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Totally bounded frame quasi-uniformities

P. Fletcher, W. Hunsaker, W. Lindgren

Abstract. This paper considers totally bounded quasi-uniformities and quasi-proximities
for frames and shows that for a given quasi-proximity ⊳ on a frame L there is a totally
bounded quasi-uniformity on L that is the coarsest quasi-uniformity, and the only totally
bounded quasi-uniformity, that determines ⊳. The constructions due to B. Banaschewski
and A. Pultr of the Cauchy spectrum ψL and the compactification ℜL of a uniform frame
(L,U) are meaningful for quasi-uniform frames. If U is a totally bounded quasi-uniformity

on a frame L, there is a totally bounded quasi-uniformity U on ℜL such that (ℜL,U)
is a compactification of (L,U). Moreover, the Cauchy spectrum of the uniform frame
(Fr(U∗),U∗) can be viewed as the spectrum of the bicompletion of (L,U).

Keywords: frame, uniform frame, quasi-uniform frame, quasi-proximity, totally bounded
quasi-uniformity, uniformly regular ideal, compactification, bicompletion

Classification: 6D20, 18B35, 54D35, 54E05, 54E15

0. Introduction.

The concept of a quasi-proximity for a topological space was introduced by
C.H. Dowker [4]. In [12] W. Hunsaker and W. Lindgren proved that there is
a one-to-one correspondence between quasi-proximities and totally bounded quasi-
uniformities and that each quasi-proximity class of quasi-uniformities contains
a coarsest member, which is totally bounded. In this paper, we introduce the
concept of a frame quasi-proximity, obtain results for frames analogous to those
obtained for spaces in [12], and discuss compactifications of totally bounded quasi-
uniform frames.
Let U be a totally bounded quasi-uniformity and let L be the frame determined

by U∗. In [3] B. Banaschewski and A. Pultr give a compactification ℜL of the uni-
form frame (L,U∗). We show that there exists a totally bounded quasi-uniformity

U on ℜL such that U
∗
determines ℜL and that there exists a dense quasi-uniform

frame homomorphism from (ℜL,U) onto (L,U).
In the last section we consider briefly another construction from [3], the Cauchy

spectrum of a uniform frame. We show that if U is a quasi-uniformity then the
Cauchy spectrum of the underlying uniform frame (Fr(U∗),U∗) can be constructed
directly from the quasi-uniformity U in a manner that parallels the construction of
the bicompletion of a quasi-uniform space [9].

1. Preliminaries.

A frame (L,≤) is a complete lattice that satisfies the frame distributive law:
a ∧

∨
S =

∨
a ∧ x (x ∈ S) for any a ∈ L and any S ⊆ L. A function f : L → M
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between frames is a join homomorphism provided that for any S ⊆ L, f(
∨
S) =∨

{f(s) : s ∈ S}. A join homomorphism that also preserves finite meets is called
a frame homomorphism. We use 1 to denote

∧
∅ and 0 to denote

∨
∅. A subset C

of a frame (L,≤) is a cover provided that
∨
C = 1. For each a ∈ L, a denotes

∨
{x ∈

L : x ∧ a = 0}; this element a is called the pseudocomplement of a. Throughout
this paper if F is a collection of functions mapping a frame L to a frame M we
define

∧
F pointwise and for u, v ∈ F we write u ≤ v to mean that for each x ∈ L,

u(x) ≤ v(x).
We recall the following fundamental concepts and results from [8].
For a and b in L, the function a ♯ b : L→ L is defined by

a ♯ b(x) =

{
b if a ∧ x 6= 0

0 otherwise.

If u : L → L is any function and x ∈ L, then x is u-small provided that
x ♯ x ≤ u. The collection of all u-small elements is denoted by Su, and if u is
an order-preserving function such that

∨
Su = 1 we say that u is a ∆-map.

A frame quasi-uniformity base supported on a frame (L,≤) is a collection B of
∆-maps such that

(1) For each u ∈ B there exists v ∈ B such that v ◦ v ≤ u.
(2) For u, v ∈ B there is a join homomorphism w and a z ∈ B such that

z ≤ w ≤ u ∧ v.

