parabolic boundary ({t0} × Ω) ∪ ([t0, T̃ ]× ∂Ω).
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If Z ≤ C20/2 then
1
2 |∇uk|2 = w ≤ 1

2C
2
0e

ĈT in Q and we are done.

If Z > C20/2 then Z = z(t, x0) for some t ∈ (t0, T̃ ] and x0 ∈ ∂Ω. Consequently,

∣

∣

∣

∂uk

∂n
(t, x0)

∣

∣

∣
= |∇uk(t, x0)| = max

x∈Ω
|∇uk(t, x)| =

√
2ZeĈ(t−t0)/2.

Since uk is smooth at (t, x0), we have

(5.2) 0 = (uk)t(t, x0) = △uk(t, x0)− |∇uk(t, x0)|q.

If ν is any unit tangential vector to ∂Ω at x0 then, obviously,

∣

∣

∣

∂uk

∂ν
(t, x)

∣

∣

∣
≤ C̃

∣

∣

∣

∂uk

∂n
(t, x)

∣

∣

∣
|x− x0| for x ∈ ∂Ω, x→ x0,

where C̃ is some constant depending only on the curvature of ∂Ω at x0. Conse-
quently,

(5.3)
∣

∣

∣

(

△uk − ∂2uk

∂n2

)

(t, x0)
∣

∣

∣
≤ C̃

∣

∣

∣

∂uk

∂n
(t, x0)

∣

∣

∣
.

Since |∇uk(t, ·)| attains its maximum at x0, we have
∂2uk

∂n2
(t, x0) ≤ 0. This inequal-

ity together with (5.2) and (5.3) imply |∇uk(t, x0)|q−1 ≤ C̃, which gives the desired
estimate.

(ii) If q ≥ p then it follows from [F] that the function ψ(x) := α2/(p−1)eα(
P

i xi+C)

is a supersolution for u if α and C are large enough. Hence, u(t, x) ≤ maxΩ ψ for
any t < T and x ∈ Ω. Now the assertion (ii) follows from (i).
Note that choosing ϕ(x) := min{ψ(x),Kdist (x, ∂Ω)} with K sufficiently large

we obtain a supersolution ϕ for u(t, ·), t ≥ t0, which gives us an apriori bound

|∇u| =
∣

∣

∣

∂u

∂n

∣

∣

∣
≤ K on the boundary ∂Ω.

(iii) Let q ≥ p and ut ≥ 0. Then

△u = ut + |∇u|q − λup ≥ |∇u|q − C1 for some C1 > 0,

and, consequently,

∑

i,j

u2xixj
≥ C2(△u)2 ≥ C3|∇u|2q − C4 for some C2, C3, C4 > 0.

By the note in the proof of (ii), the function w := 12 |∇u|2 is bounded on ∂Ω so that
the last inequality together with (5.1), the boundedness of u and the maximum
principle imply the boundedness of w in [0,∞)× Ω. �
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6. Stationary solutions for (DGT).

Throughout this section we suppose that Ω is a smoothly bounded domain in R
N ,

N ≥ 1. By a (stationary) solution we mean always a classical positive stationary
solution.

Lemma 6.1. Let q ≥ p, λ1 > 0. Then there exists K = K(λ1) > 0 such that any
positive stationary solution u of (DGT) with λ ≤ λ1 fulfils ‖u‖C1(Ω) ≤ K.

Proof: We shall use similar arguments as in the proof of Theorem 5.1 (ii), (iii).
One can easily find a function

ϕ(x) = ϕα(x) = min{ψα(x),K dist (x, ∂Ω)},

where ψα(x) = α2/(p−1)eα(
P

i xi+C) and K = K(α) is a continuous nondecreasing
function of α, lim

α→∞
K(α) = +∞, such that for α ≥ α0, ϕ is a strict supersolution

for (DGT) with any λ ≤ λ1. Now suppose that u is a positive stationary solution
of (DGT) with λ ≤ λ1 which does not lie below ϕα0 . Choosing α1 := inf{α ;
ϕα ≥ u} we have ϕα1 ≥ u and either

∂ϕα1

∂n
(x1) = u(x1) for some x1 ∈ ∂Ω or

ϕα1(x2) = u(x2) for some x2 ∈ Ω. Since both possibilities lead to the contradiction
with the maximum principle, we have u ≤ ϕα0 , i.e. we have an apriori bound (say

C1) for u in L
∞(Ω) and an apriori bound for

∣

∣

∣

∂u

∂n

∣

∣

∣
= |∇u| on ∂Ω.

