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Further characterizations of boundedly UC spaces

L’ubica Holá, Dušan Holý

Abstract. Following the paper [BDC1], further relations between the classical topologies
on function spaces and new ones induced by hyperspace topologies on graphs of functions
are introduced and further characterizations of boundedly UC spaces are given.

Keywords: UC space, boundedly UC space, boundedly compact space, compact-open to-
pology, topology of uniform convergence on bounded sets, Attouch-Wets topology, bounded
proximal topology

Classification: Primary 54C35

1. Introduction.

The notion of boundedly UC space (or boundedly Atsuji space) is introduced
in [BDC1]. A metric space X is called boundedly UC space (or boundedly Atsuji)
provided each closed and bounded subset of X is UC. A metric space X is a UC
space [At], [Be] provided for each metric space Y , each continuous function from X
to Y is uniformly continuous.

In the paper [BDC1], many interesting characterizations of boundedly UC spaces
are given. One of the most interesting characterizations is an external one by using
a relation between the topology of uniform convergence on bounded sets and the
Attouch-Wets topology on function spaces.

It is the aim of this paper to give some further characterizations in this di-
rection. In this connection also a new hyperspace topology on function spaces is
considered. This topology is called by Beer and Lucchetti the bounded proximal
topology [BL1], [BL2].

This topology has good applications in minimization problems and it is a weak-
ening of the Attouch-Wets topology ([AW], [AP], [ALW], [BDC1], [BDC2]). The
bounded proximal topology was considered in [BL2] also on epigraphs of functions.

2. Preliminaries.

(X, d) will denote a metrizable space X with a compatible metric d. The open
(resp. closed) d-ball with center x ∈ X and radius ε > 0 will be denoted by Sd[x, ε]
(resp. Bd[x, ε]) and the ε-parallel body

⋃
{Sd[a, ε] : a ∈ A} for a subset A of X will

be denoted by Sd[A, ε].

Let CL(X) be the family of all nonempty closed subsets of (X, d) and CLB(X)
be the family of all nonempty closed and bounded subsets of (X, d). If A ∈ CL(X),
the distance functional d(·, A) : X → [0,∞) is described by the familiar formula



176 L’.Holá, D.Holý

d(x, A) = inf{d(x, a) : a ∈ A}. The gap Dd(A, B) between two closed sets A and B
is defined by the following formula

Dd(A, B) = inf{d(a, b) : a ∈ A, b ∈ B}.

For E ⊂ X , we specify the following subsets of CL(X):
E− = {F ∈ CL(X) : F ∩ E 6= ∅}, E+ = {F ∈ CL(X) : F ⊂ E}, E++ = {F ∈
CL(X) : there is ε > 0 such that Sd[F, ε] ⊂ E}.
It was shown in [BL1] that all of the standard hyperspace topologies arise as

weak topologies generated by families of geometric functionals defined on closed
sets. The natural example is the Wijsman topology [LL] on CL(X), which is the
weakest one such that for each x ∈ X , the function A → d(x, A) is continuous
on CL(X). Also the bounded proximal topology σd which will be dealt in this
paper can be described in this sense.

Definition ([BL2]). Let (X, d) be a metric space. The bounded proximal topology
σd on CL(X) is the weakest topology τ on CL(X) such that for each B ∈ CLB(X)
the gap functional A → Dd(B, A) is τ continuous on CL(X). Thus σd is com-
pletely regular and since σd is finer than the Wijsman topology on CL(X), which is
Hausdorff, σd is also Hausdorff. The topology σd is also weaker than the proximal
topology, the weak topology determined by {Dd(F, ·) : F ∈ CL(X)} [BLLN].
We will mainly use the local presentation of the topology σd:

Theorem A ([BL1]). The bounded proximal topology σd on CL(X) has as a local
base at A ∈ CL(X) all sets of the form

φA[n, a1, a2, . . . ak] = {F ∈ CL(X) : F ∩ Sd[x0, n] ⊂ Sd[A, 1/n], and for each
i ≤ k d(ai, F ) < 1/n}, where x0 is a fixed but arbitrary point of X , {a1, a2, . . . ak}
is a finite subset of A and n ∈ Z+.

