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On the numerical range of operators

on locally and on H-locally convex spaces

Edvard Kramar

Abstract. The spatial numerical range for a class of operators on locally convex space was
studied by Giles, Joseph, Koehler and Sims in [3]. The purpose of this paper is to consider
some additional properties of the numerical range on locally convex and especially on
H-locally convex spaces.
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1. Introduction.

Let X be a locally convex Hausdorff space over the real or complex field K. Each
system of seminorms P = {pα, α ∈△} inducing its topology will be called a cali-
bration. Such a space is said to be H-locally convex with respect to a calibration
P if P consists of Hilbertian seminorms, i.e. for each pα ∈ P there is a semi-inner
product (, )α (it is only nonnegative definite) such that p2α(x) = (x, x)α, x ∈ X .
Such spaces have been studied e.g. in [6], [7] and [8].
For a given calibration P we denote by QP (X) the algebra of quotient bounded

operators on X , i.e. the set of all linear operators T on X for which

pα(Tx) ≤ Cαpα(x), x ∈ X, α ∈△

and by BP (X) the algebra of universally bounded operators on X , i.e. the set of
all T ∈ QP (X) for which C = Cα is independent of α ∈△ ([3]). The family QP (X)

is a unital l.m.c. algebra with respect to seminorms P̂ = {qα, α ∈△} where

qα(T ) = sup{pα(Tx) : pα(x) ≤ 1, x ∈ X}, α ∈△, T ∈ QP (X)

and BP (X) is a unital normed algebra with respect to the norm

‖T ‖P = sup{qα(T ) : α ∈△}.

For each α ∈△ let Jα denote the null space of pα and Xα the quotient space X/Jα.

This is a normed space with the norm ‖xα‖α := pα(x), xα = x+ Jα, and X̃α is the
completion of Xα. For a given T ∈ QP (X) we define Tα on Xα by Tαxα := (Tx)α,

and denote by T̃α its continuous linear extension on X̃α ([3]).
Let (X, P ) be an H-locally convex space. Then an operator T ∈ QP (X) has an

adjoint operator T 0 if and only if (Tx, y)α = (x, T 0y)α for each α ∈△ and x, y ∈ X .

In this case (T̃ 0) = (T̃α)
∗ for all α ∈△ ([5]) where (T̃α)

∗ is the adjoint operator of

T̃α in the Hilbert space X̃α.
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2. The spatial numerical range.

The spatial numerical range for a given operator T ∈ QP (X) in a locally convex
space (X, P ) is defined by

V (X, P, T ) =
⋃

V {(X̃α, ‖ · ‖α, T̃α) : α ∈△}

where on the right hand side there are numerical ranges on normed spaces X̃α. The
above numerical range has the usual properties ([3])

V (X, P, λT + µI) = λV (X, P, T ) + µ, T ∈ QP (X), λ, µ ∈ K

and
V (X, P, T + S) ⊆ V (X, P, T ) + V (X, P, S), T, S ∈ QP (X).

We shall consider some additional properties of the numerical range in locally convex
and especially in H-locally convex spaces.

Let (X, P ) be an H-locally convex space. Then X̃α are Hilbert spaces and V (X̃α,

‖ · ‖, T̃α) are convex sets. Unfortunately, their union i.e. V (X, P, T ) is in general
not convex. In [3] there was defined the algebra numerical range of an element a

for a unital l.m.c. algebra (A, P̂ ) as

V (A, P̂ , a) =
⋃

{V (Aα, ‖ · ‖α, aα), α ∈△}

where Aα are quotient algebras with respect to the null spaces Nα of qα ∈ P̂ and
aα = a + Nα, ‖aα‖α = qα(a). In particular, for the l.m.c. algebra QP (X) the
following relation holds

(2.1) V (QP (X), P̂ , T ) =
⋃

{V (B(X̃α), ‖ · ‖α, T̃α), α ∈△}

where on the right hand side there are algebra numerical ranges on Banach algebras

