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Copies of l
1 and co in Musielak-Orlicz sequence spaces

Ghassan Alherk, Henryk Hudzik

Abstract. Criteria in order that a Musielak-Orlicz sequence space lΦ contains an iso-
morphic as well as an isomorphically isometric copy of l1 are given. Moreover, it is
proved that if Φ = (Φi), where Φi are defined on a Banach space, X does not satisfy
the δo

2-condition, then the Musielak-Orlicz sequence space lΦ(X) of X-valued sequences
contains an almost isometric copy of co. In the case of X = R it is proved also that if
lΦ contains an isomorphic copy of co, then Φ does not satisfy the δo

2 -condition. These
results extend some results of [A] and [H2] to Musielak-Orlicz sequence spaces.
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0. Introduction

Two Banach spaces X, Y are said to be (1 + ε)-isometric provided there exists

a linear isomorphism P : X
onto
−−→ Y such that ‖P‖ ‖P−1‖ ≤ 1 + ε. It is easy to

see that P is a (1 + ε)-isometry if

‖x‖X ≤ ‖Px‖Y ≤ (1 + ε)‖x‖X

for any x ∈ X . We say a Banach space X contains an almost isometric (isomor-
phic) copy of Y if for any ε > 0 (for some ε > 0) there exists a subspace Z in
X such that Z, Y are (1 + ε)-isomorphic. We say a Banach space X contains an
isomorphically isometric (shortly isometric) copy of Y if there exist a subspace Z
of X and a linear isomorphism P from Z onto Y such ‖Px‖Y = ‖x‖X for any
x ∈ Z.
In the sequel X denotes a real Banach space and N, R, R+ and R

e
+ stand for

the set of natural numbers, the set of reals, the set of nonnegative reals, and for
R+ ∪ +∞, respectively. A map Φ : X → R

e
+ is said to be an Orlicz function if

it is convex, even, vanishing and continuous at 0, lower semicontinuous on the
whole X and

(∗) inf{Φ(x) : ‖x‖ = r} → ∞ as r → ∞.

We define a Musielak-Orlicz function Φ to be a sequence (Φi) of Orlicz functions
(we write then Φ = (Φi)). Given a Banach space X , we denote by lo(X) the real
space of all X-valued sequences x = (xn). We write shortly lo instead of lo(R).



10 G. Alherk, H. Hudzik

Given an arbitrary Musielak-Orlicz function Φ = (Φi) we define a functional
IΦ : l

o(X)→ R
e
+ by

IΦ(x) =

∞
∑

i=1

Φi(xi),

which is even and convex, IΦ(0) = 0 and for any x ∈ lo(X) the condition IΦ(λx) =
0 for any λ > 0 yields x = 0.
Musielak-Orlicz space lΦ(X) generated by a Musielak-Orlicz function Φ is de-

fined as the set of all x ∈ lo(X) such that IΦ(λx) < ∞ for some λ > 0 (cf. [T]
and in the scalar case also [KR], [L], [M] and [RR]).

The subspace hΦ(X) of lΦ(X) is defined to be the closure in lΦ(X) of the
space h(X) of all x in lo(X) which have only finite number of coordinates different

from 0. The space lΦ(X) can be equipped with the norm

‖x‖Φ = inf{ε > 0 : IΦ(x/ε) ≤ 1},

called the Luxemburg norm (cf. [M] and in the case of Orlicz spaces also [KR],

[L] and [RR]). The space hΦ(X) will be considered with the norm ‖ ‖Φ induced

from lΦ(X). lΦ(X) and hΦ(X) equipped with the norm ‖ ‖Φ are Banach spaces
(cf. [T]).
We say that a Musielak-Orlicz function Φ = (Φi) satisfies the δo

2-condition (we
write Φ ∈ δo

2) if there are positive constants k and a, a sequence (ci) with ci ∈ R
e
+

such that
∞
∑

i=j

ci < ∞ for some j ∈ N and

Φi(2x) ≤ Φi(x) + ci

for any i ∈ N and x ∈ X satisfying Φi(x) ≤ a.
If Φ = (Φi) satisfies the δo

2-condition with j = 1 we say that Φ satisfies the
δ2-condition. Of course, for any Musielak-Orlicz function Φ = (Φi) with finite-
valued Φi for any i ∈ N the δ2-condition is equivalent to the δo

2 - condition (cf.
[DH] and [K]).
Let us define for any Musielak-Orlicz function Φ = (Φi) the sequence λ = (λi)

in R+, where

λi = sup{u ∈ R+ : Φi is linear on [0, u] and Φi(u) ≤ 1}

for i = 1, 2, . . . .