If B is a frame quasi-uniformity base, then the quasi-uniformity U for which B
is a base is the collection of all w : L→ L such that w is order preserving and there
is a u ∈ B with u ≤ w. The members of a quasi-uniformity U are called entourages.
If B satisfies:

(3) For each u ∈ B and for each x, y ∈ L, u(x)∧y = 0 if and only if u(y)∧x = 0,
then B is a base for a frame uniformity for L.

A collection D of ∆-maps is a subbase for a frame quasi-uniformity U provided
that the collection of all finite meets from D is a base for U.
The frame of U, denoted by Fr(U) is the collection to which a belongs provided

that
a =

∨
{b ∈ L : u(b) ≤ a for some u ∈ U}.

We say that U determines L provided that Fr(U) = L.
Let U and V be quasi-uniformities on frames L and M respectively and let

f : L→M be a frame homomorphism. Then f is a quasi-uniform frame homomor-
phism provided that for every u ∈ U there exists a v ∈ V such that v ◦ f ≤ f ◦ u.
For each ∆-map u and each x ∈ L define

û : L→ L by û(x) =
∨

{b ♯ a : a ♯ b ≤ u}(x)

and
u∗ : L→ L by u∗(x) =

∨
{a : a ♯ a ≤ u and a ∧ x 6= 0}.



Totally bounded frame quasi-uniformities 531

Then for any quasi-uniformity U supported on a frame L, {û : u ∈ U} is a base

for a quasi-uniformity Û on L and {u∗ : u ∈ U} is a base for a uniformity U∗ on

L that is the coarsest quasi-uniformity containing U ∪ Û. The underlying biframe
of U is the triple (Fr(U∗), F r(U), F r(Û)). It is shown in [8] that the underlying
biframe of U is a biframe in the sense of B. Banaschewski, G.C.L. Brümmer and
K. Hardie [2]. If U is a quasi-uniformity on L and U∗ determines L, we say that
(L,U) is a quasi-uniform frame.

2. Quasi-proximities.

In this section we extend the theory of quasi-proximities established in [12] to
a theory of quasi-proximities for frames.

Definition. Let (L,≤) be a frame. A quasi-proximity on L is a binary relation ⊳
on L satisfying the following axioms for a, b, c, d in L.

(1) 0 ⊳ 0 and 1 ⊳ 1.
(2) If a ⊳ b, then a ≤ b.
(3) If a ≤ b ⊳ c ≤ d, then a ⊳ d.
(4) If a ⊳ b and a ⊳ c, then a ⊳ b ∧ c.
(5) If a ⊳ c and b ⊳ c, then a ∨ b ⊳ c.
(6) If a ⊳ b, then there exists c ∈ L such that a ⊳ c ⊳ b.
(7) If a ⊳ b, then a ∨ b = 1.

Proposition 2.1. Let (L,≤) be a frame and let U be a quasi-uniform base on
L. For a, b ∈ L define a ⊳ b if and only if u(a) ≤ b for some u ∈ U. Then ⊳ is
a quasi-proximity on L.

Proof: The axioms (1) – (5) follow easily from the properties of a quasi-uniformity
and axiom (6) holds as in the proof of [8, Proposition 5.1]. To see that axiom (7)
holds suppose that a ⊳ b and let u ∈ U such that u(a) ≤ b. It suffices to show that
a ∨ u(a) = 1. We have 1 =

∨
{x ∈ L : x is u-small}=

∨
{x ∈ L : x is u-small and

x ∧ a 6= 0} ∨
∨
{x ∈ L : x is u-small and x ∧ a = 0} ≤ u(a) ∨ a. �

Definition. If U is a quasi-uniformity (base) on a frame L, then the quasi-pro-
ximity ⊳ defined by a ⊳ b if and only if u(a) ≤ b for some u ∈ U is called the
quasi-proximity determined by U.

Lemma 2.2. Let (L,≤) be a frame. Let C = {(aα, bα) : aα, bα ∈ L,α ∈ A} and
suppose that for each B ⊆ A, (

∧
α∈B

aα,
∧
α∈B

bα) ∈ C and (
∨
α∈B

aα,
∨
α∈B

bα) ∈ C. For

each α ∈ A and each x ∈ L, let

uα(x) =






0 if x = 0

bα if x ≤ aα and x 6= 0

1 otherwise

and let u(x) =
∧
uα(x). Then u : L→ L is a join homomorphism.

