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On analyticity in cosmic spaces

Oleg Okunev

Abstract. We prove that a cosmic space (= a Tychonoff space with a countable network) is
analytic if it is an image of aK-analytic space under a measurable mapping. We also obtain
characterizations of analyticity and σ-compactness in cosmic spaces in terms of metrizable

continuous images. As an application, we show that if X is a separable metrizable space
and Y is its dense subspace then the space of restricted continuous functions Cp(X | Y ) is
analytic iff it is a Kσδ-space iff X is σ-compact.

Keywords: measurable mapping, cosmic space, analyticity, topology of pointwise conver-
gence

Classification: 54C50, 54C35

All spaces below are assumed to be Tychonoff (= completely regular Hausdorff).

We denote by P the space NN where N is the space of naturals (endowed with the
discrete topology). Analytic spaces are images of P under continuous mappings.
A space is called K-analytic if it is a continuous image of a Kσδ-space (see [9]), that
is, a space representable as the intersection of a sequence of σ-compact subspaces
of some embracing space. A space X is called cosmic if it has a countable network,
that is, a countable family of subsets F such that any open set in X is a union of
elements of F . Note that in a regular space the family of closures of elements of
a network is again a network. A space X is analytic iff it is cosmic and K-analytic
(see [9]).
The family of Baire sets in a space X is defined as the minimal family of sets

that contains all zero-sets of continuous real functions and is closed with respect
to countable unions and complements. Of course, in perfectly normal spaces (as
all cosmic spaces are), a set is Baire iff it is Borel. A mapping f : X → Y is
called measurable if the preimage of any Baire set in Y is a Baire set in X . One
readily checks that if Y is cosmic (in fact, the hereditary Lindelöf property is used)
then a mapping f : X → Y is measurable as soon as f−1(U) are Baire sets for all
elements U of an open subbase for Y .
Clearly, a continuous image of an analytic space is analytic. In 1938 Kuratowski

proved the following beautiful theorem (see [6]).

Theorem 0.1. Let f : X → Y be a measurable mapping of a separable metric
space X onto a separable metric space Y . If X is analytic, then so is Y .

In [5] Froĺık generalized this theorem to
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Theorem 0.2. Let f : X → Y be a measurable mapping of a K-analytic space X
onto a separable metrizable space Y . Then Y is analytic.

Surprisingly enough, no generalization of this theorem to nonmetrizable spaces Y
has been hitherto known (or, at least, no such version was found by the author). On
the other hand, analytic spaces need not be metrizable, but are always cosmic, so
the class of cosmic spaces looks the most natural domain for considering analyticity.
In this paper we generalize Theorem 0.2 to cosmic spaces and infer some corollaries.
Some results of this paper were announced in [8].

1. The following lemma is crucial for our proofs. The construction is well-
known, only the observation that the ensuing topologies are measurably isomorphic
is new.

Lemma 1.1. Let X be a cosmic space. Then there exist separable metrizable

spaces Xu and Xl and continuous bijections iu : Xu → X and il : X → Xl such

that the inverse mappings i−1u and i−1
l
are measurable.

Proof: Let F = {Fn : n ∈ N} be a countable network for X . Without loss of
generality, F is closed with respect to finite intersections and all elements of F are
closed in X .
Define a new topology, Tu on the same set X by declaring that the elements of

F are open. Clearly, F is an open base for this topology, and Tu is stronger than
the original topology of X . Furthermore, F is a countable base for Tu consisting of
clopen sets, whence Tu is a completely regular second countable topology. Let Xu

be the set X equipped with the topology Tu; the identity mapping iu : Xu → X is
a continuous bijection. To check the measurability of i−1u , note that any open set
in Xu is the union of a subfamily of F , hence an Fσ-set in X .
To construct Xl, choose for every n ∈ N a continuous function fn : X → R

so that Fn = f−1
n (0) and define the topology Tl on X as the weakest making

all functions fn, n ∈ N, continuous. Clearly, Tl is completely regular and second
countable. Let Xl be the set X equipped with the topology Tl; the identity mapping
of X determines a continuous bijection il : X → Xl. Note that all sets Fn, n ∈ N,
are closed in Xl. Every open set in X is a union of a subfamily of F , hence an

Fσ-set in Xl, whence the mapping i−1
l
is measurable. �

Theorem 1.2. Let f : X → Y be a measurable mapping of a K-analytic space X
onto a cosmic space Y . Then Y is analytic.

Proof: Define Yu and iu : Yu → Y as in Lemma 1.1. The mapping f◦i−1u : X → Yu

is measurable, and we are now in the conditions of Theorem 0.2, whence Yu is
analytic. Now Y is analytic because it is a continuous image of Yu. �

Theorem 1.3. Let X be a cosmic space. If every metrizable continuous image of
X is analytic then X is analytic.