1. Results

We start with the following theorem:

Theorem 1. Let Φ = (Φi) be a Musielak-Orlicz function with finite-valued Φi

defined on R for any i ∈ N. Then lΦ = (lΦ, ‖ ‖Φ) contains an isometric copy of
l1 if and only if:
(i) Φ does not satisfy the δ2-condition.

(ii)
∞
∑

i=1
Φi(λi) =∞.
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Proof: Sufficiency. Under our assumptions concerning Φ, the conditions δ2 and
δo
2 are equivalent. Therefore, if Φ satisfies condition (i), then Φ 6∈ δo

2. This yields

that lΦ contains an isometric copy of l∞ (cf. [K]) and so also an isometric copy
of l1.
Assume now that Φ satisfies the condition (ii). Define i1 to be the largest

natural number satisfying
i1
∑

i=1

Φi(λi) ≤ 1.

Then
i1+1
∑

i=1

Φi(λi) > 1.

There is a number αi ∈ [0, λi) such that

i1
∑

i=1

Φi(λi) + Φi1+1(α1) = 1.

We have
∞
∑

i=i1+2

Φi(λi) =∞.

Define i2 ≥ i1 + 2 to be the largest natural number such that

i2
∑

i=i1+2

Φi(λi) ≤ 1.

Then
i2+1
∑

i=i1+2

Φi(λi) > 1.

There is a number α2 ∈ [0, λi2+1) such that

i2
∑

i=i1+2

Φi(λi) + Φi2+1(α2) = 1.

Proceeding in such a way by induction we find sequences (ik) of natural numbers
and (αk) of numbers from the intervals [0, λik+1) such that

ik
∑

i=ik−1+2

Φi(λi) + Φik+1(αk) = 1
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for k = 1, 2, . . . , where io = −1 by definition. Denote

Ak = {ik−1 + 1, . . . , ik, ik + 1}, k = 1, 2, . . . .

The sets Ak are pairwise disjoint and
∞
⋃

k=1
Ak = N. Define a new sequence d = (di)

by

di =

{

λi if i ∈ Ak \ {ik + 1}

αk if i = ik + 1

for k = 1, 2, . . . . Define now
fk =

∑

i∈Ak

diei,

where ei is the i-th unit vector, i.e. ei = (0, . . . , 0, 1, 0, . . . ) with 1 on the i-th
place. We have

IΦ(fk) = 1 for k = 1, 2, . . . .

We have also fk ⊥ fl (i.e. the sequences fk and fl have disjoint supports) if k 6= l.
Moreover, the coordinates of fk(k = 1, 2, . . . ) belong to the intervals on which
the respective Orlicz functions Φi are linear. Define an operator P from l1 into
lΦ by the formula

Px =

∞
∑

k=1

xkfk (∀x = (xk) ∈ l1).

It is obvious that P is linear. Moreover

IΦ

(

Px

‖x‖l1

)

=

∞
∑

k=1

IΦ

(

xkfk

‖x‖l1

)

=

∞
∑

k=1

|xk|

‖x‖l1
IΦ(fk) =

∞
∑

k=1

|xk|

‖x‖l1
= 1.

Hence

‖
Px

‖x‖l1
‖Φ = 1, i.e. ‖Px‖Φ = ‖x‖l1 .

This means that P is an isometry between l1 and a closed subspace P (l1) of lΦ.

Necessity. Assume that Φ satisfies the δ2-condition and
∞
∑

i=1
(λi) < +∞. Then

there is n ∈ N, n ≥ 2, such that
∞
∑

i=1
Φi(λi) ≤ n. We will prove that lΦ is non-l1n,

i.e. for any elements x1, . . . , xn from the unit sphere S(lΦ) of lΦ there holds

‖
1

n
(x1 ± x2 ± · · · ± xn)‖ < 1
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for some choice of signs, which yields that l1 can not be isometrically embedded
into lΦ.
Take arbitrary x1, . . . , xn ∈ S(lΦ). Then IΦ(x

1) = · · · = IΦ(x
k) = 1 for

i = 1, 2, . . . , n. Define the set

A = {i ∈ N :
n
∑

k=1

Φi(x
k
i ) > Φi(λi)}.