Proof: Let x =
∨
xi. Then for each α ∈ A and each i, uα(x) ≥ uα(xi) and so

u(x) ≥
∨
i

u(xi). In order to show that u(x) ≤
∨
i

u(xi) we may suppose that for
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each i, u(xi) 6= 1 and for some i, u(xi) 6= 0. For each i, let Bi = {α : xi ≤ aα}.
Then Bi 6= ∅. Let wi =

∧
{aα : α ∈ Bi}, zi =

∧
{bα : α ∈ Bi}. Then for each

i, (wi, zi) ∈ C, xi ≤ wi and u(xi) = zi. Let w =
∨
wi and let z =

∨
zi. Then

(w, z) ∈ C; hence (w, z) = (aγ , bγ) for some γ ∈ A and u(x) ≤ uγ(x) = z =
∨
i

u(xi).

�

Definition. Let L be a frame and let U be a quasi-uniformity on L. Then U is
totally bounded provided that for each u ∈ U there is a finite cover of L by u-small
elements.

Theorem 2.3. Let L be a frame and let ⊳ be a quasi-proximity on L. For a, b ∈ L

define

ua,b(x) =






0 if x = 0

b if x ≤ a, x 6= 0

1 otherwise

and let S = {ua,b : a ⊳ b}. Then S is a subbase for a totally bounded frame
quasi-uniformity U⊳, which determines ⊳, and is the only totally bounded frame

quasi-uniformity that determines ⊳.

Proof: We first prove that S is a subbase for a quasi-uniformity. Let a, b ∈ L and
suppose that a⊳b. Then a and b are ua,b-small and so ua,b is a ∆-map. Let uai,bi ∈ S,
1 ≤ i ≤ n. Let D = {(ai, bi) : 1 ≤ i ≤ n} and form C = {(aα, bα) : α ∈ A} by

taking all meets and joins from D. Let u =
∧
α∈A

uα and note that u ≤
n∧
i=1

uai,bi .

It follows from Lemma 2.2 that u is a join homomorphism that is a finite meet of
members of S. Moreover, u is a ∆-map.
Let ua,b ∈ S. There exists c ∈ L such that a⊳ c⊳ b. Let w = ua,c∧uc,b. It is easy

to verify that w2 ≤ ua,b. Therefore S is a subbase for a frame quasi-uniformity U⊳.
If ua,b ∈ S, then {a, b} is a cover of L by ua,b-small elements. It follows that U⊳ is
totally bounded.
We now show that U⊳ determines ⊳. Let ⊳1 denote the quasi-proximity deter-

mined by U⊳. Suppose that a ⊳ b. Then ua,b(a) ≤ b and hence a ⊳1 b. Now suppose
that a⊳1 b. There exists u ∈ U⊳ such that u(a) ≤ b. Since u ∈ U⊳, there are (ai, bi),

1 ≤ i ≤ n, such that ai ⊳ bi for each i, and
n∧
i=1

uai,bi ≤ u. Let w =
n∧
i=1

uai,bi . Let

J = {i : a ≤ ai}, and let c =
∧
j∈J

aj , d =
∧
j∈J

bj . Then a ≤ c ⊳ d ≤ b.

We next show that U⊳ is the coarsest frame quasi-uniformity that determines ⊳.
Suppose that V is a frame quasi-uniformity that determines ⊳. Let ua,b ∈ S; then
a ⊳ b so there exists a join homomorphism v ∈ V such that v(a) ≤ b. It follows that
v ≤ ua,b.
Finally we show that U⊳ is the only totally bounded frame quasi-uniformity that

determines ⊳. Suppose that V is a totally bounded frame quasi-uniformity that
determines ⊳. Let w ∈ V and let v ∈ V such that v2 ≤ w. There exists a finite
cover {ai} of L by v-small elements. Since V determines ⊳, we have that ai ⊳ v(ai)
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for all i. Note that uai,v(ai) ∈ U⊳ and let z ∈ U⊳ be a join homomorphism such

that z ≤
∧
i

uai,v(ai). To see that z ≤ w let x ∈ L. Then z(x) =
∨
i

z(x ∧ ai). For
each j,

z(x ∧ aj) ≤
∧

i

uai,v(ai)(x ∧ aj)

