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On function spaces of Corson-compact spaces

Ingo Bandlow

Abstract. We apply elementary substructures to characterize the space Cp(X) for Corson-
compact spaces. As a result, we prove that a compact space X is Corson-compact, if
Cp(X) can be represented as a continuous image of a closed subspace of (Lτ )ω × Z,
where Z is compact and Lτ denotes the canonical Lindelöf space of cardinality τ with
one non-isolated point. This answers a question of Archangelskij [2].

Keywords: function spaces, Corson-compact spaces, elementary substructures

Classification: Primary 54C

1. Elementary substructures

We begin with a brief exposition of some definitions and facts concerning ele-
mentary substructures (see also A. Dow [5], K. Kunen [7]). A non-empty subset
M of a set H is said to be an elementary substructure of H, if for any formula
φ(x1, . . . , xn) of the language of set theory with the only free variables x1, . . . , xn
and for any a1, . . . , an ∈ M φ[a1, . . . , an] is true in M if and only if it is true
in H.
A frequently used argument is Tarski’s Criterion:

A subsetM of H forms an elementary substructure of H if and only
if for every formula φ(x0, x1, . . . , xn) of the language of set theory
and every a1, . . . , an ∈ M such that there exists an a ∈ H such that
φ[a, a1, . . . , an] is true in H, there is a b ∈ M such that φ[b, a1, . . . , an]
is true in H (and therefore inM).

The base of all our applications of elementary substructures is the following

Theorem 1.1 (Löwenheim-Skolem-Tarski). For every infinite set H and each
subset X ⊆ H there exists an elementary substructureM of H such that X ⊆ M
and |M| = max{|X |, ω}.

If θ is a cardinal, then H(θ) denotes the collection of all sets hereditarily of
cardinality < θ. We will usually be interested in elementary substructures of
H(θ), where θ is a sufficiently large regular cardinal. The main reason is that
for any sentence φ there exists a large enough regular cardinal θ such that φ is
true (in V ) if and only if it is true in H(θ). In practice, one “chooses” θ without
discussion how large it needs to be.
The following fact is well known and useful.
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Proposition 1.2. If θ is a regular uncountable cardinal, M an elementary

substructure of H(θ) and A ∈ M a countable set, then A ⊆ M.

If H is an uncountable [H]ω denotes the set of all countable subsets of H.
C ⊆ [H]ω is said to be unbounded if for every X ∈ [H]ω there is a Y ∈ C with
X ⊆ Y . We say C is closed if, whenever Xn ∈ C and Xn ⊆ Xn+1 for each n ∈ ω,
then

⋃

{Xn : n ∈ ω} ∈ C. A consequence of Theorem 1.1 is that the family of all
countable elementary substructures of H is closed and unbounded. Remark, that
the intersection of two closed unbounded subsets of [H]ω is closed unbounded,
too.
For the sake of simplicity we shall often write “LetM be a suitable elementary

substructure . . . ”. This means that all “information” we need to investigate an
object, say a topological space, can be found inM. For example, if X is a dyadic
compact space, we suppose that there is a continuous mapping f : Dτ → X ,
which is an element ofM. Obviously there is always a closed unbounded family
of “suitable” countable elementary substructures. On the other hand, “ . . . if
for any suitable countable elementary substructureM the following condition is
satisfied . . . ” means that the condition is satisfied for all countable substructures
from a closed unbounded subset of [H(θ)]ω , where θ is a large enough (with respect
to the object we investigate) regular cardinal.

2. The main construction

Now we are going to describe a construction for arbitrary uniform spaces. Let
〈X,U〉 be a uniform space (see Engelking [6]). IfM is an elementary substructure
with X,U ∈ M, the equivalence relation on X is defined by

x ≈ y(M) iff |x− y| < V for each V ∈ U ∩M.

If x ≈ y(M), we say that x and y areM-equivalent. Let X(M,U) denote the set

of all equivalence classes and φ
X,U
M
the canonical mapping of X onto X(M). (For

short, we often write X(M) and φX
M
and drop the U .) A uniformity U(M) is

given on X(M) by all entourages VM of the diagonal in X(M). U(M) is defined
by

|φXM(x) − φXM(y)| < VM iff |x′ − y′| < V for all x′, y′ ∈ X

such that x′ ≈ x(M) and y′ ≈ y(M),

where V is an arbitrary element of U ∩M.
φX
M
is uniformly continuous with respect to the uniformities U and U(M) on X

and X(M) respectively (see Bandlow [3]). Now we shall give some easy assertions
used in the sequel.