B(X̃α) ([3]).
For a locally convex space (X, P ) the following inclusions were proved in [3]:

V (X, P, T ) ⊂ V (QP (X), P̂ , T ) ⊂ co V (X, P, T ) where coM denotes closed convex
hull of a set M . For an H-locally convex space we have

Theorem 2.1. Let (X, P ) be an H-locally convex space and T ∈ QP (X). Then

(i) V (X, P, T ) ⊂ V (QP (X), P̂ , T ) ⊂ V (X, P, T ),

(ii) V (QP (X), P̂ , T ) = V (X, P, T ).

Proof: We have to prove the second inclusion in (i). Let us take into account the

connection between the spatial and the algebra numerical range in Hilbert spaces X̃α

V (QP (X), P̂ , T ) =
⋃

{V (B(X̃α), ‖ · ‖α, T̃α), α ∈△} =(2.2)

=
⋃

{V (X̃α, ‖ · ‖α, T̃α), α ∈△} ⊂
⋃

{V (X̃α, ‖ · ‖α, T̃α), α ∈△} = V (X, P, T )

Thus (i) holds and taking the closure implies (ii). �
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Remark. The relation (ii) can also be found in [3] for the special case when X is
a product of Hilbert spaces.

When P̂ is a directed family, V (QP (X), P̂ , T ) is a convex set ([3]) and we have

Corollary 2.2. Let (X, P ) be an H-locally convex space and P a calibration such

that P̂ is directed. Then for T ∈ QP (X) the set V (X, P, T ) is convex.

3. The numerical range and the spectrum.

Let T ∈ QP (X). Then the number λ ∈ K is in the resolvent set (λ ∈ ̺(Q, T ))
if and only if there exists (T − λI)−1 ∈ QP (X). The spectrum of T is the set

σ(Q, T ) := ̺(Q, T )c ([6]). Let σα(T̃α) denote the spectrum of T̃α in X̃α. Then ([3])

Proposition 3.1. If (X, P ) is a complete locally convex space and T ∈ QP (X),
then

σ(Q, T ) =
⋃

{σα(T̃α), α ∈△}.

As in a Banach space we can define the following four main subsets of the spec-
trum: σp(Q, T ), σc(Q, T ), σr(Q, T ) and σa(Q, T ) — the point, the continuous, the
residual and the approximate spectrum respectively.

Definition 3.2. For T ∈ QP (X) and λ ∈ K in a locally convex space (X, P ) we
have

(i) λ ∈ σp(Q, T ) if and only if ker(T − λI) 6= {0},

(ii) λ ∈ σc(Q, T ) if and only if there exists (T − λI)−1 on the set im (T − λI)
which is dense in X and (T − λI)−1 /∈ QP (X),

(iii) λ ∈ σr(Q, T ) if and only if (T − λI)−1 exists on the set im (T − λI) which
is not dense in X ,

(iv) λ /∈ σa(Q, T ) if and only if for each α ∈△ there exists Cα > 0 such that
pα((T − λI)x) ≥ Cαpα(x), x ∈ X .

Let us write down the following connection.

Proposition 3.3. For T ∈ QP (X) in a locally convex space (X, P ) the following
holds

σa(Q, T ) ∪ σr(Q, T ) = σ(Q, T ).

Proof: Let λ ∈ σa(Q, T )c ∩ σr(Q, T )c and y ∈ X . Since im (T − λI) is dense,
there exists a net {xδ} such that yδ := Txδ − λxδ → y. Since λ /∈ σa(Q, T )
by the above definition there exists on im (T − λI) the inverse operator which is
continuous in the sense pα((T −λI)−1z) ≤ Dαpα(z), α ∈△, z ∈ im (T −λI). Hence
the sequence xδ = (T − λI)−1yδ is also convergent, xδ → x and by continuity
of T − λI it follows (T − λI)x = y. Thus, im (T − λI) = X and by the above
inequality (T − λI)−1 ∈ QP (X), which means λ ∈ σ(Q, T )c. The reverse inclusion
σa(Q, T ) ∪ σr(Q, T ) ⊂ σ(Q, T ) is obvious. �

