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On isometric embeddings of Hilbert’s cube into c

Jozef Bobok

Abstract. In our note, we prove the result that the Hilbert’s cube equipped with
lp−metrics, p ≥ 1, cannot be isometrically embedded into c.
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1. Introduction

Aharoni [1] proved that every separable metric space can be Lipschitz embed-
ded into c0. His proof was simplified by Assouad [2] who also improved the Lip-
schitz constants given by Aharoni’s construction. This fact was further generalized
by Pelant in [3] using the theorem that metric spaces uniformly homeomorphic
to subspaces of some c0(κ) are exactly those satisfying the A.H. Stone paracom-
pactness theorem in a uniform way, i.e. in which for any uniform cover, one can
find a uniform refinement which is locally finite. Some further improvements of
Lipschitz constants were given in [3]. For Lipschitz embeddings of compact metric
spaces into c0, these improvements give the best possible estimates, i.e. for any
compact metric space (X, d) and any ε > 0, there is F : X → c0, s.t.

1

1 + ε
d(x, y) ≤ ||F (x)− F (y)||c0 ≤ d(x, y) for each x, y ∈ X.

On the other hand, it is shown in [3] that the Hilbert’s cube equipped with
l1−metrics cannot be isometrically embedded into c0.
In our note, we prove the analogous result for the Hilbert’s cube endowed by
lp−metrics, p ≥ 1 and the space c. Moreover, we show that there exists a compact
subset of c which cannot be isometrically embedded into c0, i.e. there is a non-
formal difference between c and c0.

2. Notation and results

Let I be a closed unit interval [0, 1] and as usually Iℵ0 be the Hilbert’s cube.

For p ≥ 1, Iℵ0 constitutes the metric space Ip = (I
ℵ0 , ρp) by the metric ρp, where

for each x, y ∈ Iℵ0

ρp(x, y) = (
∞∑

i=1

|xi − yi|
p

2i
)
1
p .
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Let c be the set of all real sequences x = {ξn} such that finite lim
n→∞

ξn = ξ∞

exists, endowed by the norm ||x|| = sup
n

|ξn|. On a normed linear space (c, || ||)

we consider the induced metric σ(x, y) = ||x − y||. A subspace c0 consists of all
sequences x = {ξn} such that lim

n→∞
ξn = 0. In the metric space X , BX (r, s)

denotes the closed ball of the center r ∈ X and the radius s, SX(r, s) denotes its
sphere. By x = {ξ} we mean a constant sequence. Recall that using Ascoli-Arzela
Theorem, we have a characterization of a relatively compact infinite subset of c.

Proposition. A set {xα}α∈A = {{ξα,m}}α∈A is a relatively compact subset of c,

if the following two conditions are satisfied:

{xα}α∈A is equi-bounded, i.e., sup
α∈A

||xα|| < ∞,

{xα}α∈A is uniformly convergent, i.e., lim
n→∞

sup
α∈A
m≥n

|ξα,m − ξα,∞| = 0.

�

Theorem 1. There exists a compact set K in c which cannot be isometrically

embedded into c0.

Proof: Let K contain {0} and the sequences {ak}
∞
k=1 and {bk}

∞
k=1 of elements

of c defined by the equalities

(i) ak = {αl}, αk = 1 +
1
2k
, αl = 1 for l 6= k,

(ii) bk = {βl}, βl = −αl for each l.

By Proposition, the reader can easily verify that K is a compact subset of c and
for different positive integers k, l, we have from (i), (ii)

(iii) σ(ak, al) = σ(bk, bl) =
1

2min(k,l) , σ(ak, bl) = 2 +
1

2min(k,l)

σ(ak, {0}) = σ(bk, {0}) = 1 + 1
2k

, σ(ak , bk) = 2 +
1
2k−1
.

Suppose that an isometry F from K into c0 exists. Without loss of generality
we can assume that {0} is a fixed point of an isometry F . Denote all images in

F (K) by ‘tilde’, i.e. F (K) = K̃ and F (ak) = ãk for ak ∈ K. Since the property

of F , K̃ is a compact subset of c0 ⊂ c and an analogous equalities as (iii) can be

written for elements of K̃. By Proposition K̃ is uniformly convergent and there
exists a positive integer k0 such that for each x̃ = {ξ̃n} ∈ K̃

(iv) sup
n>k0

|ξ̃n| < 1
2 .