We will prove that for any i ∈ A

(1) Φi

(

(x1
i ± · · · ± xn

i )

n

)

<
1

n

n
∑

k=1

Φi(x
k
i )

for some choice of signs ±1, dividing the proof into two cases.

I. max{|xk
i | : k = 1, . . . , n} ≤ λi and i ∈ A. Then at least two numbers

among Φi(x
k
i ), k = 1, . . . , n, must be positive. Assume that this is not true, i.e.

that there is only one positive number Φi(x
j
i ) among these numbers. Then

n
∑

k=1

Φi(x
k
i ) = Φ(x

j
i ) ≤ Φi(λi),

which contradicts the fact that i ∈ A. Therefore,

max{Φi(x
k
i ) : k = 1, . . . , n} <

n
∑

k=1

Φi(x
k
i ).

It is evident that

(2) |x1
i ± · · · ± xn

i | ≤ max{|x
k
i | : k = 1, . . . , }

for some choice of signs ±1, whence

Φi

(

1

n
(x1

i ± · · · ± xn
i )

)

≤ Φ

(

1

n
max

k
|xk

i |

)

=
1

n
maxΦi(x

k
i ) <

1

n

n
∑

k=1

Φi(x
k
i ).

This means that inequality (1) holds true in case I.

II. i ∈ A and max{|xk
i | : k = 1, . . . , n} > λi. Applying (2), we get for

a choice of signs ±1

Φi

(

1

n
(x1

i ± · · · ± xn
i )

)

≤ Φi

(

1

n
max

k
|xk

i |

)

<
1

n
Φi(max

k
|xk

i |)

=
1

n
max

k
Φi(x

k
i ) ≤

1

n

n
∑

k=1

Φi(x
k
i ).
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Combining both cases I and II we get inequality (1) for some choice of signs ±1.
For the remaining 2n−1 − 1 choices of signs ±1, we have by the convexity of Φ,

(3) Φi

(

1

n
(x1

i ± · · · ± xn
i )

)

≤
1

n

n
∑

k=1

Φi(x
k
i ) (∀ i ∈ A).

Combining (1) and (3), we get

∑

±1

Φi

(

1

n
(x1

i ± · · · ± xn
i )

)

<
2n−1

n

n
∑

k=1

Φi(x
k
i ) (∀ i ∈ A).

Summing up both-side of the last inequality over i ∈ A, we have

∑

±1

IΦ

(

1

n
(x1 ± · · · ± xn)χA

)

<
2n−1

n

n
∑

k=1

IΦ(x
kχA),

where χA denotes the characteristic function of A.
Hence it follows that

2n−1 −
∑

±1

IΦ

(

1

n
(x1 ± · · · ± xn)

)

=
2n−1

n

n
∑

k=1

IΦ(x
k)−

∑

±1

IΦ

(

1

n
(x1 ± · · · ± xn)

)

≥
2n−1

n

n
∑

k=1

IΦ(x
kχA)−

∑

±1

IΦ

(

1

n
(x1 ± · · · ± xn)χA

)

> 0,

i.e.
∑

±1

IΦ

(

1

n
(x1 ± · · · ± xn)

)

< 2n−1 .

Therefore

IΦ

(

1

n
(x1 ± · · · ± xn)

)

< 1

for at least one choice of signs ±1. Since Φi are finite-valued by the assumption
and Φ ∈ δ2, we get

∥

∥

∥

∥

1

n
(x1 ± · · · ± xn)

∥

∥

∥

∥

< 1

for at least one choice of signs (cf. [DH] and [K]), i.e. lΦ is non-l1n. This means

that l1 cannot be embedded isometrically into lΦ, and the proof is finished. �
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Theorem 2. Let Φ = (Φi) be an arbitrary Musielak-Orlicz function defined on

R. Then lΦ = (lΦ, ‖ ‖Φ) contains an isomorphic copy of l
1 if and only if Φ or Φ∗

(= the complementary function to Φ in the sense of Young) does not satisfy the

δo
2-condition, i.e. if and only if l

Φ is not reflexive.