Fact 2.1. Let f : 〈X,U〉 → 〈Y,V〉 be a uniformly continuous mapping, suppose
f ∈ M. Then there exists a uniformly continuous mapping fM : X(M)→ Y (M)
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which makes the following diagram commutative:

(1)

X
f

−−−−→ Y

φX
M





y





y
φX
M

X(M) −−−−→
fM

Y (M)

Fact 2.2. Let 〈X,U〉 be the product of the uniform spaces {〈Xt,Ut〉 : t ∈ T };
suppose {〈Xt,Ut〉 : t ∈ T } ∈ M. Then 〈X(M),U(M)〉 is uniformly homeomor-
phic to the product of the uniform spaces {〈Xt(M),Ut(M)〉 : t ∈ T ∩ M} in
a natural way.

Fact 2.3. If 〈Y,UY 〉 is a uniform subspace of 〈X,U〉, then Y (M) is uniformly
homeomorphic to φX

M
(Y ) in a natural way.

Fact 2.4. If X is a compact Hausdorff space, there is a unique uniformity U on
X which induces the original topology on X . U is generated by all sets of the
form

Uεf1,...,fn
= {〈x, y〉 : |fi(x)− fi(y)| < ε, i = 1, . . . , n} ,

where f1, . . . , fn are arbitrary real-valued continuous functions on X , n ∈ N and
ε > 0. LetM be a suitable elementary substructure. It is easy to see that for any
pair of distinct points x, y ∈ X we have φX

M
(x) 6= φX

M
(y) if and only if there is

a function f ∈ C(X)∩M with f(x) 6= f(y). Consequently, φX
M
corresponds to the

mapping which relates each point x ∈ X to (fx)C(X)∩M from the product space

R
C(X)∩M. An easy consequence is that for each function f ∈ C(X) ∩M there

is a continuous function fM : X(M) → R such that f = fM ◦ φX
M
. If U ∈ M

is a functionally open subset of X , i.e. if there is a function f ∈ C(X) ∩ M

with U = f−1(0, 1), then let UM be defined by UM = f−1
M
(0, 1). Remark that

U = (φX
M
)−1UM. The family consisting of all open subsets of X(M) of the form

UM, where U is a functionally open subset of X and belongs toM, is a base for
the topology of X(M).

We now prove that if X is a Lindelöf space, then X(M) as a topological space
does not depend on the uniformity on X .

Proposition 2.5. Let X be a Lindelöf space and let U and V be uniformities on
X , which induces the topology on X . If M is a suitable elementary substructure,

then:

(a) φX,U
M
(x) = φX,U

M
(y) if and only if φX,V

M
(x) = φX,V

M
(y) for arbitrary points

x, y ∈ X (X(M) = X(M,U) = X(M,V)).
(b) U(M) and V(M) generate the same topology on X(M).

Proof: W.l.o.g. we may assume that V ⊆ U . Let x0, y0 be a pair of distinct

points of X . Suppose that φ
X,U
M
(x0) 6= φ

X,U
M
(y0), i.e. |x0 − y0| ≥ U for some
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U ∈ U ∩M. We can choose a W ∈ U ∩M such that 4W ⊆ U .
η = {Int B(x,W ) : x ∈ X} is an open cover of the space X and belongs to M.
Here B(x,W ) denotes the set {y ∈ X : |x − y| < V }. Therefore there exists
a countable subcover η′ = {Int B(xn,W ) : n = 1, 2, 3, . . .} which also belongs
toM. By Proposition 1.2, we may assume that all points xn, n = 1, 2, 3, . . . , are
elements ofM. Hence we can fix z1, z2 ∈ X ∩M such that x0 ∈ B(z1,W ) and
y0 ∈ B(z2,W ). F = cl (B(z1,W )) and G = cl (B(z2,W )) are elements ofM too,
and we have x0 ∈ F , y0 ∈ G and F ∩G = ∅. For every point x ∈ F there exists an
entourage Vx ∈ V such that B(x, 2Vx)∩G = ∅. Similarly as above we consider now
the open cover ξ = {Int B(x, Vx) : x ∈ F} of F . Since F and G are elements of
M, ξ also belongs toM. Let ξ′ = {Int B(xn, Vxn)n = 1, 2, 3, . . .} be a countable
subcover of ξ. We may assume that ξ′ belongs to M and, consequently, that
all xn and Vxn are elements of M. Hence, there exists a point z ∈ F ∩ M
and an entourage V ∈ V ∩M such that x0 ∈ B(z, V ) and B(z, 2V ) ∩G = ∅, i.e.