Putting w := 12 |∇u|2 and assuming that w attains its maximum at some x0 ∈ Ω,
we get by (5.1) (with wt = 0, △w(x0) ≤ 0, wxj (x0) = 0) and (DGT)

2λ1pC
p−1
1 w(x0) ≥ 2λpup−1(x0)w(x0) ≥

∑

i,j

u2xixj
(x0)

≥ C2
(

△u(x0)
)2
= C2

(

|∇u(x0)|q − λup(x0)
)2

≥ C3w
q(x0)− C4,

which gives an apriori bound for w(x0). �

Remark 6.1. The apriori bound in C1(Ω) and standard regularity results for the
stationary problem related to (DGT) imply also an apriori bound in W 2,r(Ω) for
any r > 1 so that the set of positive stationary solutions for λ ≤ λ1 is relatively
compact in C1(Ω).

Theorem 6.1. Let q ≥ p. Then there exists λ0 > 0 such that the stationary
problem corresponding to (DGT)

(i) does not have positive solutions for λ < λ0,
(ii) has at least one positive solution for λ = λ0 and at least two positive solu-
tions for λ > λ0.

Proof: To prove (i) suppose the contrary, i.e. there exist solutions un with λ =
λn ↓ 0. By Lemma 6.1, these solutions are uniformly bounded in C(Ω) by some con-
stant C1. Denoting by νn the norm of un in W

1,2(Ω), multiplying the (stationary)
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equation in (DGT) by un and integrating by parts we get

(6.1)

cν2n ≤
∫

Ω
|∇un|2 dx = −

∫

Ω
|∇un|qun dx+ λn

∫

Ω
up+1

n dx

≤ λnC
p−1
1

∫

Ω
u2n dx ≤ λnC

p−1
1 ν2n

for suitable c > 0, which gives us a contradiction.

(ii) Suppose that (DGT) has a positive stationary solution u0 for some λ0 > 0
and let λ > λ0. Then u0 ∈ W 2,r(Ω) by Remark 6.1 and u0 is a (strict) subsolu-
tion for (DGT). By the maximum principle, ut ≥ 0 for the solution u of (DGT)
starting at u0. Consequently, the function u(t, ·) is bounded in W 1,∞(Ω) by The-
orem 5.1 (iii). Standard parabolic regularity results imply now the boundedness
of u(t, ·) in W 2−ε,r(Ω) for any r > 1 and ε > 0 so that the orbit {u(t, ·)}t≥0 is

relatively compact in C1(Ω). Since ut ≥ 0, we have u(t, ·)→ ũ as t → +∞, where
ũ is a positive stationary solution of (DGT).

To see that (DGT) has a positive stationary solution at least for some λ, let
u0 be a nonnegative C

2(Ω)-function such that u0 = 0 on ∂Ω, △u0 ≥ |∇u|q in
a neighbourhood U of ∂Ω and u0 ≥ ε > 0 in Ω\U (It is sufficient to choose u0(x) :=
w(dist (x, ∂Ω)) for x close to ∂Ω, where w is the solution of O.D.E. w(0) = 0,
w′(0) = C ≫ 1, w′′(y) = 2w′q(y) for y ∈ (0, δ], u0(x) := w(δ) for dist (x, ∂Ω) > δ,
and then regularize u0 in the δ/2-neighbourhood of {x ; dist (x, ∂Ω) = δ}.). Then
u0 is a subsolution for (DGT) if λ is sufficiently large, hence (similarly as above)
we get the existence of a positive stationary solution.

Until now, we have shown the existence of a λ0 > 0 such that the stationary
problem corresponding to (DGT) has

(j) no solutions for λ < λ0,
(jj) at least one solution for λ > λ0.

To prove the existence of a solution for λ = λ0, let un be solutions corresponding
to λn ↓ λ0. Due to the apriori bounds (Lemma 6.1 and Remark 6.1) we know that
un converge to some nonnegative stationary solution of (DGT) with λ = λ0. To
show u 6≡ 0, suppose the contrary. Then similarly as in (6.1) we get

cν2n ≤
∫

Ω
|∇un|2 dx ≤ λn

∫

Ω
up+1

n dx ≤ λn

(

∫

Ω
u2n dx

)

max
Ω

up−1
n

≤ λnν
2
nmax
Ω

up−1
n

and since un → 0 (even in C1(Ω)), we get a contradiction.
Now let λ > λ0 and let uλ be the positive stationary solution which we have