Proof: Sufficiency. If Φ 6∈ δo
2, then lΦ contains an isometric copy of l∞ (cf. [K])

and so of l1 as well. Assume now that Φ ∈ δo
2 but Φ

∗ 6∈ δo
2. Then the dual of l

Φ

is isomorphically isometric to lΦ
∗

equipped with the Orlicz norm ‖ ‖o
Φ∗ (cf. [M]

and in the case of Orlicz spaces also [KR], [L] and [RR]). Therefore lΦ
∗

contains

an isomorphic copy of l∞ (cf. again [K]), whence it follows that lΦ contains an
isomorphic copy of l1.

Necessity. Assume that both functions Φ and Φ∗ satisfy the δo
2-condition.

Then lΦ is reflexive and so l1 can not be embedded isomorphically into lΦ as
a nonreflexive space. �

Theorem 3. Let X be an arbitrary Banach space and Φ = (Φi) be a Musielak-
Orlicz function defined on X . Then:

(i) if Φ does not satisfy the δo
2-condition, then hΦ(X) = (hΦ(X), ‖ ‖Φ) con-

tains an almost isometric copy of co;

(ii) if X = R and (hΦ = hΦ, ‖ ‖Φ) contains an isomorphic copy of co, then Φ
does not satisfy the δo

2-condition.

Proof: (i). Let

c
k,ε
i = sup{Φi((1 + ε)x)− 2k+1Φi(x) : Φi(x) ≤ 2

−k−1}(∀ i, k ∈ N, ε > 0).

We have that Φ ∈ δo
2 if and only if there exists ε > 0 and m, k ∈ N such that

∞
∑

i=m

ck,ε
i < ∞ (cf. [DH] and [H1]).

Define

αk,ε
i = sup{Φi((1+ε)x) : Φi(x) ≤ 2

−k−1 and Φi((1+ε)x)−2−k−1Φi(x) ≥ 0}.

Since Φi(0) = 0 < 2−k−1, so 0 belongs to the set of these x over which the

supremum in the definition of ck,ε
i is taken. Moreover,

Φ((1 + ε)0)− 2k+1Φi(0) = 0.

Hence it follows that ck,ε
i ≥ 0. Therefore, we can restrict ourselves in the definition

of c
k,ε
i to these x for which Φi((1+ε)x)−2k+1Φi(x) ≥ 0. Hence we get c

k,ε
i ≤ d

k,ε
i

for every i, k ∈ N and ε > 0. We have by the assumption that Φ 6∈ δo
2. Hence it

follows that
∞
∑

i=m

dk,ε
i =∞ (∀m, k ∈ N, ε > 0),
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so we have among others
∞
∑

i=1
d
k,ε
i = ∞. Define i1 as the largest natural number

such that
i1
∑

i=1

dk,ε
i ≤ 1,

whenever dk,ε
1 ≤ 1 and i1 = 0 whenever dk,ε

1 > 1. Then

i1+1
∑

i=1

dk,ε
i > 1.

Define in the first step N1 = {1, . . . , i1 + 1}. Define i2 as the largest natural
number such that

i2
∑

i=i1+2

d
k,ε
i ≤ 1

if d
k,ε
i1+2 ≤ 1 and i2 = i1 + 2 if d

k,ε
i1+2 > 1.

Then
i2+1
∑

i=i1+2

dk,ε
i > 1.

Put N2 = {i1+2, . . . , i2+1}. Proceeding in such a way by induction we can find
a sequence (ik) of nonnegative integers such that the sequence of pairwise disjoint
sets (Nk) in N defined by

Nk = {ik−1 + 2, . . . , ik + 1}, io := −1 (k = 1, 2, . . . )

satisfies

∑

i∈Nk\{ik+1}

dk,ε
i ≤ 1,(4)

∑

i∈Nk

d
k,ε
i > 1.(5)

In view of the definition of d
k,ε
i and inequality (5), it follows that for any ε > 0

and k ∈ N there are xi ∈ X(x ∈ Nk) such that

∑

i∈Nk

Φi((1 + ε)xi) > 1,(6)

Φi(xi) ≤ 2
−k−1 and Φi((1 + ε)xi) ≥ 2

k+1Φi(xi) (∀ i ∈ Nk).(7)
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Applying (6) and (7) we get

(8)
∑

i∈Nk

Φi(xi) ≤ 2
−k−1

∑

i∈Nk\{ik+1}

d
k,ε
i + 2−k−1 ≤ 2−k−1 + 2−k−1 = 2−k.