|x0−y0| > V and φX,V
M
(x0) 6= φ

X,V
M
(y0). This proves the assertion (a) and we may

identify X(M) = X(M,U) = X(M,V). Let TU and TV denote the topologies on
X(M) generated by U(M) and V(M), respectively. We have to prove that the
(identical) mapping

〈X(M), Tγ〉 −→ 〈X(M), TU 〉

is continuous with respect to these topologies. Suppose x0 ∈ X and O is a neigh-
borhood of φX

M
(x0) in 〈X(M), TU 〉. Then there is a U ∈ U ∩ M such that

φX
M
(B(x0, u)) ⊆ O. It is sufficient to check that there exists a V ∈ V ∩M with

B(x0, V ) ⊆ B(x0, U). To do this we take a W ∈ U ∩ M with 2W ⊆ U and
consider the open cover {Int B(x,W ) : x ∈ X} of 〈X,TU 〉. For every x ∈ X
there exists a Vx ∈ V such that B(x, 2Vx) ⊆ Int B(x,W ). One can assume
that the open cover of 〈X,Tγ〉 {Int B(x, Vx) : x ∈ X} is an element of M.
Using the same arguments as above we can find a point z ∈ X ∩M and an en-
tourage V ∈ V ∩ M such that x0 ∈ B(z, V ) and B(z, 2V ) ⊆ B(z,W ). Hence,
B(x0, V ) ⊆ B(z, 2V ) ⊆ B(z,W ) ⊆ B(x0, 2W ) ⊆ B(x0, U). The proof is now
complete. �

3. Corson-compact spaces

A compact Hausdorff space X is called Corson-compact, if it is homeomorphic
to a subset of

∑

(RT ) =
{

x ∈ R
T : supp (x) is countable

}

,

where supp (x) = {t ∈ T : x(t) 6= 0} for x ∈ R
T , for some set T . Corson-

compact spaces have been extensively studied by various authors (for a detailed
information see Archangelskij [2], and Negrepontis [8]).

It is easy to verify that for any suitable elementary substructureM, φX
M
maps

cl (X ∩M) homeomorphic on X(M). The main result of the previous paper is
the following characterization of Corson-compact spaces.
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Theorem 3.1 (Bandlow [4]). A compact Hausdorff space X is Corson-compact

iff for any suitable countable elementary substructureM, φX
M
maps cl (X ∩M)

homeomorphically on X(M).

4. The construction and Cp(X)

Our aim now is to consider the space Cp(X) of all real-valued continuous func-
tions on a completely regular space X in the topology of pointwise convergence.
The natural uniformity is given on Cp(X) by all sets of the form

Uεx1,...,xn
= {〈f, g〉 : |f(xi)− g(xi)| < ε, i = 1, . . . , n} ,

with x1, . . . , xn ∈ X , n ∈ N and ε > 0.
It is easy to see that two continuous functions f and g on X areM-equivalent

if and only if f |X∩M= g |X∩M.
In connection with Cp(X), we consider on X the uniformity generated by all

real-valued continuous functions. There is a natural embedding i from X into the

product space R
C(X) and therefore an embedding iM fromX(M) into R

C(X)∩M.

LetX(M) denote the image ofX by the projection mapping onto R
cl (C(X)∩M).

We get the following diagram:

(2)

X
i

−−−−→ R
C(X)

φ
X

M





y





y

X(M)
iM−−−−→ R

cl (C(X)∩M)

ψX
M





y





y

X(M)
iM−−−−→ R

C(X)∩M

Lemma 4.1. ψX
M
is a bijection from X(M) onto X(M).

Proof: Let x and y be a pair of different points of X with φ
X
M(x) 6= φ

X
M(y).