Consider a pair ãk = {α̃l}, b̃k = {β̃l} from K̃. Since σ(ãk, b̃k) = 2 +
1
2k−1

there

exists l1 ∈ {1, 2, ..., k0} such that

(v) |α̃l1 − β̃l1 | = 2 +
1
2k−1
, |α̃l1 | = |β̃l1 | = 1 +

1
2k
.
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Because K̃ is infinite and the condition (iv) holds, we have the equalities (v) with

an index l1 for infinitely many {ki} and pairs ãki
, b̃ki
. Then for i 6= j either

σ(ãki
, ãkj
) = 2 + 1

2ki
+ 1

2kj
or σ(ãki

, b̃kj
) = 2 + 1

2ki
+ 1

2kj
. Since F is distance-

preserving and by (iii) we have a contradiction.
�

Theorem 2. There is no isometric embedding of Ip = (I
ℵ0 , ρp) to (c, σ).

Proof: To the contrary suppose that such an isometric embedding F : Ip → c

exists. Without loss of generality we can assume that F ({12}) = {0}. Using
a notation stated above we can write

(vi) BIp
({12},

1
2 ) = Ip, F (SIp

({12},
1
2 )) ⊂ Sc({0},

1
2 ).

It is clear from the definitions of metrics ρp, σ that

(vii) SIp
= SIp

({12},
1
2 ) = {0, 1}ℵ0, Sc = Sc({0},

1
2 ) ⊂ [−

1
2 ,
1
2 ]

ℵ0 ,

(viii) for any x ∈ SIp
there exists a single opposite y ∈ SIp

with ρp(x, y) = 1.

In what follows we shall denote this opposite element by x′. The sphere Sc can
be divided to three disjoint sets K, L, M by the way K = { x ∈ Sc, lim |xi| < 1

2},

L = { x ∈ Sc, limxi =
1
2}, M = { x ∈ Sc, limxi = −12}. Note that

(ix) card{ i, |xi| =
1
2} < ∞ for each x ∈ K.

Let for x ∈ Sc, E+(x) = { i, xi =
1
2}, E−(x) = { i, xi = −12} and define on

Sc the equivalence relation by the following : elements x, y ∈ Sc are equivalent
if and only if E+(x) = E+(y) and E−(x) = E−(y). According to (ix) there is
a countable set of the equivalence classes τk which forms the decomposition {τk}
of K. So, we have

(x) Sc = (∪τk) ∪ L ∪ M .

Because of (vii) the set SIp
is uncountable, hence we have from (vi), (x) that one

of the following cases must be realized :

I. There is a positive integer k such that card(τk ∩ F (SIp
)) ≥ 2.

Choose different a, b ∈ (τk ∩ F (SIp
)). Since σ is a metric and a, b are equivalent

(∈ K) the relations

(xi) 0 < σ(a, b) < 1

hold. By (viii) for x ∈ SIp
, x = F−1(a), there exists x′ ∈ SIp

with the property

ρp(x, x′) = 1. If we put d = F (x′), then

σ(a, d) = ρp(x, x′) = 1,

hence by (xi) b 6= d. Now, the reader can easily verify that because of E+(a) =
E+(b) and E−(a) = E−(b) we even have

σ(b, d) = ρp(F
−1(b), x′) = 1.

This implies F−1(b) = F−1(a) = x, hence we have a = b. But this is a contradic-
tion.
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II. The set L ∩ F (SIp
) is uncountable and card(τk ∩ F (SIp

)) ≤ 1 for every
positive integer k.
Then first of all by (viii), M ∩ F (SIp

) = ∅ and for all but countably many a ∈

(L∩F (SIp
)) an opposite element a′′ = F ((F−1(a))′) which is guaranteed by (viii)

belongs again to L ∩ F (SIp
). Thus, if we define for n ∈ N the sets Gn by

Gn = { a ∈ (L ∩ F (SIp
)), inf

i≥n+1
ai > −

1

2
& inf

i≥n+1
a′′i > −

1

2
},

there exists m ∈ N for which Gm is infinite (uncountable). Similarly as above the
reader can easily see that there exist two different elements a, b in Gm such that
E+(a) = E+(b) and E−(a) = E−(b), i.e.

σ(a, a′′) = σ(b, a′′) = 1.

Hence we have a contradiction.

III. The set M ∩ F (SIp
) is uncountable and card(τk ∩ F (SIp

)) ≤ 1 for every
positive integer k.
This case is analogous to the previous one.
The proof of Theorem 2 is finished. �
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