Theorem B ([BL1]). Let (X, d) be a metric space. A subbase for σd consists of

all sets of the form V −, where V is open in X , and all sets of the form (Bc)++,
where B ∈ CLB(X) and Bc is the complement of B.

We shall denote by τAW (d) the metrizable topology on CL(X) of uniform con-
vergence of distance functionals on bounded subsets of X corresponding to a fixed
metric d on X (the Attouch-Wets topology). The topology τAW (d) is most natu-
rally presented as a uniform topology, determined by the uniformity Ωd on CL(X)
with the countable base of entourages {Vn : n ∈ Z+}, where for each n

Vn = {(A, B) : sup{|d(x, A)− d(x, B)| : x ∈ Sd[x0, n]} < 1/n}.

The point x0 is a fixed but arbitrary point of X , and the uniformity is indepen-
dent of its choice [BDC2].
Let us mention also a weaker uniformity Πd on CL(X) which has a countable

base consisting of all sets of the form

Σn = {(A, B) : A ∩ Sd[x0, n] ⊂ Sd[B, 1/n] and B ∩ Sd[x0, n] ⊂ Sd[A, 1/n]}
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where again x0 is a fixed but arbitrary point of X and n ∈ Z+. This uniformity also
determines τAW (d) [BDC2]. That this second uniformity also gives rise to τAW (d)
has led some authors to call the topology the bounded Hausdorff topology [Pe] or
the topology of the ρ-Hausdorff distance [ALW].
From the presentations of uniformities Ωd and Πd we can obtain the following

local descriptions of τAW (d) topology.
A local base for τAW (d) at A ∈ CL(X) [BDC2] consists of all sets of the form

{F ∈ CL(X) : sup
x∈B

|d(x, F )− d(x, A)| < ε},

where B ∈ CLB(X) and ε > 0.
Another local base for τAW (d) at A ∈ CL(X) [BDC2] consists of all sets of the

form

Σn[A] = {F ∈ CL(X) : F ∩Sd[x0, n] ⊂ Sd[A, 1/n] and A∩Sd[x0, n] ⊂ Sd[F, 1/n]},

where x0 is a fixed but arbitrary point from X .
It is very easy to see from the local presentations of τAW (d) and σd that σd ⊂

τAW (d) on CL(X).

The Attouch-Wets topology splits into its lower and upper halves [BL1] τ+AW (d)

and τ−AW (d), where a local base for τ+AW (d) (resp. τ−AW (d)) at A consists of all

sets of the form Θ+A[B, ε] = {F ∈ CL(X) : for each x ∈ B d(x, A) − ε < d(x, F )}

(Θ−

A[B, ε] = {F ∈ CL(X) : for each x ∈ B d(x, F ) < d(x, A) + ε}), where B ∈
CLB(X), ε > 0.

Clearly τ+AW (d) ⊂ σd on CL(X) (see [BL1]).
In our paper we will work mainly with boundedly UC spaces.

Definition ([BDC1]). A metric space (X, d) is called boundedly UC (or boundedly
Atsuji) provided each closed and bounded subset of X is UC.

The following characterizations proved in [BDC1] will be useful further:

Theorem C. Let (X, d) be a metric space. The following are equivalent:

(1) X is boundedly UC;
(2) For each metric space Y and for each continuous function f from X to Y ,

f is uniformly continuous on bounded subsets of X ;
(3) Whenever {xn} is a bounded sequence in X such that {d(xn, {xn}c} con-
verges to 0, then {xn} has a cluster point;

(4) Whenever B is a closed and bounded subset of X and {Vi : i ∈ I} is
a collection of open subsets of X with B ⊂

⋃
Vi, then there is δ > 0 such

that each subset of X of diameter less than δ which meets B lies entirely
within some Vi.

Clearly every boundedly compact metric space is boundedly UC (a metric space
(X, d) is called boundedly compact provided each closed and bounded subset of X
is compact).
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Remark 2.1. Suppose that (X, d) is a boundedly UC space, (Y, e) is a metric space
and f is continuous function from X to Y . Let B be a closed and bounded subset
of X . Then for every ε > 0 there is δ > 0 such that e(f(x), f(y)) < ε for every
x, y ∈ X with d(x, y) < δ and x ∈ B.

