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A note on linear mappings between function spaces

JAN BaAars!

Abstract. Arhangel’skii proved that if X and Y are completely regular spaces such that
Cp(X) and Cp(Y) are linearly homeomorphic, then X is pseudocompact if and only if Y is
pseudocompact. In addition he proved the same result for compactness, o-compactness and
realcompactness. In this paper we prove that if ¢ : Cp(X) — Cp(Y) is a continuous linear
surjection, then Y is pseudocompact provided X is and if ¢ is a continuous linear injection,
then X is pseudocompact provided Y is. We also give examples that both statements do
not hold for compactness, o-compactness and realcompactness.
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1. Introduction.

Let X be a completely regular space. By C(X) we denote the set of all real-
valued continuous functions on X. We endow C'(X) with the topology of pointwise
convergence and denote that by C,(X). The function space Cp(X) is a topologi-
cal vector space which is a dense subspace of RX with the product topology. Two
function spaces Cp(X) and Cp(Y") are linearly homeomorphic if there exists a home-
omorphism between Cp(X) and Cp(Y") which is also linear.

In [1], Arhangel’skii proved the following

Theorem 1.1. Let X and Y be completely regular spaces such that Cp(X) and
Cp(Y') are linearly homeomorphic. Then

(a) X is pseudocompact if and only if Y is pseudocompact.
(b) X is compact if and only if Y is compact.

(¢) X is o-compact if and only if Y is o-compact.

(d) X is realcompact if and only if Y is realcompact.

Instead of considering linear homeomorphisms one can also look at continuous
linear surjections or continuous linear injections. In this paper we show that if
¢ : Cp(X) — Cp(Y) is a continuous linear surjection then Y is pseudocompact
provided X is and if ¢ is injective instead of surjective, X is pseudocompact provided
Y is. Easy examples show that both statements are false for compactness, o-
compactness or realcompactness. Before we can prove our results we need some
auxiliary results.

I This paper was written during the author’s stay at York University, North York, Ontario, Canada
in 1992-1993. The author’s fellowship was financially supported by the Netherlands Organization
for Scientific Research (NWO).
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Let X and Y be completely regular spaces, let ¢ : Cp(X) — Cp(Y) be a con-
tinuous linear function and let y € Y be fixed. The function ¢y, : Cp(X) — R
defined by ¥y (f) = ¢(f)(y) is continuous and linear, hence an element of L(X) the
dual of Cp(X). The evaluation mappings &, (z € X) defined by &:(f) = f(x) for
[ € Cp(X) form a Hamel basis for L(X) (for a proof of this well-known fact we refer
to [2]), so for 1)y, # 0 there are x1,... ,op € X and A1,..., A\, € R\ {0} such that
Yy = > 1 Ni€s;. We define supp (y), the support of y in X, to be the finite set
{z1,... ,2n} C X. Note that for all f € Cp(X) we have ¢(f)(y) = > iq Nif(2;)-
We usually write ¢(f)(y) = >_.coupp (y) A=f (%), Where A; has its obvious meaning.
If 1y = 0, the support of y is defined to be the empty set. For A C Y we denote
U{supp (y) : y € A} by supp A. The notion of support here is a special case of
a more general definition given by Arhangel’skii in [1]. If A C X, we say that A
is bounded in X if for every f € Cp(X) we have f(A) is a bounded subset of R.
In [1], Arhangel’skii proved the following

Proposition 1.2. Let X and Y be completely regular spaces and let ¢ : Cp(X) —
Cp(Y') be a continuous linear function. If A is a bounded subset of Y, then supp A
is a bounded subset of X.

2. The results.

Lemma 2.1. Let X and Y be completely regular spaces, and let ¢ : Cp(X) —
Cp(Y') be a continuous linear surjection. Then for each closed and bounded subset
K of X, theset L ={y €Y :supp (y) C K} is a closed and bounded subset of Y.

PROOF: We first prove that L is closed. Take any y ¢ L. There is 2 € supp (y) such
that z ¢ K. Find any f € C(X) such that f(z) =1 and f(KU(supp (y)\{z})) = 0.
Then ¢(f)(y) = Zz€supp (y) Azf(z) = A #0. Let W ={z € Y : ¢(f)(2) # 0}.
Obviously y € W. If z € W N L we have on the one hand ¢(f)(z) # 0 and on the
other hand supp (z) C K which implies f(supp (z)) = 0, hence ¢(f)(z) = 0.

To prove that L is also bounded in Y we assume the contrary. Let h : Y — R be
continuous such that h(L) is an unbounded subset of R. Find ¢, € hA(L) \ {0} such
that {tn : n € N} is a closed and discrete subset of R. For each n € Nlet y, € L
be such that h(yn) = tn and sn =13 . cqupp (y,) [A2|- Note that sp > 0 since the
surjectivity of ¢ implies supp (yn) # 0. There exists a continuous g : R — R such
that g(tn,) = sn. Since ¢ is surjective, there is f € C(X) such that ¢(f) = g o h.
By boundedness of K, there is ¢ € R such that f(K) C [—c¢,¢]. But now for n > ¢
we have,

sn=0(Nlwn) =1 Y. A f(2)

zesupp (yn)

< Z Az] - [f(2) < e Z |Az| < sn

zesupp (yn) zesupp (yn)

which is a contradiction. O
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Corollary 2.2. Let X and Y be completely regular spaces, and let ¢ : Cp(X) —
Cp(Y') be a continuous linear surjection. Then Y is pseudocompact provided X is.