Then there exists a function g ∈ cl (Cp(X) ∩ M) such that g(x) 6= g(y). Let
ε = |g(x)−g(y)|/2. Then there is a function f ∈ Cp(X)∩M with |f(x)−g(x)| < ε

and |f(y)− g(y)| < ε. Hence, g(x) 6= g(y) and ϕX
M

6= φX
M
(y). �

Remark 4.2. If X is compact, then ψX
M
is a homeomorphism and we identify

X(M) and X(M). It is possible to show that ψX
M
is a homeomorphism, if X is

a Lindelöf p-space or pseudocompact.

If f : X → Y is a continuous mapping, then let f∗ : C(Y )→ C(X) denote the
mapping induced by f .

Lemma 4.3. (φ
X
M)

∗Cp(X(M)) = cl (Cp(X) ∩M).

Proof: Obviously, we have Cp(X) ∩ M ⊆ (φX
M
)∗Cp(X(M)) and cl (Cp(X) ∩

M) ⊆ (φ
X
M)

∗Cp(X(M)) (see diagram (2)). Since ψXM is a bijection mapping,
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(ψX
M
)∗Cp(X(M)) is a dense subspace of Cp(X(M)) and therefore

(φX
M
)∗Cp(X(M)) is a dense subspace of (φ

X
M)

∗Cp(X(M)). Now, it is sufficient

to show that Cp(X) ∩ M is a dense subset of (φX
M
)∗Cp(X(M)). Let g

′ be an

arbitrary continuous function on X(M) and g = g′ ◦ φX
M
. Also, let x1, . . . , xn be

points of X and ε a positive real number. Choose points y1, . . . , yk of X such that
φX
M
(yi) 6= φ

X
M
(yj) for distinct i, j ≤ k and φX

M
{x1, . . . , xn} = φ

X
M

{y1, . . . , yk}. It
is enough to show that there is a function f ∈ Cp(X) ∩M with |f(yi)− g(yi)| <

ε for all i = 1, . . . , k. Since φX
M
(yi) 6= φX

M
(yj) for distinct i, j ≤ k, we find

functionally open neighborhoods V1, . . . , Vk of y1, . . . , yk, respectively, inM with
cl (Vi)∩cl (Vj) = ∅ for distinct i, j. There exist functions f1, . . . , fk in Cp(X)∩M

such that Vi = f−1i (0, 1) for every i = 1, . . . , k. Fix rational numbers q1, . . . , qk
such that |qi · fi(yi) − g(yi)| < ε for all i = 1, . . . , k. Remark that all rational
numbers are elements ofM. f = q1 · f1+ · · ·+ qk · fk is the desired function. �

Corollary 4.4. Let X be a compact Hausdorff space. Then

(φXM)
∗Cp(X(M)) = cl (Cp(X) ∩M).

A characterization of Cp(X) for Corson-compact spaces

LetX be a completely regular space. We considerX with the uniform structure
induced by all real-valued continuous functions on X . The following definition
plays the decisive role in what follows.

Definition 5.1. One says that the completely regular space X has the prop-
erty Ω, if for sufficiently large regular cardinals θ there exists a closed unbounded
family C of countable elementary substructures of H(θ) such that φX

M
cl (X ∩

M) = X(M) for everyM ∈ C.

More briefly X ∈ Ω, if φX
M
cl (X ∩M) = X(M) for every suitable countable

elementary substructureM.
It is easy to verify that every compact Hausdorff space satisfies this condition.

More generally, we have the following

Proposition 5.2. Every Lindelöf p-space has the property Ω.

Proof: Since φX
M
(X ∩ M) is always a dense subset of X(M), it is enough to

prove that φX
M
is a perfect mapping. X is a Lindelöf p-space if and only if there is

a perfect mapping g : X → Y , where Y has a countable base. By Proposition 2.5
we may assume that g is uniformly continuous. Since φY

M
is a homeomorphism,

g can be represented as a composition of φX
M
and gM. This implies that φ

X
M
is

perfect. �

Proposition 5.3. Let X be a Lindelöf space, satisfying Ω. If f is a continuous
mapping from X onto a completely regular space Y , then Y satisfies Ω, too.
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Proof: Like in the proof of previous proposition, we assume that f is uniformly
continuous and consider the commutative diagram

(3)

X
f

−−−−→ Y

φX
M





y





y
φY
M

X(M) −−−−→
fM

Y (M)

It is easy to see that f(X ∩ M) = Y ∩ M and, consequently, f(cl (X ∩ M) ⊆
cl (Y ∩M)). Hence, Y (M) = fM(φ

X
M
cl (X ∩M)) = φY

M
(cl (Y ∩M)). �

Theorem 5.4. If X ∈ Ω, then each compact subspace of Cp(X) is a Corson-
compact space.