Actually, this fact is very easy to see from the previous Theorem, from the
implication (1) → (2).
Clearly, the above mentioned property holds for every compact set B in any

metric space (X, d).

Now let (X, d) and (Y, e) be metric spaces and let ρ denote the box metric on
X × Y , i.e. ρ[(x1, y1), (x2, y2)] = max{d(x1, x2), e(y1, y2)}.
If f : X → Y is a function, denote G(f) = {(x, f(x)) : x ∈ X} the graph of f .

Denote C(X, Y ) the family of all continuous functions fromX to Y . We can identify
the members of C(X, Y ) with their graphs and consider C(X, Y ) as a subspace of
CL(X × Y ) with the induced above mentioned topologies.

Denote τAW (ρ) the Attouch-Wets topology on C(X, Y ), σρ the bounded proximal

topology on C(X, Y ), τ+AW (ρ) the upper Attouch-Wets topology on C(X, Y ), τUB

the topology of uniform convergence on bounded subsets of X on C(X, Y ), τCO the
compact-open topology on C(X, Y ) and τP the topology of pointwise convergence
on C(X, Y ). Mostly we work with the mentioned topologies on some subspaces of
C(X, Y ). We use the same notation for topologies also in such cases.

Remark 2.2. The inclusions τ+AW (ρ) ⊂ σρ ⊂ τAW (ρ) on C(X, Y ) are clear and the
inclusion τAW (ρ) ⊂ τUB on C(X, Y ) is implied by the assertion (a) of Theorem 4.1
of [BDC2]. Example 1 in [Ho] shows that τP need not be weaker than τAW (ρ) on
C(X, Y ).

In [BDC1] the following characterization of boundedly UC spaces is given:

Theorem D ([BDC1]). Let (X, d) be a metric space. The following are equivalent:

(1) (X, d) is a boundedly UC space;
(2) For all bounded metric spaces Y , τUB = τAW (ρ) on C(X, Y );
(3) τUB = τAW (ρ) on C(X, [0, 1]).

The previous characterization can be very easily extended in the following way:

Theorem 2.3. Let (X, d) be a metric space. The following are equivalent:

(1) (X, d) is a boundedly UC space;

(2) For all bounded metric spaces Y , τUB = τ+AW (ρ) on C(X, Y );
(3) For all bounded metric spaces Y , τUB = σρ on C(X, Y );
(4) For all bounded metric spaces Y , τUB = τAW (ρ) on C(X, Y );
(5) τUB = τAW (ρ) on C(X, [0, 1]).

Proof: It is sufficient to prove (1) → (2) since other implications are clear from
Remark 2.2 and Theorem D.

Since τ+AW (ρ) ⊂ τUB on C(X, Y ) is always true, we prove τUB ⊂ τ+AW (ρ) on
C(X, Y ).
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Let B be a bounded set in X , ε > 0 and f ∈ C(X, Y ). Put G = {g ∈ C(X, Y ) :

e(f(x), g(x)) < ε for every x ∈ B}. We show that G is a τ+AW (ρ)-neighbourhood
of f . By Remark 2.1 there is δ > 0 such that e(f(z), f(x)) < ε/2 for every x, z with
d(x, z) < δ and x ∈ clB. Put v = min{δ, ε/2}. Then it is very easy to see that
Θ+

G(f)
[B × Y, v/2] ∩ C(X, Y ) ⊂ G. �

Remark 2.4. We must say that the boundedness of Y in the previous Theorem
is very strong requirement. If Y is a bounded metric space then the behaviour
of τ+

AW
(ρ), σρ and τAW (ρ) on C(X, Y ) is nice. For example these topologies are

stronger than the compact-open topology onC(X, Y ). The proof of this fact uses the
same arguments as the proof of (1) → (2) in Theorem 2.3, where the boundedness
of B is replaced by compactness.

It should be remarked also that if Y is a bounded metric space, then the upper
Attouch-Wets topology and the bounded proximal topology on C(X, Y ) coincide
for every metric space X .

3. The main results.

The aim of our paper is to remove the boundedness of Y by a strengthening of
requirements on function spaces.

Put L(X, Y ) = {f ∈ C(X, Y ) : f(B) is bounded if B is bounded}.
The following characterization holds:

Theorem 3.1. Let (X, d) be a metric space. The following are equivalent.