Proof: Let Xl and il be as in Lemma 1.1. Xl is a metrizable continuous image

of X , so Xl is analytic. The mapping i−1
l
: Xl → X is measurable and onto, so X

is analytic by Theorem 1.2. �
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Theorem 1.3 is specific for cosmic spaces. Indeed, Nω1 is not Lindelöf, not to
say K-analytic; nevertheless, all metrizable continuous images of Nω1 are analytic.
To see that note that every metrizable continuous image of Nω1 is second count-
able because Nω1 satisfies c.c.c. Furthermore, every continuous mapping of Nω1

to a second countable space admits a continuous factorization through a countable
face of Nω1 , homeomorphic to P, hence has an analytic image. Furthermore, nei-
ther the Lindelöf Σ-property not the hereditary Lindelöf property can replace the
cosmicity in Theorem 1.3. To see the first, consider a Lindelöf Σ-space with a single
nonisolated point which is not K-analytic [10]. Every disjoint covering of this space
by Gδ-sets is countable, hence every metrizable image of this space is countable.
The example for the second is the Sorgenfrey line (see [7]). Possibly, the answer to
the following question is positive.

Question 1.4. Let X be a perfectly normal Lindelöf Σ-space all metrizable con-
tinuous images of which are analytic. Must X be K-analytic?

Theorem 1.5. Let X be a cosmic space. If every metrizable continuous image of
X is σ-compact, then X is σ-compact.

Proof: By Theorem 1.3, X is analytic. Now assume for contradiction that X is
not σ-compact. Then by a theorem in [3] (a generalization of the Hurewicz theorem
to cosmic spaces), X must contain a closed subset F homeomorphic to P. The
space P is homeomorphic to a subspace of the real line R (namely, to the space of
irrationals), so we can extend the homeomorphism F → P to a continuous function

f1 : X → R. Choose a continuous function f2 : X → R so that F = f−1
2 (0)

and define f : X → R2 by f(x) = (f1(x), f2(x)). The set {(a, b) ∈ f(X) : b =
0} is closed in f(X) and is homeomorphic to P whence f(X) is not σ-compact,
a contradiction. �

2. Denote by Cp(X) the space of all continuous real functions on the space
X endowed with the topology of pointwise convergence, that is, the topology of
subspace of RX endowed with the product topology. Recall that the sets of the
form {f : f(x) ∈ U} where x ∈ X and U is an open subset of R, constitute an
open subbase for this topology. Christensen proved in [4] that if X is a separable
metrizable space then Cp(X) is analytic iff X is σ-compact. We extend this result
to the following modification of Cp(X).
Let A be a subset ofX . Denote Cp(X | A) = {f ∈ Cp(A) : f admits a continuous

extension overX}. In different words, Cp(X | A) is the subspace of Cp(A) consisting
of the functions on A which are restrictions to A of continuous functions on X .
Note that if A is a dense subspace of X then the restriction mapping rA : Cp(X)→
Cp(X | A) is one-to-one.
In our proof below we will also use spaces Cp(X | A, Y ) defined as the spaces of

all functions of A to Y that admit a continuous extension over X , with the topology
of pointwise convergence on A.

Theorem 2.1. Let X be a separable metrizable space and A a dense subspace
of X . Then the following conditions are equivalent.

(i) X is σ-compact,



188 O.Okunev

(ii) Cp(X | A) is a Kσδ-space,

(iii) Cp(X | A) is analytic.

Proof: (i) ⇒ (ii). Let X =
⋃
{Xl : l ∈ N} where each Xl, l ∈ N, is compact. Fix

a metric d on X compatible with the topology of X and put

Mkln = {f ∈ [0, 1]A : |f(x)− f(y)| ≤ 1/k whenever d(x, z) < 1/n and
d(y, z) < 1/n for some z ∈ Kl}, k, l, n ∈ N.

Claim 1. Cp(X | A, [0, 1]) =
⋂

k∈N

⋂
l∈N

⋃
n∈NMkln.

Suppose f ∈
⋂

k∈N

⋂
l∈N

⋃
n∈NMkln. We need to check that f admits a con-

tinuous extension to (or is already continuous at) every point z ∈ X . Find an
l ∈ N with z ∈ Xl. It suffices to verify that the oscillation of f on A near
z is arbitrarily small, which is clear from f ∈

⋂
k∈N

⋂
l∈N

⋃
n∈NMkln. Thus,⋂

k∈N

⋂
l∈N

⋃
n∈NMkln ⊂ Cp(X | A, [0, 1]). To check the inverse inclusion, let

f ∈ Cp(X | A, [0, 1]) and f̂ be the continuous extension of f over X . Fix k

and l. Since f̂ is continuous and Kl is compact, there exists n ∈ N such that

|f̂(x) − f̂(y)| ≤ 1/k as soon as d(x, z) < 1/n and d(y, z) < 1/n for some z ∈ Kl.
Then f ∈ Mkln.

