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A measure-theoretic characterization

of Boolean algebras among orthomodular lattices

Pavel Pták, Sylvia Pulmannová

Abstract. We investigate subadditive measures on orthomodular lattices. We show as
the main result that an orthomodular lattice has to be distributive (=Boolean) if it
possesses a unital set of subadditive probability measures. This result may find an
application in the foundation of quantum theories, mathematical logic, or elsewhere.
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Notions and results

Let us first recall some basic notions as we shall use them in the sequel (see
e.g. [1], [10], etc.).

Definition 1. An orthomodular lattice (abbr. OML) is a lattice L endowed with
an orthocomplementation relation, ′ : L → L, such that the following conditions
are satisfied (a, b ∈ L):

• (i) if a ≤ b, then b′ ≤ a′,
• (ii) (a′)′ = a,
• (iii) a ∨ a′ = 1,
• (iv) if a ≤ b, then b = a ∨ (b ∧ a′) (the orthomodular law).

Let us reserve the letter L for OMLs in that what follows. As known, a typical
example of an OML is the lattice of all closed subspaces in a Hilbert space or
a Boolean algebra. Obviously, an OML is Boolean (i.e. it is a Boolean algebra)
exactly if it is distributive.
We shall deal with (probability) measures on OMLs. Let us call them states

to simplify the notation and, also, indicate the link with quantum theories (see
e.g. [5]).

Definition 2. Let L be an OML. A mapping s : L → 〈0, 1〉 is called a state
if it fulfils the following two requirements: (i) s(1) = 1, (ii) if a ≤ b′, then
s(a∨b) = s(a)+s(b). Further, a state s on L is called subadditive if, in addition,
it fulfils the following condition: For any a, b ∈ L, we have s(a ∨ b) ≤ s(a) + s(b).
Finally, a state s on L is called a valuation if s(a ∨ b) = s(a) + s(b) provided
a ∧ b = 0.
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Obviously, every valuation is a subadditive state. If L is a Boolean algebra,
then every state is a valuation. A general OML may have a very poor set of
valuations. For instance, the lattice of all closed subspaces of a finite dimensional
Hilbert space has only one valuation - a normalized dimension function. Thus,
the latter example possesses many states that are not valuations.
We shall employ the following notion (see also [5]).

Definition 3. An OML, L, is called unital with respect to subadditive
states if for any non-zero a ∈ L there exists a subadditive state on L such that
s(a) = 1.

It should be noted that there are (finite) OMLs which do not have any state
at all (see [4]). Thus, Definition 3 imposes quite a strong condition on L. In fact,
we have the following theorem. (It should be noted that this result generalizes
Theorem 4 of [7] and, also, gives another proof to this latter Theorem 4.)

Theorem 1. An OML is a Boolean algebra if and only if it is unital with respect

to subadditive states.

Proof: 1. If L is a Boolean algebra and if (Ω, L̄) is its set-representation, where L̄

(⊂ expΩ) is isomorphic to L, then the collection of states which are concentrated
in points of Ω obviously makes L̄ a unital OML with respect to subadditive states.
Thus, the sufficiency is obvious.

2. In order to establish the necessity, we have to prove that if L is unital
with respect to subadditive states, then it is Boolean. We shall do so in a series of
propositions. (Let us refer to [10] for technical details and orthomodular folklore.)

�

Proposition 1. Suppose that a, b ∈ L and suppose also that a ∧ b = 0. Then

a ∨ b = (a′ ∧ (a ∨ b)) ∨ (b′ ∧ (a ∨ b))

Proof: See [3]. �

Proposition 2 (see also [7], [11] and [12]). Every subadditive state on L is

a valuation.

Proof: Suppose that s is a subadditive state on L and suppose that a, b ∈ L

with a ∧ b = 0. We have to derive the inequality s(a ∨ b) ≥ s(a) + s(b). Making
use of the orthomodular law, we see that s(a∨b) = s(a)+s(a′∧ (a∨b)) and, also,
s(a∨b) = s(b)+s(b′∧(a∨b)). Thus, we have 2·s(a∨b) = s(a)+s(b)+s(a′∧(a∨b))+
s(b′∧(a∨b)). By Proposition 1, we infer that s(a∨b) ≤ s(a′∧(a∨b))+s(b′∧(a∨b)).
It follows that 2 · s(a∨ b) ≥ s(a) + s(b) + s(a∨ b), which completes the proof. �

Remark. In view of the above proposition, we can rewrite a classical result of
the lattice theory (see [2] and [13]) as follows: If L admits a strictly positive
subadditive state, then L is modular and every subset of L consisting of nonzero
mutually orthogonal elements is at most countable.
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Proposition 3. Let s be a valuation on L. Then, for any a, b ∈ L, we have

s(a) + s(b) = s(a ∨ b) + s(a ∧ b).