(1) (X, d) is a boundedly UC;
(2) For every metric space (Y, e), τUB = τAW (ρ) on every pointwise equicon-
tinuous subfamily φ of L(X, Y );

(3) For every bounded metric space (Y, e), τUB = τAW (ρ) on C(X, Y ).

Proof: (1) → (2) Let φ ⊂ L(X, Y ) be a pointwise equicontinuous family, where
(X, d) is a boundedly UC space and (Y, e) is a metric space. We show that τUB on
φ is weaker than τAW (ρ). Let {fn} ⊂ φ be a sequence τAW (ρ)-convergent to f ∈ φ.

Let B be a bounded set in X and ε > 0. We prove that there is N0 ∈ Z+ such
that for each n ≥ N0 e(fn(x), f(x)) < ε for every x ∈ B.

The facts clB is an Atsuji space and φ is pointwise equicontinuous imply that
there is δ > 0 such that for every g ∈ φ we have e(g(x), g(y)) < ε/2 provided
x, y ∈ X , d(x, y) < δ and x ∈ clB. (∗)
(From the pointwise equicontinuity of φ we have that for every x ∈ clB there is
δx > 0 such that for every g ∈ φ we have e(g(x), g(y)) < ε/4 if d(x, y) < δx.
The family {Sd[x, δx] : x ∈ clB} is an open cover of clB. By (4) in Theorem C
there is δ > 0 such that each subset of X of diameter less than δ which meets clB
lies entirely within some Sd[u, δu], u ∈ clB. Let x ∈ clB and y ∈ X be such that
d(x, y) < δ. Thus there is u ∈ clB such that x, y ∈ Sd[u, δu], i.e. e(g(x), g(u)) < ε/4
and e(g(y), g(u)) < ε/4 for every g ∈ φ.)

We fix (x0, y0) ∈ X × Y to serve as a center for ρ-balls in X × Y . Since f ∈
L(X, Y ), there is M ∈ Z+ such that B × f(B) ⊂ Sρ[(x0, y0), M ].
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Let K ∈ Z+ be such that K > max{M, 1/δ, 2/ε}. τAW (ρ)-convergence of {fn}
to f implies that there is N0 ∈ Z+ such that for every n ≥ N0

(∗∗) G(fn) ∈ ΣK [G(f)].

We claim that for every n ≥ N0 and every x ∈ B e(fn(x), f(x)) < ε. Thus let
n ≥ N0 and x ∈ B. Since (x, f(x)) ∈ Sρ[(x0, y0), K], there is z ∈ X (by (∗∗))
such that ρ[(x, f(x)), (z, fn(z))] < 1/K, i.e. d(x, z) < δ and e(f(x), fn(z)) < ε/2.
From (∗) we have also e(fn(z), fn(x)) < ε/2, thus e(fn(x), f(x)) ≤ e(fn(x), fn(z))+
e(fn(z), f(x)) < ε.

(2) → (3) Let Y be a bounded metric space. Let {fn} be a sequence from
C(X, Y ) τAW (ρ)-convergent to f ∈ C(X, Y ). Clearly C(X, Y ) = L(X, Y ). By
Remark 2.4, {fn} converges to f in the compact-open topology. Thus the family
φ = {f, f1, f2, . . . fn, . . . } is pointwise equicontinuous. By (2), τAW (ρ) = τUB on φ,
i.e. {fn} converges to f in τUB topology. Thus τAW (ρ) = τUB on C(X, Y ).

(3) → (1) This implication is clear from Theorem D. �

Put ∆ = {d(·, A) : A ∈ CL(X)}. Then ∆ ⊂ L(X, R) and ∆ is a pointwise
equicontinuous family. Thus by Theorem 3.1 if (X, d) is a boundedly UC space
then a sequence{An} ⊂ CL(X) τAW (d)-converges to A ∈ CL(X) if and only if the
sequence of the distance functionals {d(·, An)} τAW (ρ)-converges to d(·, A), where
ρ is the box metric of d and the usual metric e on R.

However, this is true in every metric space (X, d). It is sufficient to realize that we
used the assumption of boundedly UC-ness in the proof of Theorem 3.1 to guarantee
the uniform equicontinuity of φ on bounded sets. In our case, this fact holds since
∆ is even a uniformly equicontinuous family.