Claim 2. The sets Mkln are compact.

Indeed, the complement [0, 1]A \ Mkln = {f ∈ [0, 1]A : |f(x) − f(y)| > 1/k for
some x ∈ A and y ∈ A such that d(x, z) < 1/n and d(y, z) < 1/n for some z ∈ Kl}.
is an open set because the evaluation mapping f 7→ f(x), x ∈ A, are continuous on

[0, 1]A. Thus, Mkln is closed in the compact space [0, 1]
A, hence compact.

It follows from the claims 1 and 2 that Cp(X | A, [0, 1]) is a Kσδ-space. Let

R = R ∪ {−∞,+∞} be the two-point compactification of R homeomorphic to
[0, 1]. Clearly, Cp(X | A,R) is homeomorphic to Cp(X | A, [0, 1]), hence is a Kσδ-
space.

Put S =
⋂

l∈N

⋃
n∈N{f ∈ R

A
: |f(x)| ≤ n for all x ∈ A ∩ Kl}. Clearly, S is an

Fσδ-set in R
A
, hence a Kσδ-space. Furthermore, Cp(X | A) ⊂ S ⊂ R

A
, whence

Cp(X | A) = S ∩ Cp(X | A,R); Cp(X | A) is an intersection of two Kσδ-spaces,
hence is a Kσδ-space.

(ii) ⇒ (iii). The space A is second countable, hence Cp(A), and consequently
Cp(X | A) are cosmic [1]. Every Kσδ-space is K-analytic, and every K-analytic
cosmic space is analytic [9], so we are done.

(iii) ⇒ (i). Let e : Cp(X | A) → Cp(X) be the “extension mapping” inverse to
the restriction mapping rA : Cp(X) → Cp(X | A). The mapping e is measurable.
Indeed, Cp(X) is cosmic [1], hence hereditary Lindelöf, so it suffices to check that

e−1(V ) are Baire sets for all elements of some subbase for Cp(X). Let V = {f ∈
Cp(X) : f(x) ∈ U} where x ∈ X and U is open in R; as we already noted, the sets
of this form constitute a subbase for Cp(X). Choose a sequence {xn : n ∈ N} of
points of A converging to x; we have

V =
⋃

n∈N

⋂

k>n

{f ∈ Cp(X) : f(xk) ∈ U},
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and

e−1(V ) = rA(V ) =
⋃

n∈N

⋂

k>n

{f ∈ Cp(X | A) : f(xk) ∈ U},

a Gδσ-set in Cp(X | A). Thus, e is measurable, and Cp(X) is analytic by Theo-
rem 1.2. By theorem of Christensen [4], X is σ-compact. �

Corollary 2.2. If A is a dense subspace of P then Cp(P | A) is a coanalytic

nonanalytic subspace of RA.

Proof: Only coanalyticity now requires a proof. Put

ω(f, U) = sup{|f(x)− f(y)| : x, y ∈ U}

for f ∈ RA and U ⊂ A. Clearly

Cp(P | A) = {f ∈ RA : for any x ∈ P and n ∈ N there is
a neighbourhood U of x with ω(f, U ∩ A) ≤ 1/n}.

For x ∈ P = NN denote by x | n the sequence of the first n coordinates of x.
Clearly, the sets of the form V (x | k) = {y ∈ P : y | k = x | k}, k ∈ N, form

a base for P at x. Hence Cp(P | A) = {f ∈ RA : for any x ∈ P and n ∈ N there
exists k ∈ N with ω(f, V (x | k)∩A) ≤ 1/n} =

⋂
x∈P

⋂
n∈N

⋃
k∈N F (x | k, n) where

F (x | k, n) = {f ∈ RA : ω(f, V (x | k) ∩ A) ≤ 1/n}. A straightforward check shows
that the sets F (x | k, n) are closed, hence Cp(P | A) is coanalytic. �

Corollary 2.2 answers a question of T. Dobrowolski. W. Marciszewski commu-
nicated at the Seventh Prague Topological Symposium, August 1991, that this
corollary had been also obtained by A. Krawczyk, who used quite a different ap-
proach. It is interesting to note that one can derive the nonanalyticity of Cp(P | A)
also from Theorem 1.3 if he uses the facts that every mapping of Cp(X) to a second
countable space admits a factorization through Cp(X | A) for some countable and,
without loss of generality, dense A [2] and that all Cp(P | A) with dense countable A
are homeomorphic (because the pairs (P, A) are).
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