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Opial’s property and James’ quasi-reflexive spaces

Tadeusz Kuczumow, Simeon Reich

Abstract. Two of James’ three quasi-reflexive spaces, as well as the James Tree, have
the uniform w∗-Opial property.
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Introduction

Let (X, ‖ · ‖) be a Banach space with a Schauder finite dimensional decompo-
sition (FDD) [1], [20]. Define βp((X, ‖ · ‖)) for p ∈ [1,∞) to be the infimum of
the set of numbers λ such that

(1) (‖x‖p + ‖y‖p)1/p ≤ λ‖x+ y‖
for every x and y in X with supp (x) < supp (y) (we use here the notation in
[1], [15]). In [15] M.A. Khamsi proved the following result.

Theorem A. Let (X, ‖ · ‖) be a Banach space with a finite codimensional sub-
space Y such that βp((Y, ‖ · ‖)) < 21/p for some p ∈ [0,∞). Then X has weak

normal structure.

He then used this theorem to deduce that James quasi-reflexive space, which
consists of all null sequences x = {xi} = ∑

∞

i=1 ei ({ei} is the standard basis in
c0) for which the squared variation

(2) sup
m

p1<···<pm




m∑

j=2

|xpj − xpj−1 |2


1/2

is finite, with the norm ‖ · ‖ given by (2), has weak normal structure by claiming
that β2((J‖ · ‖1)) = 1. As a matter of fact, β2((J, ‖ · ‖1)) ≥ 21/2, which can be
easily seen by taking x = e2 and y = e3. Fortunately, Theorem A remains true
with a slight modification of the definition of βp((X, ‖ · ‖)), namely

β̃((X, ‖ · ‖)) =
= inf

k=0,1,2,...

{
inf[λ : (1) is valid for x, y ∈ X with supp (x) + k < supp (y)]

}
,

and β̃2((J, ‖ · ‖)) = 1. Thus (J, ‖ · ‖1) does indeed possess weak normal structure.
In the present paper we will prove that (J, ‖·‖1) has, in fact, the uniform w∗-Opial
property [23], which, of course, also implies weak normal structure [1], [3], [4], [8].
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Definitions and notations

We recall that a (dual) Banach space (X, ‖ · ‖) has the (w∗-) Opial property
if whenever a sequence {xn} in X converges weakly (weakly∗) to x0, then for
x 6= x0

lim inf
n

‖x0 − xn‖ < lim inf ‖x − xn‖

[21], [22]. Opial’s property plays an important role in the study of weak con-
vergence of iterates and random products of nonexpansive mappings and of the
asymptotic behavior of nonlinear semigroups [4], [5], [7], [13], [18], [21], [22].
Moreover, it can be introduced in the open unit ball of a complex Hilbert space,
equipped with the hyperbolic metric, where it is useful in proving the existence
of fixed points of holomorphic self-mappings of B [5], [6].
The (dual) Banach space (X, ‖ · ‖) is said to have the uniform (w∗-) Opial

property [23] if for every c > 0 there exists an r > 0 such that

(3) 1 + r ≤ lim inf
n

‖x − xn‖
for each x ∈ X with ‖x‖ ≥ c and every sequence {xn} with w- limn xn = 0
(w∗- limn xn = 0) and lim infn ‖xn‖ ≥ 1.
In the linear space J defined by (2) one uses three different, but equivalent

norms, ‖ · ‖1 (defined by (2)), ‖ · ‖2, and ‖ · ‖3, introduced by R.C. James [9],
[10], [11]:

‖x‖2 = sup
k

p1···<p2k




k∑

j=1

|xp2j − xp2j−1 |2



1/2

,

‖x‖3 = sup
m

p1···<pm




m∑

j=2

|xpj − xpj−1 |2 + |xpm − xp1 |2



1/2

.