Proof: LetM be a suitable countable elementary substructure. Set Z = Cp(X).

By Theorem 3.1, it suffices to show that φZ
M
(f) 6= φZ

M
(g) for any pair f, g ∈

cl (Cp(X) ∩ M) = (φ
X
M)

∗Cp(X(M)), f 6= g. There exist continuous functions

f ′, g′ onX(M) such that f = f ′◦φ
X
M and g = g

′◦φ
X
M. FromX ∈ Ω it follows that

φ
X
M(X ∩M) is a dense subset of X(M). Hence, there exists a point x ∈ X ∩M

with f ′(φ
X
M(x)) 6= g

′(φ
X
M(x)), i.e. f(x) 6= g(x) and therefore φ

Z
M
(f) 6= φZ

M
(g).

�

Remark 5.5. A compact subspace of a space Cp(X), where X is an arbitrary
compact Hausdorff space, is called an Eberlein space. Every Eberlein space is
a Corson-compact space (Amir and Lindenstrauß [1]). Gul’ko proved Theorem 5.4
for Lindelöf Σ-spaces (see Negrepontis [8]), i.e. for continuous images of Lindelöf
p-spaces.

Theorem 5.6. Let X be a compact Hausdorff space. Then X is a Corson-
compact space if and only if Cp(X) ∈ Ω.

Proof: The sufficiency follows from Theorem 5.4 and the easy fact that there is
a natural embedding of X into Cp(Cp(X)).
To prove the necessity, let X be a Corson-compact space and letM be a suit-

able countable elementary substructure. By Theorem 3.1, φX
M
maps cl (X ∩M)

homeomorphic on X(M). Hence, for every function f ∈ Cp(X) there is a function
h ∈ Cp(X(M)) such that

f | cl (X∩M)= (h ◦ φXM) | cl (X∩M) .

Consequently, φZ
M
(f) = φZ

M
(h◦φX

M
), where Z = Cp(X). Since, by Corollary 4.4,

h ◦ φX
M

∈ cl (Cp(X) ∩M), this proves that Cp(X) ∈ Ω. �
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6. Archangelskij’s question

Let Dτ be the discrete space of cardinality τ . Let Lτ denote the spaceDτ ∪{ξ},
where ξ /∈ Dτ is the only non-isolated point and every neighborhood of ξ has the
form {ξ} ∪Dτ \A, where A is an arbitrary countable subset of Dτ . It is easy to
see that Lτ is a Lindelöf space.

Theorem 6.1 (R. Pol [9], see Archangelskij [2]). A compact Hausdorff space is
Corson-compact if and only if Cp(X) is a continuous image of a closed subspace
of (Lτ )

ω for some cardinal τ .

It was asked by Archangelskij [2, Problem IV.3.16], whether X is Corson-
compact, if Cp(X) is a continuous image of a closed subspace of (Lτ )

ω × Z for
some compact space Z.

Theorem 6.2. Let Z and X be compact Hausdorff spaces; suppose that Cp(X)
can be represented as a continuous image of a closed subspace of (Lτ )

ω×Z. Then
X is Corson-compact.

The idea to prove this theorem is very easy. By virtue of Theorem 5.6 and
Proposition 5.3, it suffices to show that every closed subspace Y ⊆ (Lτ )ω × Z
satisfies the condition Ω. Remark that (Lτ )

ω is always a Lindelöf space (see
Step 3).