Some connections between parts of the spectrum onX and on the quotient spaces

X̃α are
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Proposition 3.4. For T ∈ QP (X) on a separated locally convex space (X, P ) the
following two relations hold:

(i) σp(Q, T ) ⊂ ∪{σp(T̃α), α ∈△},

(ii) σa(Q, T ) = ∪{σa(T̃α), α ∈△}.

Proof: (i) We may choose λ = 0 ∈ σp(Q, T ). Then there is some x 6= 0 such that
Tx = 0. Since X is separated there exists some β ∈△ such that pβ(x) 6= 0, hence

xβ is a nonzero vector in ker(T̃β). Thus, 0 ∈ σp(T̃β) ⊂ ∪{σp(T̃α), α ∈△}.

(ii) Again we may choose λ = 0 /∈ σa(Q, T ). Then for each α ∈△ there ex-
ists Cα > 0 such that pα(Tx) ≥ Cαpα(x), x ∈ X and consequently ‖Tαxα‖α ≥

Cα‖xα‖α, xα ∈ Xα. The same estimate then holds on the space X̃α. This means

0 /∈ σa(T̃α) for all α ∈△. Conversely, suppose 0 /∈ σa(T̃α) for all α ∈△, then for each

α ∈△ there is some Cα ≥ 0 such that ‖T̃αxα‖ ≥ Cα‖xα‖, xα ∈ X̃α, in particular
we have the same estimate for Tα and it follows

pα(Tx) ≥ Cαpα(x), x ∈ X, α ∈△,

which means 0 /∈ σa(Q, T ). �

Corollary 3.5. For T ∈ QP (X) in a separated locally convex space (X, P ), λ ∈
σa(Q, T ) if and only if there exists an α ∈△ and a sequence {xn} ⊂ X , {xn} ⊂ Jc

α

such that pα((T − λI)xn)→ 0.

We can prove also a result concerning the boundary points of the spectrum.
There it must be supposed an additional assumption since the spectrum in general
is not closed.

Theorem 3.6. Let (X, P ) be a complete separated locally convex space and T ∈
QP (X). Then

σ(Q, T ) ∩ ∂σ(Q, T ) ⊂ σa(Q, T ).

Proof: Let λ ∈ σ(Q, T ) ∩ ∂σ(Q, T ). Then there exists an α ∈△ such that λ ∈

σ(T̃α). If λ were an inner point of σ(T̃α), there would exist an open neighborhood S

with the property λ ∈ S ⊂ σ(T̃α). Then S would be contained also in σ(Q, T ) and

λ would not be a boundary point of the spectrum. Thus, λ ∈ ∂σ(T̃α). By such

a theorem for normed spaces ([1]), λ ∈ σa(T̃α) and by Proposition 3.4 we have
λ ∈ σa(Q, T ). �

In the following we shall consider the connections between the spectrum and the
numerical range of an operator. The following result is basic to this subject ([3]).

Theorem 3.7. Let (X, P ) be a complete separated locally convex space and T ∈
QP (X). Then

σ(Q, T ) ⊂ V (X, P, T ).

Let us take λ ∈ σp(Q, T ), then there is some α ∈△ such that λ ∈ σp(T̃α) ⊂

V (X̃α, ‖ · ‖α, T̃α), consequently the following holds
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Proposition 3.8. Given a locally convex space (X, P ) and T ∈ QP (X), then

σp(Q, T ) ⊂ V (X, P, T ).

Let, now, (X, P ) be an H-locally convex space.

Proposition 3.9. Let (X, P ) be an H-locally convex space, let T ∈ BP (X) and
λ ∈ V (X, P, T ) with the property |λ| = ‖T ‖P . Then λ ∈ σa(Q, T ).