The choice of norms depends on one’s goals [2], [9], [10], [11], [20].
In [14] M.A. Khamsi used the ultraproduct method to prove that (J, ‖ · ‖3)

has the fixed point property for nonexpansive mappings (FPP), i.e. for every
nonempty weakly compact convex subset C of (J, ‖ · ‖3) any nonexpansive self-
mapping T : C → C has a fixed point. D. Tingley [24] has recently shown that
(J, ‖·‖3) has, in fact, weak normal structure ([3]): every nonempty weakly compact
convex subset C of (J, ‖ · ‖3) with diam C > 0 has a nondiametral point y, i.e.

sup
x∈C

‖y − x‖3 < diam C.

This property immediately guarantees the FPP [17]. The proof of weak normal
structure is based on the following property of weakly convergent sequences in
(J, ‖ · ‖3): if {xn} converges weakly to 0 and diam {xn} > 0, then

sup
m

(
lim sup

n
‖xm − xn‖3

)
> lim inf

n
‖xn‖3 .
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But it is easy to observe that the sequence {−en + en+1} tends weakly to 0 in
(J, ‖ · ‖3) and

‖1
3
e1 + en − en+1‖3 = ‖ − en + en+1‖3 =

√
8

for n ≥ 3. Therefore (J, ‖ · ‖3) does not have Opial’s property.
Main result

In this section we are concerned with the spaces (J, ‖ · ‖1) and (J, ‖ · ‖2).
The predual Banach space I to (J, ‖·‖j), j = 1, 2, is generated by the biorthog-

onal functionals {fn} to the basis {un} = {e1 + · · ·+ en} [12], [19]. Throughout
this paper we will always treat J as I∗.

Theorem. For j = 1, 2 the space (J, ‖ · ‖j) has the uniform w∗-Opial property.

Proof: Let k ∈ N and let Pk and Qk be the natural projections in J associated
with the basis {un}:

Pkx =

k∑

n=1

ξnun

and

Qkx =
∞∑

n=k+1

ξnun

for each x =
∑

∞

n=1 ξnun ∈ J . Note that if x =
∑

∞

n=1 ξnun, then

‖x‖1 = sup
m

p1<···<pm





m∑

j=2

[ pj−1∑

n=pj−1

ξn
]2





1/2

and

‖x‖2 = sup
k

p1<···<p2k





k∑

j=1

[ p2j−1∑

n=p2j−1

ξn
]2





1/2

[11], [12]. Directly from these formulas we obtain

‖x‖j = lim
k

‖Pkx‖j

and

lim
k

‖Qkx‖j = 0
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for all x ∈ J and j = 1, 2. Assume that a sequence {xn} in (J, ‖ · ‖j) converges
weakly∗ to 0 and let x ∈ J . Then we have

lim
n

‖Pkxn‖j = 0,

lim inf
n

‖Qkxn‖j = lim inf
n

‖xn‖j ,

and

lim inf
n

‖x − xn‖ ≥ lim inf
n

[
‖Pkx − Qk+1xn‖j − ‖Qkx‖j − ‖Pk+1xn‖j

]

= lim inf
n

[
‖Pkx − Qk+1xn‖j − ‖Qkx‖j

]

≥ lim inf
n

[
‖Pkx‖2j + ‖Qk+1xn‖2j

]1/2
− ‖Qkx‖j

=

[
‖Pkx‖2j + lim infn

‖Qk+1xn‖2j
]1/2

− ‖Qkx‖j

=

[
‖Pkx‖2j + lim infn

‖xn‖2j
]1/2

− ‖Qkx‖j

for k = 1, 2, . . . . Hence we obtain the following inequality

(∗)
lim inf

n
‖x − xn‖j ≥ lim

k

{[
‖Pkx‖2j + lim infn

‖xn‖2j
]1/2

− ‖Qkx‖j

}

=

[
‖x‖2j + lim infn

‖xn‖2j
]1/2

which leads to (3). In other words, (J, ‖ · ‖j) has the uniform w∗-Opial property
for j = 1, 2. �

Corollary 1. For j = 1, 2 the space (J, ‖ · ‖j) has the uniform Opial property.

