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Short proofs of two theorems in topology

M. Ismail, A. Szymanski

Abstract. We present short and elementary proofs of the following two known theorems in
General Topology:

(i) [H. Wicke and J. Worrell] A T1 weakly δθ-refinable countably compact space is
compact.

(ii) [A. Ostaszewski] A compact Hausdorff space which is a countable union of metriz-
able spaces is sequential.

Keywords: countably compact, initially κ-compact, weakly δθ-refinable, κ-refinable, se-
quential

Classification: 54D30, 54D20, 54D55

Throughout this note, κ denotes an infinite cardinal number and all topological
spaces are assumed to be T1.
A space X is called κ-refinable if every open cover γ of X has an open refinement

λ such that λ =
⋃

α<κ λα and for each x ∈ X , there exists α < κ such that
1 ≤ |{V ∈ λα : x ∈ V }| ≤ κ. An example of a (hereditary) κ-refinable space is any
space that can be represented as a union of ≤ κ metrizable subspaces.
The ω0-refinable spaces are the same as weakly δθ-refinable spaces, the spaces

introduced by H. Wicke and J. Worrell. In 1976 they proved that countably compact
weakly δθ-refinable spaces are compact [WW]. A slightly different proof of this
theorem appears in [B]. See also [A] for a generalization of weak δθ-refinability and
yet another proof of this theorem. Below, we present a proof which is shorter and
much more elementary than these proofs. Moreover, the theorem is more general
than that of Wicke and Worrell’s.
Recall that a topological space is called initially κ-compact if every open cover

of it of cardinality ≤ κ has a finite subcover. Note that ‘initially ω0-compact’ is the
same as ‘countably compact’. The reader is referred to [S] for a survey of initially
κ-compact spaces.

Theorem 1. An initially κ-compact κ-refinable space is compact.

Proof: Assume the contrary, and let X be an initially κ-compact κ-refinable space
which is not compact. Let γ be a maximal open cover ofX without a finite subcover.
Let λ =

⋃

α<κ λα be an open refinement of γ which witnesses the κ-refinability
of X . For each α < κ, and for each x ∈ X , let λα(x) = {V ∈ λα : x ∈ V } and
Xα = {x ∈ X : 1 ≤ |λα(x)| ≤ κ}. Then X =

⋃

α<κ Xα. Since X is initially
κ-compact, there exists β such that Xβ cannot be covered by κ or less members
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of γ. Let W =
⋃

λβ . Since Xβ ⊆ W , W /∈ γ. By the maximality of γ, there exists
U ∈ γ such that X =W ∪U . Then Xβ \U cannot be covered by κ or less members
of γ.

By induction, we choose a sequence x1, x2, . . . of points in Xβ \ U as follows:
let x1 ∈ Xβ \ U be arbitrary. If x1, . . . , xn have already been chosen, then, since
∣

∣

⋃n
i=1 λβ(xi)

∣

∣ ≤ κ, Xβ \ U is not contained in
⋃

(
⋃n

i=1 λβ(xi)
)

. Choose xn+1 ∈

(Xβ \ U) \
⋃

(
⋃n

i=1 λβ(xi)
)

.

Let S = {x1, x2, . . . }. Then S ⊆ X \U and, since X \U ⊆ W , no point of X \U
is a limit point of S. This is a contradiction, since X \U is countably compact. �

A topological space X is called sequential if every nonclosed subset A of X
contains a sequence converging to a point in X \ A.

In [O], A. Ostaszewski proved that a countably compact regular space which can
be represented as a union of countably many metrizable spaces is sequential. The
proof consists of about four printed pages. Below, we present a short proof based
on the Wicke-Worrell Theorem.

Theorem 2. A countably compact regular space which can be represented as

a countable union of metrizable spaces is sequential (and compact).

Proof: Let X be a countably compact regular space, and let X =
⋃

∞

i=1Xi, where
each Xi is metrizable. Let A be a non-closed subset of X . Since X is hereditary
ω0-refinable (i.e. hereditarily weakly δθ-refinable), A cannot be countably compact.
Therefore, there exists a sequence S = {x1, x2, . . . } in A which has no cluster point
in A. Let Y = S\S. Since Y is non-empty and compact, Y ∩Xi is not nowhere dense
in Y , for some i. Hence, Y ∩Xi contains a point which has countable character in
Y and thus in S as well. Therefore, S contains a subsequence converging to a point
in Y . �

The last part of the above proof shows that any countably compact regular
space which can be represented as a union of countably many first countable spaces
contains a point of countable character. This is essentially the same as Theorem 3
of [O] attributed to M.E. Rudin and K. Kunen there. We have a much stronger
theorem of this type which we prove by a different method.

Theorem 3. Let X be a regular initially ω1-compact space which can be repre-
sented as a union of ≤ ω1 subspaces of countable pseudocharacter. Then every
non-empty Gδ subset of X contains a point of countable character in X .

Proof: Let X =
⋃

{Xα : α < ω1}, where each Xα has countable pseudocharacter.
Let U be a non-empty Gδ subset of X and suppose that no point of U has countable
character in X . By induction, we choose a decreasing sequence {Fα : α < ω1} of
non-empty closed Gδ subsets of X as follows:

If U ∩ X0 = ∅, let F0 be an arbitrary non-empty closed Gδ subset of X such
that F0 ⊆ U . If U ∩ X0 6= ∅, let x ∈ U ∩ X0. Then there exists a Gδ subset V of
X such that V ∩ X0 = {x}. Since X is countably compact and x does not have
countable character in X , {x} is not Gδ in X . Therefore, ∅ 6= U ∩ V 6= {x}. Let
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F0 be a non-empty closed Gδ subset of X such that F0 ⊆ (U ∩ V ) \ {x}. Then
F0 ∩ X0 = ∅.
If β < ω1, and for each α < β, we have chosen Fα, then, since

⋂

α<β Fα is a Gδ

subset of X , by repeating the above argument with
⋂

α<β Fα in place of U and
Xβ in place of X0 we can find a non-empty closed Gδ subset Fβ of X such that
Fβ ⊆

⋂

α<β Fα and Fβ ∩ Xβ = ∅.

Let F =
⋂

{Fα : α < ω1}. Since X is initially ω1-compact, F 6= ∅. On the other
hand, since F ∩ Xα = ∅, for each α < ω1, F = ∅. This is a contradiction. �
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