Proof: Let λ ∈ V (X, P, T ). Then λ is in some V (X̃α, ‖·‖α, T̃α) and by assumption

|λ| ≤ ‖T̃α‖ ≤ ‖T ‖P = |λ|, hence |λ| = ‖T̃α‖. By a similar theorem for Hilbert spaces

([4]), and by Proposition 3.4 it follows λ ∈ σa(T̃α) ⊂ σa(Q, T ). �

In the Hilbert space the convex hull of the spectrum of a normal operator is equal
to closedness of the numerical range. A generalization of this result is

Theorem 3.10. Let (X, P ) be a complete H-locally convex space, let T ∈ QP (X)
be an operator for which T 0 exists and let T be normal operator. Then

co σ(Q, T ) = co V (X, P, T ).

Proof: First, by Theorem 3.7, co σ(Q, T ) ⊂ co V (X, P, T ). Conversely, since T is

normal, T 0T = TT 0, all operators T̃α are normal, too. Thus, in Hilbert spaces X̃α

we have

co σ(T̃α) = V (X̃α, ‖ · ‖α, T̃α) = V (B(X̃α), ‖ · ‖α, T̃α), α ∈△ .

Let us take the union for all α ∈△, then (2.1) implies

V (QP (X), P̂ , T ) =
⋃

{V (B(X̃α), ‖ · ‖α, T̃α), α ∈△} =
⋃

{co σ(T̃α), α ∈△} ⊂

⊂ co
⋃

{σ(T̃α), α ∈△} = co σ(Q, T ).

By Theorem 2.1

V (X, P, T ) = V (QP (X), P̂ , T ) ⊂ co σ(Q, T ).

�

Corollary 3.11. Let (X, P ) be a complete H-locally convex space and T ∈ QP (X)
an operator such that T 0 exists and let T be normal. When P is a calibration such

that P̂ is directed then
co σ(Q, T ) = V (X, P, T ).

Let us denote by d(λ, M) the distance between λ and the set M in the complex
plane. Then
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Theorem 3.12. Let (X, P ) be a complete H-locally convex space, let T ∈ QP (X)

and λ /∈ V (X, P, T ). Then (T − λI)−1 ∈ BP (X) and

(3.1) ‖(T − λI)−1‖P ≤ (d(λ, V (X, P, T )))−1 .

Proof: One may suppose λ = 0. Let 0 /∈ V (X, P, T ), then by Theorem 3.7,

0 ∈ ρ(Q, T ) and by Proposition 3.1, 0 ∈ ρ(T̃α) for each α ∈△. Thus

‖T̃−1
α xα‖α ≤ ‖T̃−1

α ‖α‖xα‖α, xα ∈ X̃α

for each α ∈△ and then it is easy to see that pα(T
−1x) ≤ ‖T̃−1

α ‖αpα(x), for all
x ∈ X and α ∈△. Hence

(3.2) qα(T
−1) ≤ ‖T̃−1

α ‖α, α ∈△ .

For each α ∈△ the inclusion in (2.2) implies 0 /∈ V (X̃α, ‖ · ‖α, T̃α). By an analogous
inequality as is (3.1) for Hilbert space ([4]) and again by the inclusion in (2.2) we
obtain

‖T̃−1
α ‖α ≤ (d(0, V (X̃α, ‖ · ‖α, T̃α)))

−1 ≤ (d(0,
⋃

{V (X̃α, ‖ · ‖α, T̃α), α ∈△}))−1

≤ (d(0,
⋃

{V (X̃α, ‖ · ‖α, T̃α), α ∈△}))−1 = (d(0, V (X, P, T )))−1 .