Remark 1. The uniform w∗-Opial property of (J, ‖ · ‖j), j = 1, 2, implies the
following important property of these spaces. The (w∗-) modulus of noncompact
convexity of a (dual) Banach space (X, ‖ · ‖) is the function ∆x : [0, 1] → [0, 1]
(∆∗

x : [0, 1]→ [0, 1]) defined by

∆x(ε) = inf{1− dist (0, A)}
(∆∗

x(ε) = inf{1− dist (0, A)}),

where the infimum is taken over all convex (weak∗ compact convex) subsets A of
the closed unit ball with χ(A) ≥ ε, and χ is the Hausdorff measure of noncom-
pactness [4]. In the case of (J, ‖ ·‖j), j = 1, 2, the inequality (∗) implies ∆∗j (ε) > 0
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for all ε > 0. This means that these spaces are ∆∗-uniformly convex and every
weakly∗ compact convex subset C of (J, ‖·‖j) (j = 1, 2) has a compact asymptotic
center [4]. Taking A = conv {un}, where un =

∑n
i=1, we see that

χ(A) = 1

and
∀

x∈A
‖xj‖ = 1

(j = 1, 2). Therefore ∆x ≡ 0 for X = (J, ‖ · ‖j), j = 1, 2.
Here we have to mention that generally the uniform Opial property does not

imply the ∆-uniform convexity as the following example shows.

Example ([23]). For λ > 1 let X be the space l2 with the norm

‖(αn)‖ = max {λ|α1|, ‖(αn)‖2}
where ‖ · ‖2 is the norm in l2. Then

lim inf
n

‖xn − x‖ = max
{
λ|α1|,

(
lim inf

n
‖xn‖22 + ‖x‖22

)1/2}

≥
(
1 + ‖x‖22

)1/2 ≥
(
1 + λ−2‖x‖22

)1/2

for each x ∈ X and each sequence {xn} with w- limn xn = 0 and lim inf ‖xn‖ ≥ 1.
This inequality guarantees the uniform Opial property of X , but ∆x(ε) = 0 for

all ε ≤ (1− λ−2)1/2.

Remark 2. It is easy to observe that James Tree JT constructed by R.C. James
[11] also has the w∗-uniform Opial property, where JT is the dual space to the
Banach space B generated by the biorthogonal functionals {fn,i} to the basis
{en,i} (this basis is analogous to the basis {un} in J) given in [19]. The proof
of this fact is a slight modification of the proof of the Theorem. Corollary 1 and
Remark 1 are also valid for JT . (See also [13] for the w∗-Opial property.)

Remark 3. The uniform (w∗-) Opial property of (J, ‖ · ‖j) with j = 1, 2 and
JT implies that these spaces satisfy the weak (weak∗) uniform Kadec-Klee prop-
erty [16].

We conclude our paper with three corollaries.

Corollary 2. (J, ‖ ·‖j), j = 1, 2, and JT have weak and weak∗ normal structure.

Corollary 3. (J, ‖ · ‖j), j = 1, 2, and JT have the FPP for weakly∗ compact
convex subsets.

Recall that a Banach space (X, ‖ · ‖) is said to satisfy the (w∗-) demiclosedness
principle [1], [4] if whenever C is a nonempty weakly (weakly∗) compact convex
subset of X and T : C → X is nonexpansive, then the mapping I − T , where
I is the identity operator, is (w∗-) demiclosed, i.e. if {xn} is weakly (weakly∗)
convergent to x and {xn − Txn} converges strongly to y, then x − Tx = y. It is
known that every Banach space with the (w∗-) Opial property satisfies the (w∗-)
demiclosedness principle.
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Corollary 4. (J, ‖ · ‖j), j = 1, 2, and JT satisfy the (w∗-) demiclosedness prin-
ciple.
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