≤uaj ,v(aj )(aj) ≤ v(aj) ≤ v2(x) ≤ w(x).
�

3. Compactifications of totally bounded quasi-uniform frames.

LetU be a totally bounded quasi-uniformity and let (L,L1, L2) be the underlying
biframe of U. Let ⊳∗ be the quasi-proximity determined by U∗. We note that ⊳∗

is the “uniformly below” relation of [3, p. 63]. For the remainder of this paper we
follow the notation and terminology of [3] and make use of the results contained
therein. In particular, an ideal J in L is uniformly regular provided that if x ∈ J

there is a y ∈ J with x ⊳∗ y; ℜL denotes the frame of all uniformly regular ideals of
L and k(x) is the uniformly regular ideal consisting of all y ∈ L such that y ⊳∗ x.
In [3] the authors establish that ℜL is a compactification of the uniform frame
(L,U∗). The purpose of this section is to show that there exists a totally bounded

quasi-uniformity U on ℜL such that U
∗
determines ℜL and a dense quasi-uniform

frame homomorphism from (ℜL,U) onto (L,U). That is, we show that (ℜL,U) is
a compactification of the quasi-uniform frame (L,U).
For each u ∈ U define u : ℜL → ℜL by u(J) =

∨
{k(u(x)) : x ∈ Su and

x ∧
∨
J 6= 0}, and let B = {u : u ∈ U}. We show that B is a base for a quasi-

uniformityU supported on ℜL such thatU
∗
determines ℜL, and such that (ℜL,U)

is a compactification of the quasi-uniform frame (L,U).
In order to establish that (ℜL,U) is a quasi-uniform frame, we need the following

lemmas.

Lemma 3.1. Let u ∈ U. If x is a u-small element of L, then k(x) is u-small, and
if J ∈ ℜL is u-small and x ∈ J , then x is u2-small.

Proof: Let x be a u-small element of L. Let J ∈ ℜL such that J ∩ k(x) 6= {0}.
Let y ∈ k(x) and let a ∈ J ∩ k(x), a 6= 0. Then a ∧ x 6= 0 and so x ≤ u(a). Thus
y ⊳∗ x ≤ u(a) and so y ∈ k(u(a)). Therefore k(x) ⊆ k(u(a)) ⊆ u(J).
Let J be a u-small element of ℜL and let x ∈ J . Suppose that y∧x 6= 0. Since x ∈

J , k(x) ⊆ J and since J is u-small, k(x) is u-small. Note that k(x∧y) ⊆ k(x)∧k(y)
and 0 6= x ∧ y =

∨
k(x ∧ y) so that k(x) ≤ u(k(y)). Thus x =

∨
k(x) ≤

∨
u(k(y)).

Let a ∈ u(k(y)). Then a =
n∨
i=1

ai where for 1 ≤ i ≤ n there exist zi and qi such that

ai ⊳
∗ u(zi), zi is u-small, zi ∧ qi 6= 0 and qi ⊳

∗ y. For 1 ≤ i ≤ n, zi ≤ u(qi) ≤ u(y)
and so ai ≤ u(zi) ≤ u2(y). Hence x ≤

∨
u(k(y)) ≤ u2(y).

Lemma 3.2. Let a, b ∈ L and suppose that u ∈ U such that u∗(b) ≤ a. Let w ∈ U
such that w4 ≤ u. Then w ∗(k(b)) ⊆ k(a).
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Proof: Let J be a w-small member of ℜL such that J ∩k(b) 6= {0}. Let y ∈ J and
z ∈ J ∩k(b), z 6= 0. Then y∨ z ∈ J and by Lemma 3.1, y∨ z is w2-small. Therefore
by [8, Proposition 2.1], y ≤ y ∨ z ≤ (w2)∗(b) ⊳∗ u∗(b) ≤ a and so J ⊆ k(a). �

Proposition 3.3. Let U be a totally bounded frame quasi-uniformity and let L =
Fr(U∗). Let B = {u : u ∈ U}. Then B is a base for a totally bounded frame
quasi-uniformity U such that (ℜL,U) is a quasi-uniform frame.