PROOF: A space is pseudocompact if and only if it is bounded in itself. By definition
we have Y = {y € Y : supp (y) C X}. O

Recall that a p-space is a space in which every closed and bounded set is compact.

Corollary 2.3. Let X and Y be completely regular spaces, and let ¢ : Cp(X) —
Cp(Y') be a continuous linear surjection. If Y is a p-space, then

(a) If X is compact, then Y is compact.
(b) If X is o-compact, then Y is o-compact.

PRrROOF: Part (a) follows from Corollary 2.2 and the definition of a p-space. For
part (b) suppose X = [Jo2; Xy, where X,, is compact and X, C X, 1. Let
Yo ={y €Y :supp (y) C Xpn}. Then by Lemma 2.1 and the definition of a pu-
space, Y, is compact. Since Y5, C Y, 41 and the support of a point is always finite,
Y =22, Ya. O

Corollary 2.4. Let X and Y be completely regular spaces, and let ¢ : Cp(X) —
Cp(Y') be a continuous linear surjection. If Y is normal and X is o-pseudocompact,
then Y is o-pseudocompact.

PROOF: The proof is essentially the same as the proof of part (b) of the previous
corollary. Note that a o-pseudocompact space can always be written as a countable
union of closed and bounded subsets and note that in normal spaces the closed and
bounded subspaces are pseudocompact. O

Corollary 2.2 is not only stronger than Theorem 1.1 (a) but our proof also provides
a new one for Theorem 1.1 (a) than the original in [1]. It is however not possible to
do this for the other properties in Theorem 1.1. The following example shows that
we have to add some assumptions on the space Y as we did in Corollary 2.3.

Example 2.5. Let X be any pseudocompact space which is not o-compact. Then
X is also not compact and realcompact. Let ¢ : Cp(3X) — Cp(X) be defined
by ¢(f) = f | X. Then ¢ is obviously a continuous linear function. Since X is
pseudocompact any real-valued continuous function on X is bounded hence can
be extended over SX. This implies the surjectivity of ¢. Note that ¢ is also
injective which makes ¢ a continuous bijection. By Theorem 1.1 (a) ¢ cannot be
a homeomorphism, a fact which can also be verified directly.

Lemma 2.6. Let X and Y be completely regular spaces, and let ¢ : Cp(X) —
Cp(Y') be a continuous linear injection. Then supp Y is dense in X.

PROOF: Suppose x ¢ supp Y. Let f € C(X) be such that f(z) = 1and f(supp V) =

0. For each y € Y we have f(supp (y)) = 0 hence ¢(f)(y) = >_ csupp ) A f(z) =
0. But then ¢(f) = 0 contradicting the fact that ¢ is injective. O
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Corollary 2.7. Let X and Y be completely regular spaces, and let ¢ : Cp(X) —
Cp(Y') be a continuous linear injection. Then X is pseudocompact provided Y is.

ProOF: By Lemma 2.6, supp Y is dense in X. Since Y is pseudocompact, by
Proposition 1.2 supp Y is bounded in X hence X is pseudocompact. O

It follows that this corollary, and hence Theorem 1.1 (a), is almost an immediate
consequence of Arhangel’skii’s Proposition 1.2. The proof of Theorem 1.1(a) is
however completely different. Again our result does not hold for the other proper-
ties.

Example 2.8. The ordinal space wi is pseudocompact but not o-compact. Define
¢ : Cp(wr) — Cp(w1 + 1) by

£(0) ify=0
o(f)(v)=q f()—f(y—1) H0<y<uw
0 if v=wi.

Then ¢(f) is obviously continuous on wj. Since f is eventually constant on wi,
#(f) is eventually 0 on w1, hence continuous on all of wy + 1. So ¢ is a well-defined
linear function. For continuity of ¢ we only need to show that ¢ is continuous at 0.
Let P C w1 + 1 be a finite set and ¢ > 0. Let Q@ = {v,7v—1:v € PNw1}. Then
@ is a finite set and if for all & € @ we have |f(«)| < £/2, then for each v € P we
have [¢(f)(7)| < €. To check that ¢ is injective, take f, g € Cp(w1) such that f # g.
Let o < wj be the first ordinal such that f(«) # g(a). Then it easily follows that

o(f)(a) # ¢(g)(c), hence &(f) # &(g).
3. Remarks.

1. For metric spaces, Lemma 2.1 was proved in [3] and for normal spaces it was
proved in [2]. A modification of the proof made it possible to state it for all com-
pletely regular spaces.

2. Lemma 2.6 and Corollary 2.7 are also in [2]. For completeness’ sake we included
the short proofs.

3. Once we have Example 2.8 the natural question to ask would be if for a linear
embedding ¢ : Cp(X) — Cp(Y') we have X is compact, o-compact or realcompact
provided Y is. The map ¢ in Example 2.8 is however a linear embedding. To prove
this fact, let P be a finite subset of wy and let € > 0. For v € P, let A, be the set
of all predecessors of v up to the first non-successor below v. Then A = U’yE p Ay
is finite and if for all & € A, |¢(f)(«)] < €/]A|, then for each v € P, |f(v)] < e.
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