got as the limit of the solution û of (DGT) starting at u0 (= positive stationary
solution corresponding to λ0). ChooseK > 0, K > supt≥0 ‖û(t, ·)‖C1(Ω) and let fK
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be a smooth cut-off function for the function y 7→ yq; more precisely, fK(y) = yq

for y ∈ [0,K], fK(y) = Kq + 1 for y ≥ K + 1, f ′K > 0 on [K,K + 1), fK(y) ≤ yq

for any y ≥ 0. Consider the problem

(DGT)K











ut = △u− fK(|∇u|) + λup in (0,∞)× Ω,
u = 0 on (0,∞)× ∂Ω,

u(0, x) = u1(x) x ∈ Ω,

where 0 ≤ u1 ≤ uλ, u1 ∈ W 2−ε,r(Ω) ∩W 1,r0 (Ω) for some r > N/(1 − 2ε). Since
fK(y) = yq for y ≤ ‖û(t, ·)‖C1(Ω), the function uλ is a positive stationary solution

of (DGT)K and û(t, ·) is a nondecreasing solution of (DGT)K connecting u0 to
uλ. Moreover, 0 is a stable stationary solution of (DGT)K and one can easily find

a positive function ũ0 such that
∂ũ0
∂n

> 0 on ∂Ω and the solution of (DGT)K starting

at ũ0 tends (in a monotone way) to 0 as t→ ∞. Denoting Sτu1 := u(τ, ·) where u
is the solution of (DGT)K starting at u1, we get that S

τ is (for any τ > 0) an order-
preserving discrete semigroup which maps the order interval [0, uλ] ⊂ W 2−ε,r(Ω)
into a relatively compact subset of [0, uλ]. Moreover, 0 or uλ is an equilibrium of
Sτ which is stable from above or from below, respectively. Due to [AH, Lemma 5],
there exists another equilibrium uτ of Sτ which lies between 0 and uλ. Since u

τ

lies neither above u0 nor below ũ0, we have

(6.2) min{‖uτ − uλ‖C1(Ω), ‖u
τ‖C1(Ω)} ≥ c0 > 0

for some c0 which is independent of τ . The variation of constants formula and
a straightforward estimate imply that the set {uτ}τ∈(0,τ0) is bounded inW

2−ε,r(Ω)

and hence we may find a sequence τk ↓ 0 such that uτk → uK in W
2−2ε,r(Ω). Due

to (6.2), uK is a positive stationary solution of (DGT)K which lies in [0, uλ]\{0, uλ}.
Put wK :=

1
2 |∇uK |2. We show that wK ≤ 1

2K
2 for K sufficiently large so that uK

is also a stationary solution of (DGT).

Since wK ≤ 1
2 |∇uλ|2 ≤ 1

2K
2 on the boundary ∂Ω, we may assume that wK

attains its maximum at some x0 ∈ Ω. Suppose wK(x0) >
1
2K
2. Using an analogue

to (5.1) we get, similarly as in the proof of Lemma 6.1,

(6.3)
C1wK(x0) ≥ 2λpup−1

K (x0)wK (x0) ≥
∑

(uK)
2
xixj
(x0) ≥ C2

(

△uK(x0)
)2

= C2
(

fK(|∇uK(x0)|)− λu
p
K(x0)

)2 ≥ C3K
2q − C4

On the other hand, due to the Lr-estimates for the stationary problem correspond-
ing to (DGT)K we have

‖uK‖W 2,r(Ω) ≤ C5 + C6‖f(|∇uK |)‖Lr(Ω)

≤ C5 + C6(K
q + 1)(r−1)/r

(

∫

Ω
f(|∇uK |) dx

)1/r

≤ C7 + C8K
q(r−1)/r ,
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since
∫

Ω
f(|∇uK |) dx =

∫

Ω
△uK dx+ λ

∫

Ω
up

K dx =

∫

∂Ω

∂uK

∂n
dS + λ

∫

Ω
up

K dx

≤ λ

∫

Ω
up

K dx ≤ C9.

Consequently,

(6.4) wK(x0) ≤
1

2
‖uK‖2

C1(Ω)
≤ C10‖uK‖2W 2,r(Ω) ≤ C11 + C12K

2q(r−1)/r .

Now (6.3) and (6.4) yield a contradiction if K is sufficiently large. �

Theorem 6.2. Let q < min(2, (N + 2)/N) and let p < (N + 1)/(N − 1) if N > 1.
Then there exists λ0 ≥ 0 such that (DGT) has at least one positive stationary
solution for any λ > λ0.