Proof: Let u ∈ U, let J ∈ ℜL and let a ∈ J . SinceU is totally bounded, a =
n∨
i=1

ai

where each ai ∈ Su. Thus a =
n∨
i=1

ai ∈
n∨
i=1

k(u(ai)) ⊆ u(J). Hence J ⊆ u(J) and it

is clear that u is a join homomorphism.
Let w ∈ U and let u ∈ U such that u3 ≤ w, and let J ∈ ℜL.

u(u(J)) = u

(∨{
k(u(c)) : c ∈ Su and c ∧

∨
J 6= 0

})

=
∨

{u(k(u(c))) : c ∈ Su and c ∧
∨
J 6= 0}

=
∨

{k(u(b)) : b, c ∈ Su, b ∧
∨
k(u(c)) 6= 0, and c ∧

∨
J 6= 0}

⊆
∨

{k(w(c)) : c ∈ Sw and c ∧
∨
J 6= 0}

= w(J).

To see that axiom (2) holds for B, let u,w ∈ U and let J ∈ ℜL.

u ∧w(J) =
∨

{k((u ∧ w)(a)) : a ∈ Su∧w and a ∧
∨
J 6= 0}

⊆
∨

{k(u(b) ∧ w(c)) : b, c ∈ Su∧w, b ∧
∨
J 6= 0, and c ∧

∨
J 6= 0}

⊆
∨

{k(u(b)) : b ∈ Su and b ∧
∨
J 6= 0} ∩

∨
{k(w(c)) : c ∈ Sw and c ∧

∨
J 6= 0}

= u(J) ∩ w(J).

Let u ∈ U. Since U is totally bounded, there is a finite subcover A of Su.
Banaschewski and Pultr [3, p. 67] prove that

∨
{k(x) : x ∈ A} = L. Thus, it follows

from Lemma 3.1 that for each u ∈ U, u is a ∆-map and it also follows that U is
totally bounded.
It remains to show that U

∗
determines ℜL. Let J ∈ ℜL. Then J =

∨
{k(a) :

k(a) ⊆ J}. Let b ∈ J . There exists a ∈ J such that b ⊳∗ a. By Lemma 3.2, there
exists w ∈ U such that w ∗(k(b)) ⊆ k(a) ⊆ J . Hence k(b) ⊳∗ J . �

Proposition 3.4. The function g : (ℜL,U) → (L,U) defined by join is a dense
quasi-uniform frame homomorphism onto (L,U).

Proof: Let a ∈ L. Since a =
∨
{b : b ⊳∗ a} =

∨
k(a), g maps onto (L,U).

Clearly g−1(0) = {0}. Let u ∈ U and let v ∈ U such that v2 ≤ u. We show that
v ◦ g ≤ g ◦ u. Let J ∈ ℜL. Then u(J) =

∨
{k(u(a)) : a ∈ Su and a ∧

∨
J 6= 0}
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and g ◦ u(J) =
∨(∨

{k(u(a)) : a ∈ Su and a ∧
∨
J 6= 0}

)
. On the other hand

v ◦ g(J) = v(
∨
J) =

∨
{v(a) : a ∈ Su and a ∧

∨
J 6= 0}. Since v(a) ⊳∗ u(a),

v(a) ∈
∨(∨

{k(u(a)) : a ∈ Su and a ∧
∨
J 6= 0}

)
.

It follows from Theorem 3.2 that U
∗
is a uniformity that determines ℜL and it

follows from [3, Corollary to Lemma 2 and Lemma 4] thatU
∗
is the only uniformity

that determines ℜL. The join map from (ℜL,U) to (L,U) is the required dense
quasi-uniform frame homomorphism. �

4. The bicompletion of a quasi-uniform frame.

In this final section, we consider the sense in which the Cauchy spectrum of
a quasi-uniform frame, introduced by Banaschewski and Pultr [3], can be viewed as
the spectrum of its bicompletion. We make use of the result [3, Proposition 9] that
the Cauchy spectrum of a uniform frame (L,U) is the spectrum of its completion
CL. In order to make this section dovetail with [3], we use covering uniformities.
For a given quasi-uniform frame (L,U) the collection of covers {Su : u ∈ U} =
{Su : u ∈ U∗} generates the covering uniformity U corresponding to the entourage
uniformity U∗ [5]. Let (L,U) be a quasi-uniform frame. A filter F in L is a U-
Cauchy filter provided that for each u ∈ U, Su ∩ F 6= ∅. It is shown in [3]
that a U∗-Cauchy filter is U∗-regular if, and only if, it is a minimal U∗-Cauchy
filter. Given a covering uniformity U , Banaschewski and Pultr construct the uniform
space ψL whose ground set is the collection of all minimal Cauchy filters and whose
uniformity is generated by the covers ψA = {ψa : a ∈ A} where A ∈ U and for each
a ∈ A,ψa = {F ∈ ψL : a ∈ F}. They call the resulting uniform space the Cauchy
spectrum of the uniform frame (L,U).
We make repeated use of the following proposition.