Define yk =
∑

i=Nk

xiei. Then yk have pairwise disjoint supports. In virtue of (6)

and (8) we have

IΦ(yk) =
∑

i∈Nk

Φi(xi) ≤ 2
−k (∀ k ∈ N),(9)

IΦ((1 + ε)yk) =
∑

i∈Nk

Φi((1 + ε)xi) > 1 (∀ k ∈ N).(10)

Define now an operator P1 : co → hΦ(X) by

P1u =

∞
∑

k=1

ukyk (∀u = (uk) ∈ co).

It is obvious that P1 is linear. We will prove now that P1u ∈ hΦ(X) for any

u ∈ co. We need to prove that there is a sequence (y
l) in lo(X) such that yl has

only finite number of coordinates different from zero and ‖P1u − yl‖Φ → 0 as
l → ∞, i.e.

(11) IΦ(λ(P1u − yl))→ 0 as l → ∞ (∀λ > 0).

Take arbitrary λ, ε > 0 and choose ko ∈ N such that
∞
∑

k=ko

2−k < ε. Define

yl =

l
∑

k=1

ukyk (l = 1, 2, . . . ).

Obviously any yl has only finite number of coordinates different from zero. Let
lo ≥ ko be such that |uk|λ ≤ 1 for any k ≥ lo. Such a number lo exists because
u = (uk) ∈ co. We have for any l ≥ lo

IΦ(λ(P1u − ul)) = IΦ

(

∞
∑

k=l+1

λukyk

)

≤ IΦ

(

∞
∑

k=l+1

yk

)

=
∞
∑

k=l+1

IΦ(yk) ≤
∞
∑

k=l+1

2−k < ε,
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i.e. condition (11) holds. This means that P1u ∈ hΦ for any u ∈ co. Applying
(9), we get for any u ∈ co,

IΦ(P1u/‖u‖∞) =

∞
∑

k=1

IΦ(ukyk/‖u‖∞)

≤

∞
∑

k=1

IΦ(yk) ≤

∞
∑

k=1

2−k = 1,

whence it follows that

(12) ‖P1u‖Φ ≤ ‖u‖∞ (∀u ∈ co).

Let ko ∈ N be such that |uko
| = ‖u‖∞. Then, in view of (10), we get

IΦ

(

(1 + ε)‖u‖−1
∞ P1u

)

≥ IΦ

(

(1 + ε)‖u‖−1
∞ uko

yko

)

= IΦ

(

(1 + ε)yko

)

> 1,

whence it follows that

‖P1u‖Φ ≥
1

1 + ε
‖u‖∞ (∀u ∈ co).

Defining now
Pu = (1 + ε)P1u (∀u ∈ co),

we get a linear operator from co into hΦ(X) satisfying

‖u‖∞ ≤ ‖Pu‖Φ ≤ (1 + ε)‖u‖∞ (∀u ∈ co),

which means that P is a (1 + ε)-isometry. Since ε > 0 is arbitrary this means

that co is embedded almost isometrically into hΦ and the proof of statement (i)
is finished.

(ii). Assume that Φ ∈ δo
2 and X = R. Then hΦ = lΦ and lΦ is the dual space

of hΦ∗

, where Φ∗ is the Orlicz function complementary in the sense of Young to
Φ (cf. [HY]). Assume that hΦ contains an isomorphic copy of co. Then it contains
(as a dual space) a copy of l∞ (cf. [BP]). But this contradicts the fact that the

norm ‖ ‖Φ is order continuous in hΦ. This contradiction finishes the proof of
statement (ii) and so of Theorem 3 as well. �

Recall that a Banach lattice E is said to be a KB-space whenever every in-
creasing bounded in the norm sequence of nonnegative elements in E is norm
convergent to an element of E (cf. [AB] and [KA]).

Remark. It is known (cf. [AB, p. 227]) that if E is a Banach lattice that is

not KB-space, then co is embeddable in E and conversely. The space hΦ is
a Banach lattice that is KB-space if and only if Φ ∈ δo

2. Therefore, h
Φ contains

an isomorphic copy of co if and only if Φ 6∈ δo
2. It is worth to notice that if X is

an arbitrary Banach space, then hΦ(X) need not be a Banach lattice. However,
in one direction an analogous result (cf. Theorem 3) still holds true.
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