Proposition 3.2. Let (X, d) be a metric space. A sequence {An} ⊂ CL(X)
τAW (d)-converges to A ∈ CL(X) if and only if the sequence of the distance func-
tionals {d(·, An)} τAW (ρ)-converges to d(·, A).

The following examples show that neither Theorem 3.1 nor Proposition 3.2 hold
for bounded proximal topology.

Example 3.3. Put X = Z+ with the zero-one metric d and Y = Z+ with the usual
metric e. For every n ∈ Z+ define fn as follows: fn(n) = n and fn(z) = 0 otherwise.
Then {fn} σρ-converges to the zero function f , but{fn} does not converge uniformly
to f .

Example 3.4. Put X = Z+ with the zero-one metric d. For every n ∈ Z+ define
An = X − {n} and A = X . Clearly the sequence {An} σd-converges to A. For
every n ∈ Z+ d(·, An) is the following function: d(n, An) = 1 and d(x, An) = 0
otherwise. So {d(·, An)} does not σρ-converges to d(·, A), where ρ is the box metric
of d and the usual metric e on R.

However, we have an analog of Theorem 1 in [Ho] for σρ topology.
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Theorem 3.5. Let (X, d) be a locally connected metric space and (Y, e) be a metric
space. Then the compact-open topology on C(X, Y ) is weaker than σρ on C(X, Y ).

Proof: Suppose τCO is not weaker than σρ on C(X, Y ). There is U ∈ τCO such
that U /∈ σρ. Thus there is f ∈ U with the following property: for every σρ-
neighbourhood V of f , V 6⊂ U . Thus there is a net {ft : t ∈ T } in C(X, Y ) which
σρ-converges to f such that ft /∈ U for every t ∈ T . There is ε > 0 (ε < 1) and
a compact set K in X such that {g ∈ C(X, Y ) : e(g(x), f(x)) < ε for every x ∈
K} ⊂ U . For every t ∈ T there is a point xt ∈ K such that e(ft(xt), f(xt)) ≥ ε. Let
x be a cluster point of {xt : t ∈ T }. We can suppose that {xt : t ∈ T } converges to x,
otherwise we will work with a subnet of {xt : t ∈ T } and corresponding subnet of
{ft : t ∈ T }. Let 1 > α > 0 be such that for every z ∈ Sd[x, α] e(f(z), f(x)) < ε/4.
Let O be a connected neighbourhood of x for which O ⊂ Sd[x, α/2] and δ > 0 be
such that δ < α and Sd[x, δ] ⊂ O.

We fix (a, b) in X × Y to serve as center for ρ-balls in X × Y . There is M ∈ Z+

such that Sρ[(x, f(x)), 2] ⊂ Sρ[(a, b), M ] and M > max{2/δ, 4/ε}. Let i ∈ T
be such that for every j ≥ i xj ∈ Sd[x, δ/2] and G(fj) ∈ φG(f)[M, (x, f(x))].

Thus for each j ≥ i ρ[(x, f(x)), G(fj)] < 1/M . Put A = {y ∈ Y : e(f(x), y) =
3ε/4}. The connectedness of O and the continuity of functions imply that for
each j ≥ i there is yj ∈ 0 such that fj(yj) ∈ A. Let j ≥ i. The inclusion
G(fj) ∈ φG(f)[M, (x, f(x))] guarantees the existence of a point y ∈ X for which

ρ[(y, f(y)), (yj , fj(yj))] < 1/M , i.e. y ∈ Sd[x, α] and e(fj(yj), f(y)) < ε/4. Then
3ε/4 = e(fj(yj), f(x)) ≤ e(fj(yj), f(y)) + e(f(y), f(x)). Thus e(f(y), f(x)) ≥ ε/2
and that is a contradiction. �

Example 1 in [Ho] shows that the assumption of local connectedness in Theo-
rem 3.5 is essential.

If ρ is a metric on X×Y such that every bounded set in X×Y is totally bounded
set then we know by Theorem 3.4 in [BL2] that τAW (ρ) = σρ on CL(X × Y ), i.e.
τAW (ρ) = σρ also on C(X, Y ). The coincidence of these two topologies occurs also
in other case as the following easy proposition shows.