Proof: LetX :=W 1,20 (Ω) considered with the scalar product 〈u, v〉 :=
∫

Ω∇u∇v dx
and the norm ‖u‖ :=

√

〈u, u〉. Let the operators F,G : X → X be defined by

〈F (u), v〉 :=
∫

Ω
|u|pv dx, 〈G(u), v〉 :=

∫

Ω
|∇u|qv dx.

By the corresponding Sobolev imbedding theorems, F and G are well defined and
compact. Put K+ := {u ∈ X ; u ≥ 0} and let P+ be the orthogonal projection in
X onto K+. Consider the inequality

u ∈ K+ :

∫

Ω

(

−△u− λup + |∇u|q
)

(v − u) ≥ 0 for any v ∈ K+,

which is equivalent to the operator equation

(6.5) u− P+(λF (u)−G(u)) = 0.

In the same way as in [S3, Theorem I.2.4] (cf. also [CFQ, Lemma 2.4]) one can easily
show that any solution of (6.5) is also a stationary solution of (DGT). Now the proof
of Theorem 1 in [Q2, p. 582] (based on the apriori estimates of Brézis and Turner
[BT]) implies that the Leray-Schauder degree deg (id − P+F, 0, BC ) or deg (id −
P+F, 0, Bε) is well defined and equals 0 or 1, respectively, where Bη := {u ∈ X ;

‖u‖ < η}, C is large and ε small. Fix C and ε. Then deg (id−P+(F−aG), 0, BC) =
0 and deg (id−P+(F−aG), 0, Bε) = 1 for a ∈ (0, a0] so that there exists a nontrivial
solution u = u(a) of the equation u = P+(F (u) − aG(u)) for any a ∈ (0, a0]. By
our considerations above, u(a) solves also the equation 0 = △u− a|∇u|q + up. Put

v := a1/(q−1)u. It is easily seen that v is a positive stationary solution of (DGT)

with λ =
(1

a

)(p−1)/(q−1)
. �
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Remark 6.2. The condition p < (N +1)/(N−1) in Theorem 6.2 can be weakened
to p < (N +2)/(N −2) since then one can use [FLN, Theorem 1.2 and Remark 1.5]
in order to get apriori estimates for the solutions of the equation 0 = △u+up+ sΦ
(where s ≥ 0 and Φ is the first eigenfunction of the operator △ in X) which are
sufficient for the determination of deg (id− P+F, 0, BC).

Remark 6.3. If the assumptions of Theorem 6.2 are fulfilled and q > p then one
can use also the Leray-Schauder degree to get 2 positive stationary solutions of
(DGT) for λ large enough (cf. Theorem 6.1). Using the notation from the proof of
Theorem 6.2, it is sufficient to use the homotopy

H(t, u) := u− P+(tF (u)− a0G(u)), t ∈ [0, 1]

to show that deg (id − P+(F − a0G), 0, BK) = 1 if K is large enough (K ≫ C).
The admissibility of H follows from the following contradiction argument.
Suppose that H(tn, un) = 0 and ‖un‖ → ∞. Put vn := un/‖un‖. We may sup-

pose that vn ⇀ v ∈ X weakly. Multiplying the differential equation corresponding
to H(tn, un) = 0 by un/‖un‖q+1 gives

∫

Ω vn|∇vn|q dx → 0, which implies v ≡ 0.
Integrating the equation corresponding to H(tn, un) = 0 we get

C1‖un‖q
W 1,q(Ω)

≤ a0

∫

Ω
|∇un|q dx ≤ tn

∫

Ω
up

n dx ≤ C2‖un‖p
W 1,q(Ω)

,

which gives an apriori bound for ‖un‖W 1,q(Ω). Finally, multiplying the equation

corresponding to H(tn, un) = 0 by un/‖un‖2 we get

(6.6) 1 ≤ tn

∫

Ω
v2nu

p−1
n dx ≤ ‖vn‖1/r

L2r(Ω)
‖un‖1/r′

L(p−1)r′(Ω)
,

where we choose 1 < r < N/(N − 2) and 1 < r′ < Nq/
(

(N − q)(p − 1)
)

(if

N > 1), 1r +
1
r′ = 1, so that the right hand side in (6.6) can be estimated by

‖vn‖1/r
L2r(Ω)

‖un‖1/r′

W 1,q(Ω)
→ 0, which gives a contradiction.
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