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On complemented copies of c0 in spaces of operators, II

Giovanni Emmanuele*

Abstract. We show that as soon as c0 embeds complementably into the space of all
weakly compact operators from X to Y , then it must live either in X∗ or in Y .
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Let X and Y be two infinite dimensional Banach spaces. It is well known (see
for instance [E1], [E3], [E4], [EJ], [F], [H], [K]) that c0 can embed into K(X, Y ),
the space of all compact operators from X to Y equipped with the operator norm,
even if it does not embed into X∗ and Y ; furthermore, such a copy of c0 can be
complemented in K(X, Y ) (see [E4], [E6]).
Recently ([E2], [E5]), we obtained some results proving that if c0 embeds into

either X∗ or Y then it embeds complementably into some spaces of operators
larger than K(X, Y ), for instance W (X, Y ), the space of all weakly compact
operators from X to Y . The technique we used in order to construct the comple-
mented copy of c0 requires the presence of a copy of c0 in either X∗ or Y , because
otherwise it does not work.
All the above facts lead us to the following natural question: Is it possible to

have a complemented copy of c0 inside W (X, Y ) even when it does not embed
into X∗ and Y ?

In this short note (in which we continue the research started in [E5]) we want
to show that the answer to this question is negative; indeed, we prove that as
soon as c0 embeds complementably into W (X, Y ), then it must live inside either
X∗ or Y . Actually, we shall prove a slightly more general result about the space
Lw∗(X∗, Y ), i.e. the space of all weak∗-weak continuous operators from X∗ to Y

equipped with the operator norm.
The announced result is the following

Theorem 1. Let H be a complemented copy of c0 in Lw∗(X∗, Y ). If Tn is

a basis for H ,then there is either a x∗0 ∈ BX∗ or a y∗0 ∈ BY ∗ and a subsequence

(Tnk
) of (Tn) such that either the sequence (Tnk

(x∗0)) spans a copy of c0 in Y or

the sequence (T ∗
nk
(y∗0)) spans a copy of c0 in X .

Proof: It is clear that for each x∗ ∈ BX∗ (resp. y∗ ∈ BY ∗) the series
∑

Tnk
(x∗)

(resp.
∑

T ∗
nk
(y∗)) is weakly unconditionally converging in Y (resp. in X). It will
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be enough to show that there is either a x∗0 ∈ BX∗ or a y∗0 ∈ BY ∗ and a subse-
quence (Tnh

) of (Tn) such that either the series
∑

Tnh
(x∗0) is not unconditionally

converging in Y or the series
∑

T ∗
nh
(y∗0) is not unconditionally converging in X ,

because we can thus use a well known result due to Bessaga and Pelczynski ([BP])
to conclude our proof. By contradiction we assume that for each x∗ ∈ BX∗ and
y∗ ∈ BY ∗ the series

∑
Tn(x

∗) and
∑

T ∗
n(y

∗) are unconditionally converging in
Y and X , respectively. So for any ξ = (ξn) ∈ l∞ and x∗ ∈ BX∗ the series∑

ξnTn(x
∗) is unconditionally converging in Y . Define Tξ(x

∗) =
∑

ξnTn(x
∗) for

all x∗ ∈ BX∗ . We now show that Tξ belongs to Lw∗(X∗, Y ). To this aim it will
be enough to consider a w∗-null net (x∗α) in BX∗ and a y∗ in BY ∗ and to prove
that

(1) lim
α

|Tξ(x
∗
α)(y

∗)| = 0.

Since
∑

ξnT ∗
n(y

∗) is unconditionally converging in X by our assumption, we have

(2) lim
p
sup

x∗∈BX∗

|
∞∑

n=p+1

ξnT ∗
n(y

∗)(x∗)| = 0.

Thanks to (2), given γ > 0 we can find a p ∈ N such that

(3) sup
α

|

∞∑

n=p+1

ξnT ∗
n(y

∗)(x∗α)| <
γ

2
.

On the other hand,

(4) lim
α

p∑

n=1

ξnTn(x
∗
α)(y

∗) = 0

since Tn ∈ Lw∗(X∗, Y ), for all n ∈ N . (3) and (4) together give (1).
Furthermore, using the Closed Graph Theorem we can prove easily that the

linear map Ψ : l∞ → Lw∗(X∗, Y ) defined by Ψ(ξ) = Tξ is bounded. It is clear
that K = Ψ(l∞) contains H . If P : Lw∗(X∗, Y ) −→ H is the existing projection,
the operator P|KΨ : l∞ −→ H is a quotient map of l∞ onto c0. This is a well

known contradiction ([D]) that concludes our proof. �

Corollary 2. Let c0 embed complementably into W (X, Y ). Then c0 embeds

into either X∗ or Y .

Proof: It is enough to observe that W (X, Y ) is isomorphic with Lw∗(X∗∗, Y ).
With a proof similar to that of Theorem 1 we can prove the same result for the

space L(X, Y ) of all bounded operators from X to Y . One could also consider the
space UC(X, Y ) of all unconditionally converging operators from X to Y ; in such
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a case we have been able to get just a slightly less precise result than Theorem 1;
indeed, the same technique used for proving Theorem 1 shows that as soon as
c0 embeds complementably in UC(X, Y ), then either Y contains a copy of c0
or there are a y∗0 ∈ BY ∗ and a subsequence (Tnk

) of (Tn) so that the sequence
(T ∗

nk
(y∗0)) spans a copy of c0 in X∗, but in such a case we do not know how the

copy of c0 contained in Y is spanned.
At the end, we observe that in the paper [E5] we also considered other spaces

of operators, such as spaces of Dunford-Pettis operators; we do not know if The-
orem 1 can be extended to cover this case.
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