By (3.2) we obtain qα(T
−1) ≤ (d(0, V (X, P, T )))−1 for each α ∈△. Thus, T−1 ∈

BP (X) and ‖T−1‖P ≤ (d(0, V (X, P, T )))−1. �

In a separated complex locally convex space (X, P ), an operator T ∈ QP (X) is
hermitian if V (X, P, T ) ⊂ R ([3]). This definition is consistent with the notion of
a hermitian operator in an H-locally convex space ([6]), namely

Proposition 3.13. In a complex H-locally convex space for an operator T ∈
QP (X) the following two relations are equivalent:

(i) V (X, P, T ) ⊂ R,
(ii) (Tx, y)α = (x, T y)α, α ∈△, x, y ∈ X .

Proof: If V (X, P, T ) ⊂ R, then V (X̃α, ‖ · ‖α, T̃α) ⊂ R for all α ∈△, consequently

T̃ ∗

α = T̃α. Thus, (Tx, y)α = (x, T y)α, α ∈△, x, y ∈ X . Conversely, when the last

equalities are valid, they hold for all T̃α, too, hence V (X̃α, ‖ · ‖α, T̃α) ⊂ R for all
α ∈△, thus, V (X, P, T ) ⊂ R. �
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Definition 3.14. Let (X, P ) be a locally convex space and T ∈ QP (X).

(i) When σ(Q, T ) is a bounded set, we define the spectral radius of T by the
relation

r(Q, T ) = sup{|λ| : λ ∈ σ(Q, T )}.

(ii) When V (X, P, T ) is bounded, we define the numerical radius of T by the
relation

v(Q, T ) = sup{|λ| : λ ∈ V (X, P, T )}.

By r(T̃α) and v(T̃α) we denote the spectral radius and the numerical radius of

T̃α in X̃α, respectively. By the above definition the following equality follows

(3.3) v(Q, T ) = sup{v(T̃α), α ∈△}.

It was proved in [3] that for T ∈ QP (X) the numerical range is bounded if and only
if T ∈ BP (X).

Proposition 3.15. For T ∈ BP (X) in a locally convex space (X, P ) the following
holds:

r(Q, T ) ≤ v(Q, T ) ≤ ‖T ‖P .

Proof: The first inequality follows by Theorem 3.7. Let us prove the second

one. Clearly, v(T̃α) ≤ ‖T̃α‖α = qa(T ) ≤ ‖T ‖P for each α ∈△, hence taking the
supremum we obtain v(Q, T ) ≤ ‖T ‖P . �

In [3] it was also proved that when a hermitian operator T ∈ QP (X) has
a bounded spectrum, then T ∈ BP (X). For an H-locally convex space one can
somewhat generalize this result.

Theorem 3.16. Let (X, P ) be a complete H-locally convex space and T ∈ QP (X)
an operator for which T 0 exists, let T be normal and let r(Q, T ) < ∞. Then the
following two assertions hold:

(i) T ∈ BP (X),
(ii) r(Q, T ) = v(Q, T ) = ‖T ‖P .

Proof: Using the equality (T̃α)
∗ = (T̃ 0)α ([5]), normality of T implies the normal-

ity of all T̃α, α ∈△. Consequently

qα(T ) = ‖Tα‖α = ‖T̃α‖α = r(T̃α) ≤ r(Q, T ), α ∈△ .

Thus, sup qα(T ) < ∞, which implies T ∈ BP (X) and the inequality ‖T ‖P ≤
r(Q, T ). The reverse inequality follows by Proposition 3.15. �
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Corollary 3.17. Let (X, P ) be as above and let S, T ∈ BP (X) be such that their
adjoint exist and they are normal, then the following inequality holds

v(Q, ST ) ≤ v(Q, S)v(Q, T ).

The numerical radius in locally convex spaces has the same properties as the one
in normed spaces.

Proposition 3.18. Let (X, P ) be a locally convex space. Then the numerical
radius is a norm on BP (X), equivalent to ‖·‖P . Precisely, the following inequalities

hold:

e−1 · ‖T ‖P ≤ v(Q, T ) ≤ ‖T ‖P , T ∈ BP (X).