Proposition 4.1 [8]. Let (X,U) be a quasi-uniform space, let A and B be T (U)-
open sets and let U be an open neighbornet of X . Let u : T (U)→ T (U) be defined
by u(G) = U(G). If A × B ⊆ U , then A♯B ≤ u. If A♯B ≤ u, then A × B ⊆ U ,

where the closure is taken either with respect to T (U) × T (U) or with respect to
T (U)× T (U−1).

Proposition 4.2. Let U be a frame quasi-uniformity and let L = Fr(U∗). For
each u ∈ U set ũ = {(F,G) ∈ ψL × ψL: there exist x ∈ F and y ∈ G such that

x ♯ y ≤ u}. Then Ũ = {ũ : u ∈ U} is a base for a quasi-uniformity on ψL and

(ψL, Ũ∗) is the Cauchy spectrum of L.

Proof: We first prove that Ũ is a base for a quasi-uniformity on ψL. Let u, v ∈ U.
Then u∧v ∈ U and ũ ∧ v = ũ∩ ṽ. Moreover, for each F ∈ ψL there exists a u-small
x ∈ F and since x ♯ x ≤ u, (F, F ) ∈ ũ.
Let u ∈ U and let v ∈ U such that v2 ≤ u. To show that ṽ2 ⊆ ũ, let (F,G) and

(G,H) belong to ṽ. There are x in F and y ∈ G such that x ♯ y ≤ v and p in G and
q in H such that p ♯ q ≤ v. Since y ∧ p 6= 0, x ♯ q ≤ u. Thus ṽ2 ⊆ ũ.
In view of [8, Proposition 2.1] and the introductory remarks of this section,

in order to show that (ψL, Ũ∗) is the Cauchy spectrum it suffices to prove that

{Sũ : ũ ∈ Ũ} is a base for the covering uniformity given by Banaschewski and
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Pultr [3]. Let w ∈ U and let z, v ∈ U such that v3 ≤ w and z2 ≤ v. There exists

ũ ∈ Ũ such that ũ is closed in the topology τ(Ũ) × τ(Ũ−1) and ũ ⊆ z̃ [9, page 8].
We show that Sũ refines ψSw

. Let T ∈ Sũ. Since T is a ũ-small set of minimal
U-Cauchy filters, T ♯ T ≤ ũ and by Proposition 4.1, T × T ⊆ ũ. Let F ∈ T and let
a ∈ F ∩ Sz . We show that T ⊆ ψv∗(a). Let G ∈ T . There exist x1, x2 ∈ F and

y1, y2 ∈ G such that x1 ♯ y1 ≤ z and y2 ♯ x2 ≤ z. Set x = x1 ∧ x2 and y = y1 ∧ y2
and note that x 6= 0, y 6= 0, y ∈ G, x ♯ y ≤ z and y ♯ x ≤ z. By definition, x ♯ y ≤ ẑ

and so y ≤ z(a) ∧ ẑ(a). It follows from [8, Lemma 3.12] that y ≤ v∗(a) and so
G ∈ ψv∗(a). By [8, Proposition 3.9 (2)], v

∗(a) is v3-small; hence ψv∗(a) ∈ ψAw
.

Thus Sũ refines ψSw
.

To show that ψSu
⊆ Sũ, let a ∈ Su and let F,G,∈ ψa. Then a ∈ F ∩ G and

a ♯ a ≤ u so that (F,G) ∈ ũ. Then ψa×ψa ⊆ ũ and so by Proposition 4.1, ψa ∈ Sũ.
�

It follows from Proposition 4.1 and the proof of [9, Theorem 3.33] that (ψL,U∗)
is the bicompletion of (L,U) whenever U is a quasi-uniformity on a set X and
L = T (U∗).
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