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A uniform boundedness principle of Pták

Charles Swartz

Abstract. The Antosik-Mikusinski Matrix Theorem is used to give an extension of a uni-
form boundedness principle due to V. Pták to certain metric linear spaces. An application
to bilinear operators is given.
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In [P] V. Pták used the classical sliding hump technique to give an extension
of the classical uniform boundedness principle for pointwise bounded families of
continuous linear operators on Banach spaces and in [NP] used an abstract sliding
hump construction to give a further extension. This generalization of the uniform
boundedness principle was used to establish automatic continuity results. A sim-
ilar generalized uniform boundedness principle was established earlier by Lorentz
and MacPhail to give a generalization of the Silvermann-Toeplitz Theorem from
summability ([LM]). The Antosik-Mikusinski Matrix Theorem ([AS, 2.2]) can also
be considered to be an abstraction of the sliding hump technique and has been used
to treat a number of topics in classical functional analysis and measure theory in-
cluding the uniform boundedness principle (see [AS], especially § 4 for the uniform
boundedness principle). In this note we show that the Antosik-Mikusinski Matrix
Theorem can be used to extend V. Pták’s version of the uniform boundedness prin-
ciple to metric K-spaces. As an application we use the extended form of the uniform
boundedness principle to generalize a result of Pták on bilinear operators.

We fix the notation to be used. Throughout the sequel X will denote a metric
linear space and Y a normed linear space. A sequence {xk} is K convergent if
every subsequence of {xk} has a further subsequence {xnk

} such that the subseries
∑

xnk
converges in X . A K convergent sequence converges to 0, but a sequence

can converge to 0 and not be K convergent ([AS, 3.3]). A space in which every
sequence which converges to 0 is K convergent is called a K-space. A complete
metric linear space is a K-space ([AS, 3.2]), but there are (normed) K-spaces which
are not complete ([K]). The notion of a K-space is a weakened form of completeness
which has proven to be a good substitute for completeness in several topics in
functional analysis ([AS]).

We first establish a special case of Pták’s uniform boundedness principle for
metric K-spaces. This result was established for Banach spaces by Lorentz and
MacPhail [LM]; see also [M, 4.1].
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Theorem 1. Let X be a metric K-space. For each k ∈ N let Tk : X → Y be
linear and let Mk be a closed subspace of X such that Tk is continuous on Mk and

Mk ⊃ Mk+1. If {Tk} is pointwise bounded on X , then there exists p such that
{Tk : k ∈ N} is equicontinuous on Mp.

Proof: Let {Uk} be a neighborhood base at 0 in X with Uk ⊃ Uk+1,
⋂∞

k=1 Uk =
{0}. If the conclusion fails, for each k there exist nk and xk ∈ Uk ∩ Mk such
that ‖Tnk

xk‖ > k, where we may assume nk+1 > nk. For notation convenience
assume that nk = k. Consider the matrix M = [(1/i)Tixj ]. Since {Ti} is pointwise
bounded, the columns of M converge to 0. Since xj → 0 in X , a K-space, given
any increasing sequence of positive integers {pj} there is a subsequence {qj} of {pj}
such that

∑∞
j=1 xqj = x ∈ X . For each fixed i,

∑

qj≥i xqj ∈ Mi since Mi is closed

and Mi ⊃ Mk+1 so that

∞
∑

j=1

1

i
Tixqj =

1

i
Ti

(

∑

qj<i

xqj

)

+
1

i
Ti

(

∑

qj≥i

xqj

)

=
1

i
Tix

since Ti is continuous on Mi. Therefore, since {Ti} is pointwise bounded,

lim
i

∞
∑

j=1

1

i
Tixqj = lim

i

1

i
Tix = 0.

Hence, M is a K-matrix ([AS, § 2]) and the diagonal of M converges to 0 by the
Antosik-Mikusinski Matrix Theorem (AS, 2.2). This contradicts ‖Tixi‖ > 1 above.