Step 1. Set L = Lτ . It is easy to see that for every continuous function f : L→ R

there is a neighborhood O(ξ) = {ξ} ∪Dτ \ A, where A is a countable subset of
Dτ , such that f(t) = f(ξ) for every t ∈ O(ξ). If M is a suitable elementary
substructure and f ∈ M, we may assume that A ∈ M and, by Proposition 1.2,
A ⊂ M. Hence, by the definition of φL

M
, φL

M
(ξ) = φL

M
(t) for every t ∈ Dτ \M

and φL
M
(t1) 6= φL

M
(t2) for all t1, t2 ∈ L ∩ M, t1 6= t2. Consequently, we may

identify L(M) with {ξ} ∪ (Dτ ∩M). Here all points from Dτ ∩M are isolated
and the neighborhoods of ξ are of the form {ξ} ∪ ((Dτ ∩ M) \ A), where A is
a countable subset of Dτ and A ∈ M.

Step 2. Suppose η ∈ Lω ∩ M. Then, by Proposition 1.2, η(n) ∈ M for any
n ∈ ω. Hence, cl (Lω ∩M) is the following subspace of Lω:

({ξ} ∪ (Dτ ∩M))ω .

The family of all subsets of Lω of the form

An1,...,nk
η1,...,ηk

= {η ∈ Lω : η(ni) = ηi, i = 1, . . . , k} ,

where n1, . . . , nk ∈ ω and η1, . . . , ηk ∈ ({ξ}∪ (Dτ ∩M)), is a network for cl (Lω ∩
M) in Lω. This means that for any η ∈ cl (Lω ∩M) and any open set W ⊆ Lω

with η ∈ W there exists a set A
n1,...,nk
η1,...,ηk

, such that η ∈ A
n1,...,nk
η1,...,ηk

⊆ W . Remark

that An1,...,nk
η1,...,ηk

∈ M.

By Proposition 2.1, Lω(M) ≃ L(M)ω and φL
ω

M
(η) = (φL

M
(η(n)))n∈ω for every

η ∈ Lω. For short, we write φ instead of φL
ω

M
. Remark that φ(cl (Lω ∩ M)) =

Lω(M).
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Step 3. Now we are going to prove that Lω is a Lindelöf space for every cardinal τ
(see also Archangelskij [2]). Let γ be an open cover of Lω. W.l.o.g. we can assume
that γ ∈ M. We can also assume that every element of γ is a finite intersection
of sets of the form

V (n, t) = {η ∈ Lω : η(n) = t} ,

where n ∈ ω and t ∈ Dτ , or of the form

W (m,A) = {η ∈ Lω : η(m) ∈ {ξ} ∪Dτ \A} ,

where m ∈ ω and A is a countable subset of Dτ . If V (n, t) ∈ M, then t ∈ M and,
analogously, if W (m,A) ∈ M and, by Proposition 1.2, A ⊂ M. Consequently,
(φ)−1φV (n, t) = V (n, t) and (φ)−1φW (n, t) = W (n, t). Hence, (φ)−1φU = U for
every U ∈ γ ∩M.
Now we claim that γ∩M is a countable subcover of γ. By the result of Step 2,

there exists a system σ of subsets of Lω satisfying the following conditions:

(a) σ ⊂ M,
(b) cl (Lω ∩M) ⊆ ∪σ,
(c) for every A ∈ σ there exists a U ∈ γ ∩M with A ⊆ U .

Hence, ∪(γ ∩M) = ∪{(φ)−1φU : U ∈ γ ∩M} = (φ)−1φ(∪(γ ∩M)) = Lω.

Step 4. Let Z be a compact Hausdorff space and let Y be a closed subspace of
Lω ×Z. Since Lω ×Z is a Lindelöf space, Y is Lindelöf, too. By Proposition 2.3,
we may think Y with the uniform structure induced by the uniform structure on
Lω×Z. LetM be a suitable countable elementary substructure and let h denote
the product of the mappings φ and φZ

M
:

h : Lω × Z −→ L(M)ω × Z(M).

It suffices to prove that h(cl (Y ∩M)) = h(Y ) (see Fact 2.3).

Step 5. Let x = 〈η, z〉 be a point of Y ⊆ Lω × Z. We define a point η ∈ Lω

by setting η(n) = η(n), if η(n) ∈ M, and η(n) = ξ, if η(n) /∈ M. Set Az =
(φZ

M
)−1φZ

M
(z). Remark that h(η, z′) = h(η, z) for every z′ ∈ Az . Now, it is

enough to prove that {η} ×Az ∩ cl (Y ∩M) 6= ∅.