Proof: Clearly, by the definition v(Q, T ) ≥ 0 and v(Q, λT ) = |λ|v(Q, T ). If

v(Q, T ) = 0, by (3.3), v(T̃α) = 0 and hence T̃α = 0, for all α ∈△, so T = 0. For
S, T ∈ QP (X) and all α ∈△ the following inequality holds:

v(S̃α + T̃α) ≤ v(S̃α) + v(T̃α).

Then by (3.3) also v(Q, S + T ) ≤ v(Q, S) + v(Q, T ). For any α ∈△ we have the

inequality e−1 · ‖T̃α‖ ≤ v(T̃α) ([1]). Then such an inequality holds also for the
supremum, thus, the left inequality in the above proposition is proved. �

For the case of an H-locally convex space we can generalize more inequalities
from the Hilbert space.

Proposition 3.19. Let (X, P ) be an H-locally convex space and S, T ∈ BP (X).
Then the following inequalities hold:

(i) 12‖T ‖P ≤ v(Q, T ) ≤ ‖T ‖P ,

(ii) v(Q, ST ) ≤ 4v(Q, S)v(Q, T ),
(iii) v(Q, T n) ≤ v(Q, T )n, n ∈ N .

Proof: (i) Since X̃α are Hilbert spaces, we have ‖T̃α‖α ≤ 2v(T̃α), for all α ∈△.
Taking the supremum we obtain ‖T ‖P ≤ 2v(Q, T ). The second inequality is known
by the previous proposition. The estimate (ii) follows by (i). For each α ∈△ the

Berger inequality v(T̃ n
α ) ≤ v(T̃α)

n, n ∈ N , holds and taking the supremum we
obtain (iii). �

Finally, we give a result concerning Q-equivalent calibrations. Two calibrations
P and P ′ on a locally convex space X are Q-equivalent (denoted by P ≃ P ′) if each
seminorm p ∈ P is equivalent to some p′ ∈ P ′ and vice versa (see [5]). It is easy to
see that P ≃ P ′ implies QP (X) = QP ′(X).

Theorem 3.20. Let (X, P ) be a complex complete locally convex space and T ∈
QP (X) such that σ(Q, T ) is bounded. Then

co σ(Q, T ) =
⋂

{coV (X, P ′, T ) : P ′ ≃ P}.
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Proof: Since σ(Q, T ) is independent of calibrations, by Theorem 3.7, co σ(Q, T ) ⊂
co V (X, P ′, T ), for all P ′ ≃ P , hence co σ(Q, T ) ⊂ ∩{co V (X, P ′, T ) : P ′ ≃ P}. Let
us prove the opposite inclusion. Since co σ(Q, T ) is compact and convex it is an

intersection of the open circular discs containing σ(Q, T ). Take any such an open
disc S = {λ : |λ − λ0| < r′}. Clearly r(Q, T − λ0I) < r′. Let us choose a number
ε such that 0 < ε < r′ − r(Q, T − λ0I). Then by [3] there exists a calibration
P ′ = {p′α, α ∈△} onX which has the same indexing as P such that for each α ∈△ the

corresponding norm ‖ ·‖′α on X̃α is equivalent to ‖ ·‖α, such that T −λ0I ∈ BP ′(X)
and such that

r(Q, T − λ0I) ≤ ‖T − λ0I‖P ′ ≤ r(Q, T − λ0I) + ε.

It is obvious that P ′ and P are Q-equivalent. Suppose that λ ∈ V (X, P ′, T ) then

λ − λ0 ∈ V (X, P ′, T − λ0I) and by Proposition 3.15 we have

|λ − λ0| ≤ ‖T − λ0I‖P ′ < r′,

which means that S contains V (X, P ′, T ) and then also co V (X, P ′, T ). Thus, the
set ∩{coV (X, P ′, T ) : P ′ ≃ P} is contained in every circular disc that contains

σ(Q, T ) and the opposite inclusion is proved. �
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