�

This result was obtained in [LM] for Banach spaces by a sliding hump technique.
It was obtained for the case when X is a Banach space andMk is the (closed) kernel
of Tk by Pták in [P]. It is shown in 2.1.3 of [PB] that the assumption that Mk is
a closed kernel cannot be replaced with the assumption thatMk is a Baire space. It
is also shown in 2.7. of [PB] that the assumption that Y is a normed space cannot
be replaced with Y is a metric linear space.
From Theorem 1 we can easily obtain the general form of the uniform bounded-

ness principle given in [NP].

Theorem 2. Let X be a metric K-space. For each a ∈ A let Ta : X → Y be
linear and Ma be a closed linear subspace of X such that Ta is continuous on Ma.

If T = {Ta : a ∈ A} is pointwise bounded on X , then there exists a finite subset
F ⊂ A such that T is equicontinuous on

⋂

a∈F Ma.

Proof: Let {Uk} be as in the proof of Theorem 1. Suppose the conclusion fails.
Pick a1 ∈ A. There exist a2 ∈ A, x2 ∈ Ma1∩U1 such that ‖Ta2x2‖ > 1. There exist
a2 ∈ A, x3 ∈ Ma1 ∩Ma2 ∩U2 such that ‖Ta3x3‖ > 1. Continuing this construction
produces sequences {ak} ⊂ A, xk ∈ Ma1 ∩ · · · ∩ Mak

∩ Uk such that ‖Tak
xk‖ > 1.

Since Tak
is continuous on Ma1 ∩ · · · ∩ Mak

, Theorem 1 implies that {Taj : j ∈ N}
is equicontinuous on some Ma1 ∩ · · · ∩Map . Since xj → 0, this is impossible by the
construction. �
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This result was extended to Fréchet spaces X in 4.9.15 of [PB]. It was also shown
in 4.9.16 of [PB] that X is a Banach space cannot be replaced in Theorem 1 by X
is normed Baire even if eachMk is a Baire space. Since a metric K-space is a Baire
space but need not be complete, Theorem 2 gives an improvement of 4.9.15 of [PB].
The methods employed above are much simpler than those employed in [PB].
As an application of Theorem 2 we give an extension of Theorem 3.2 of [P] to

families of bilinear maps. Let Z be a normed linear space. If b : X × Y → Z is
bilinear, for x ∈ X (y ∈ Y ) we let b(x, ·) : Y → Z (b(·, y) : X → Z) be the linear
map b(x, ·)(y) = b(x, y) (b(·, y)(x) = b(x, y)). If B = {ba : a ∈ A} is a family of
bilinear maps from X × Y → Z, B is said to be right equicontinuous if for each
x ∈ X the family {ba(x, ·) : a ∈ A} is an equicontinuous family of linear maps ([AS,
§ 6]).

Theorem 3. Let X be a metric K-space and B = {ba : a ∈ A} a family of bilinear
maps from X × Y to Z. Assume

(1) B is right equicontinuous,
(2) for each a ∈ A y ∈ Y there is a closed subspace M(a, y) of X such that

ba(·, y) is continuous on M(a, y).

Then there exist y1, . . . , yk ∈ Y , a1, . . . , ak ∈ A such that B is equicontinuous on

M × Y where M =
⋂k

j=1M(aj , yj).

Proof: Set T = {ba(·, y) : a ∈ A, ‖y‖ ≤ 1}. Since B is right equicontinuous, T
is a pointwise bounded family of linear maps from X to Z. By Theorem 2 there
exist a1, . . . , ak ∈ A, y1, . . . , yk ∈ Y with ‖yj‖ ≤ 1 such that T is equicontinuous

on M =
⋂k

j=1M(aj , yj). Therefore, given ε > 0 there exists a neighborhood U of 0

in X such that ‖ba(x, y)‖ < ε for x ∈ U ∩ M , ‖y‖ ≤ 1. Hence, B is equicontinuous
on M × Y . �

The case when B consists of a single bilinear map is just Theorem 3.2 of [P].
Theorem 3 gives a generalization of the uniform boundedness principle for bilinear
maps given in 6.16 of [AS].
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