Proof: See [2]. �

Proposition 4 (see also [6]). Suppose that L enjoys the following property: If

a ∧ b = 0, then a ≤ b′. Then L is a Boolean algebra.

Proof: We are to show that if the assumption of Proposition 4 is satisfied, then
every couple a, b ∈ L is compatible in L. Since (a∧(a∧b)′)∧(b∧(a∧b)′) = (a∧b)∧
(a∧b)′ = 0, our assumption implies that the elements a∧(a∧b)′ and b∧(a∧b)′ are
orthogonal. We therefore have a = (a∧b)∨(a∧(a∧b)′), b = (a∧b)∨(b∧(a∧b)′) and
all the elements on the right-hand sides of the equalities are mutually orthogonal.
This shows that the couple a, b is compatible in L and Proposition 4 is proved.

�

Proposition 5. Suppose that for any nonzero element a ∈ L there is such a val-

uation s on L that s(a) = 1. Then L is a Boolean algebra.

Proof: We shall make use of Proposition 4. Consider two elements a, b ∈ L,
such that a ∧ b = 0. We have to show that a ≤ b′. Suppose that this is not
the case and look for a contradiction. If a 6≤ b′, then a ∧ b′ < a. It means that
(a ∧ b′)′ ∧ a 6= 0. Equivalently, (a′ ∨ b) ∧ a 6= 0. Let s be such a valuation that
s((a′∨b)∧a) = 1. It follows that s(a′∨b)+s(a)−s((a′∨b)∨a) = 1. Consequently,
s(a′ ∨ b) + s(a) = 2 and therefore s(a′ ∨ b) = 1 as well as s(a) = 1. We further
have s(a′∨ b) = s(a′)+ s(b)− s(a′∧ b) = 1.Thus, s(b) = 1− s(a′∧ b) and therefore
s(b) = 1− s(a′∨ b)+ s(a′)+ s(b). It follows that s(a′ ∨ b) = 1. Since s(a′) = 0, we
see that s(b) = 1. We have obtained s(a) = s(b) = 1. It follows that s(a ∧ b) = 1
which contradicts our assumption. The proof of Proposition 5 is complete. �

Obviously, the interplay of all the propositions above establishes the required
implication — if L is unital with respect to subadditive states, then it has to be
Boolean. This completes the proof of Theorem 1.
Let us conclude this note by making two remarks related to the latter theorem.

Suppose that s is a valuation on L and suppose that s(a) = 1 for an a ∈ L. Does
this imply that a has to be central? (An element a ∈ L is called central if it is
compatible to any element of L. Obviously, an affirmative answer to the latter
question would give another proof of Theorem 1.) The answer is provided by the
following proposition which may be interesting in its own right (see also [9]).

Proposition 6. Let L do not possess any valuation. Then L × {0, 1}, where
{0, 1} is understood as a two-element lattice, possesses exactly one valuation, s,
and moreover, s is two-valued and s(a, 1) = 1 for any a ∈ L.

Proof: Suppose that s is a valuation on L × {0, 1}. Then we have s(1, 0) +
s(0, 1) = s(1, 1) = 1. If the value of s(1, 0) was positive, then we could easily
construct a valuation on L. This possibility is, however, excluded by our assump-
tion. Thus, s(1, 0) = 0 and therefore s(a, 0) = 0 for any a ∈ L. It implies that
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s(0, 1) = 1 and therefore s(a, 1) = 1 for any a ∈ L. What remains to be verified is
that the mapping s : L×{0, 1} → 〈0, 1〉 defined by s(a, 0) = 0, s(a, 1) = 1 (a ∈ L)
is indeed a valuation, but this is easy.
The latter proposition gives a negative answer to the above stated question (as

known, valuationless orthomodular lattices exist in plenties — see [4]).
Our last comment concerns a “non-lattice” version of Theorem 1. Suppose that

L is an orthomodular poset (see [10]). Let us call a state s on L subadditive if the
following condition is satisfied: If a, b ∈ L, then there is an element c ∈ L such
that c ≥ a, c ≥ b and s(c) ≤ s(a)+ s(b). (The latter definition obviously coincides
with the former one if L is a lattice.) In view of Theorem 1, a natural question
arises whether any orthomodular poset which is unital with respect to subadditive
states has to be Boolean. The answer is no — the example by V. Müller (see [8])
shows (among other remarkable things) that a counterexample can be constructed
even in the class of set-representable orthomodular posets.
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