(a) At first, we prove that {η} ×Az ∩ Y 6= ∅.
Assume, on the contrary, that {η}×Az∩Y = ∅. Since {η}×Az is compact, there

exist open setsW ⊆ Lω and V ⊆ Z such that η ∈W , Az ⊆ V andW×V ∩Y = ∅.
We may assume that V ∈ M (see Fact 2.4). Further, assume that W is a member
of the canonical base for Lω. Then there is a natural number n such that W
depends only on the coordinates i ≤ n. Let {i1, . . . , ik} = {i ≤ n : η(i) = ξ},
where i1 < i2 < · · · < ik ≤ n. If i ∈ n \ {i1, . . . , ik}, then η(i) = η(i) = ai ∈ M.
For every j ∈ {1, . . . , k}, we can fix a countable set Aj ⊆ Dτ such that (w.l.o.g.)
W is the set of all ξ ∈ Lω such that ξ(i) = ai for all i ≤ n, i /∈ {i1, . . . , ik}, and
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ξ(ij) /∈ Aj for all j ∈ {1, . . . , k}. Let H denote the set of all countable subsets
of Dτ . For the sake of simplicity, we define for every collection B1, . . . , Bk ∈ H

W (B1, . . . , Bk) = {ξ ∈ Lω : ξ(i) = ai for i ≤ n, i /∈ {i1, . . . , ik}

and ξ(ij) /∈ Bj for j = 1, . . . , k}.

The following assertion is true:

(∃B1, . . . , Bk ∈ H) (W (B1, . . . , Bk)× V ∩ Y = ∅).

Since n, i1, . . . , ik, V and Y are elements of M, we find B1, . . . , Bk ∈ H ∩ M
satisfying this condition. If Bj ∈ M, then Bj ⊂ M. Since, by the definition

of η, η(ij) /∈ Dτ ∩ M, η(ij) /∈ Bj for every j ∈ {1, . . . , k}. Now, it is easy

to see that η ∈ W (B1, . . . , Bk). Hence, x ∈ W (B1, . . . , Bk) × V , contradicting
W (B1, . . . , Bk)× V ∩ Y = ∅.

(b) Now, we are going to prove that {η} × Az ∩ cl (Y ∩ M) 6= ∅. In assuming
that the intersection is empty, we find open sets W ⊆ Lω and V ⊆ Z, V ∈ M,
such that η ∈W,Az ⊂ V and W × V ∩ cl (Y ∩ M) = ∅. There exists a natural
number n such that

C = {ϑ ∈ Lω : ϑ(i) = η(i) for i = 1, . . . , n} ⊆W.

Remark that C ∈ M and η ∈ C. From C ⊆W it follows that C×V ∩(Y ∩M) = ∅.
Since C, V and Y are elements of M, this implies that C × V ∩ Y = ∅. Hence,
{η} × Az ∩ Y = ∅, contradicting the result of (a). This completes the proof of
Theorem 6.2.

References

[1] Amir D., Lindenstrauß J., The structure of weakly compact sets in Banach spaces, Ann.
Math. Ser. 2 88:1 (1968).

[2] Archangelskij A.V., Topologicheskie prostranstva funkcij (in Russian), Moscow, 1989.
[3] Bandlow I., A construction in set theoretic topology by means of elementary substructures,
Zeitschr. f. Math. Logik und Grundlagen d. Math. 37 (1991).

[4] , A characterization of Corson-compact spaces, Comment. Math. Univ. Carolinae
32 (1991).

[5] Dow A., An introduction to applications of elementary submodels to topology, Topology
Proceedings, vol. 13, no. 1, 1988.

[6] Engelking R., General Topology, Warsaw, 1977.
[7] Kunen K., Set Theory, Studies in Logic 102, North Holland, 1980.
[8] Negrepontis S., Banach spaces and topology, Handbook of set-theoretic topology, North
Holland, 1984, 1045–1042.

[9] Pol R., On pointwise and weak topology in function spaces, Preprint Nr 4/84, Warsaw,
1984.

Ernst-Moritz-Arndt Universität Greifswald, Fachbereich Mathematik,

Jahnstraße 15 a, 17489 Greifswald, Germany

(Received January 16, 1992, revised November 2, 1993)


		webmaster@dml.cz
	2012-04-30T15:00:06+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