Proposition 3.6. Let (X, d) and (Y, e) be metric spaces and X be boundedly

compact. Then τAW (ρ) = σρ on C(X, Y ).

Proof: Since the inclusion σρ ⊂ τAW (ρ) is clear, we prove the inclusion τAW (ρ) ⊂
σρ. We fix (a, b) in X × Y to serve as center for ρ-balls in X ×Y . Let f ∈ C(X, Y )

and n ∈ Z+. Since G(f)∩Bρ[(a, b), n] is compact, we choose {a1, a2, . . . ak} ∈ G(f)
such that G(f)∩Bρ[(a, b), n] ⊂ Sρ[{a1, a2, . . . ak}, 1/2n]. It is very easy to see that
φG(f)[2n, a1, a2, . . . ak] ⊂ Σn[G(f)]. �

Example 3.3 shows that the assumption of boundedly compactness is essential.

The following theorem gives further sufficient conditions under which τUB =
τAW (ρ) on L(X, Y ).

Theorem 3.7. Let (X, d) be a locally connected boundedly UC space and (Y, e)
be metric space. Then τUB = τAW (ρ) on L(X, Y ).
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Proof: It is sufficient to prove that τUB ⊂ τAW (ρ) on L(X, Y ). Suppose τUB 6⊂
τAW (ρ) on L(X, Y ). There is V ∈ τUB such that V /∈ τAW (ρ). Thus there is
f ∈ V ∩L(X, Y ) such that every τAW (ρ)-neighbourhood of f is not contained in V .
There is a sequence {fn} ⊂ L(X, Y ) − V such that {fn} τAW (ρ)-converges to f .
Let B be a bounded subset of X and ε > 0 such that the set G = {g ∈ L(X, Y ) :
e(g(x), f(x)) < ε for every x ∈ B} is contained in V . Since for every n ∈ Z+ fn /∈ G,
there is a sequence {xn} ⊂ B with the following property: e(fn(xn), f(xn)) ≥ ε for
every n ∈ Z+. We have two possibilities:

(1) {xn} has a cluster point in X ;
(2) {xn} has no cluster point in X .

In the case (1) let x be a cluster point of {xn}. Now the local connectedness of
X applied on x leads to a contradiction by the same argument as in Theorem 3.5.
In the case (2) the sequence {d(xn, {xn}c} does not converge to 0, otherwise

by Theorem C (3), {xn} has a cluster point in X . Thus there is δ > 0 such that
Sd[xn, δ] = {xn} for every n ∈ J , where J is an infinite subset of Z+.
We fix (a, b) ∈ X×Y to serve as a center for ρ-balls in X×Y . Since f ∈ L(X, Y )

there is M ∈ Z+ such that B × f(B) ⊂ Sρ[(a, b), M ]. Let K ∈ Z+ be such that
K > max{M, 1/δ, 1/ε}. τAW (ρ)-convergence of {fn} to f implies that there is
m ∈ Z+ such that for every n ≥ m

G(fn) ∈ ΣK [G(f)].

Let n ∈ J and n ≥ m. By the previous inclusion, G(fn) ∈ ΣK [G(f)], thus there
is zn ∈ X such that ρ[(xn, f(xn)), (zn, fn(zn))] < 1/K < δ, i.e. d(xn, zn) < δ thus
xn = zn and e(f(xn), fn(xn)) < ε. This is a contradiction. �

Corollary 3.8 (Theorem 2 [Ho]). Let (X, d) be a locally connected boundedly
compact space and (Y, e) be a metric space. Then the compact-open topology and
the Attouch-Wets topology on C(X, Y ) coincide.

Proof: Clearly (X, d) is a boundedly UC space, C(X, Y ) = L(X, Y ) and τUB =
τCO on C(X, Y ). �

From Corollary 3.8 we know that if (X, d) is a locally connected boundedly
compact space and (Y, e) is a complete metric space, then (C(X, Y ), τAW (ρ)) is
a completely metrizable space.
To study complete subspaces of C(X, Y ) with respect to the uniformity Ωρ can

be interesting. Clearly (C(X, Y ),Ωρ) need not be complete. If X = Y = R with
the usual metric and fn(x) = nx for all x, then {fn} is Ωρ-cauchy sequence without
a limit point in C(X, Y ).
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