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Sequential convergence in Cp(X)

D.H. Fremlin

Abstract. I discuss the number of iterations of the elementary sequential closure opera-
tion required to achieve the full sequential closure of a set in spaces of the form Cp(X).

Keywords: sequential convergence, Cp(X)

Classification: 54A20

1. Introduction

For a topological space Z and a subset A of Z, let Ã be the sequential closure
of A, that is, the smallest subset of Z including A and containing all limits in Z of
sequences in Ã. This may be regarded as the union of a transfinite sequence of sets
sξ(A) = sξ(A,Z), where s0(A) = A and for each ordinal ξ > 0 we take sξ(A) to be
the set of limits in Z of sequences in

⋃
η<ξ sη(A). Clearly sω1(A) =

⋃
ξ<ω1

sξ(A),

so that Ã = sω1(A). If we write σ(A) = min{ξ : Ã = sξ(A)} = min{ξ : sξ+1(A) =
sξ(A)}, we shall have 0 ≤ σ(A) ≤ ω1 for every A.
In this note I seek to address questions of the form: does Z have a subset A with

σ(A) = ω1? or, what is Σ(Z) = supA⊆Z σ(A)? Definite answers to such questions
are frequently illuminating; for instance, ‘Fréchet-Urysohn’ spaces ([5, p. 53]) are
precisely those for which A = s1(A) for every A, and Lebesgue’s theorem that
there are functions of all Baire classes ([12, § 30.XIV]) can be expressed in the

form ‘σ(C([0, 1]),R[0,1]) = ω1’, where here I give R[0,1] its product topology, and
write C([0, 1]) for the space of continuous real-valued functions on [0, 1]. Another
example is the ‘closure ordinal’ α(Y ) of [9], defined for linear subspaces Y of the
dual X∗ of a Banach space X , and related to the Pietetski-Shapiro rank on closed
sets of uniqueness; this is just σ(Y ) for the w∗-topology of X∗.
Most of the paper is directed towards spaces of the form Z = C(X), where X

is a topological space and C(X) is the space of continuous functions from X to R,

endowed with the pointwise topology Tp induced by the product topology of R
X .

In this case we find that

(i) Σ(C(X)) is either 0 or 1 or ω1 (Theorem 9);
(ii) if X has a countable network then σ(A) < ω1 for every A ⊆ C(X) (Propo-
sition 2 and Example 3 (b));

(iii) if there is a continuous surjection from X onto a non-meager subset of
R, then Σ(B1(C(X))) = ω1, where B1(C(X)) is the unit ball of C(X)
(Theorem 11);
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(iv) if X is compact and there is no continuous surjection from X onto [0, 1],
then Σ(C(X)) ≤ 1 (Corollary 13 (g)).

An early draft of this paper was circulated as University of Essex Mathematics
Department Research Report 91-33.

2. I begin with a result showing that σ(A) < ω1 in many of the cases of interest
here. Recall that if Z is a topological space, then a network for its topology is
a familyW ⊆ PZ such that whenever G ⊆ Z is open and z ∈ G there is aW ∈ W
such that z ∈ W ⊆ G. (Note that members of W need not themselves be open
sets. See [5, p. 127].)

Proposition. Let Z be a topological space with a countable network. Then

(a) for every B ⊆ Z there is a countable D ⊆ B such that B ⊆ s1(D);
(b) σ(A) < ω1 for every A ⊆ Z.

Proof: (a) LetW be a countable network for the topology of Z; we may suppose
that W is closed under finite intersections. Take D ⊆ B to be a countable set
meeting every member of W which meets B. If z ∈ B, let 〈Wn〉n∈N run over the
members ofW containing z. Then for each n ∈ N, W ′

n =
⋂

i≤nWi is a member of
W meeting B, so contains a member zn of D. Now if G is any open set containing
z, there is an n ∈ N such that Wn ⊆ G, so that zi ∈ G for every i ≥ n; thus
〈zn〉n∈N converges to z and z ∈ s1(D).

(b) Now if A ⊆ Z there is a countable D ⊆ Ã such that Ã ⊆ s1(D). There

must be a ξ < ω1 such that D ⊆
⋃

η<ξ sη(A), so that Ã ⊆ sξ(A) and σ(A) ≤ ξ.
�

3. Examples

(a) Separable metrizable spaces have countable networks; subspaces, continu-
ous images and countable products of spaces with countable networks have count-
able networks. ([5, 3.1.J.])

(b) Let X be a topological space with a countable network and give C(X)

the topology Tp of pointwise convergence inherited from RX . Then C(X) has
a countable network. ([5, 3.4.H(a)].)

(c) Consequently, if X is a separable Banach space, then X∗ has a countable
network for its w∗-topology. (Compare [9, §V.2, Proposition 5].)

4. The cardinal b

A further general remark about topological spaces of small character will be
useful later. Recall that the cardinal b is defined as the least cardinal of any set
F ⊆ NN which is ‘essentially unbounded’, that is, for every g ∈ NN there is an
f ∈ F such that {n : f(n) ≥ g(n)} is infinite (see [3, § 3]); and that if Z is any
topological space and z ∈ Z, then χ(z, Z) is the least cardinal of any base of
neighbourhoods of z in Z. Now we have the following:
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Proposition. Let Z be a topological space such that χ(z, Z) < b for every z ∈ Z.
Then Σ(Z) ≤ 1.

Proof: Take A ⊆ Z and z ∈ s2(A). Then there are 〈zmn〉m,n∈N, 〈zm〉m∈N such
that zmn ∈ A for all m, n, 〈zmn〉n∈N → zm for each m, and 〈zm〉m∈N → z. Let
U be a base of open neighbourhoods of z with #(U) < b. For each U ∈ U there
are mU ∈ N, fU ∈ NN such that zm ∈ U for m ≥ mU , zmn ∈ U for m ≥ mU ,
n ≥ fU (m). Because #(U) < b, there is a g ∈ NN such that {n : fU (n) > g(n)}
is finite for every U ∈ U . Now 〈zm,g(m)〉m∈N → z so z ∈ s1(A).

Thus s2(A) ⊆ s1(A) and σ(A) ≤ 1; as A is arbitrary, Σ(Z) ≤ 1. �

5. A note on trees

Recall that a partially ordered set P is well-founded if every non-empty
subset of P has a minimal element, and that for such P there is a rank function
r : P → On, the class of ordinals, given by

r(p) = min{ξ : ξ ∈ On, r(q) < ξ ∀ q < p}

for every p ∈ P . A tree is a partially ordered set T such that {u : u ≤ t} is
well-ordered for every t ∈ T ; of course a tree must be well-founded, and have
a rank function r. I will say that a tree T is well-capped if every non-empty
subset of T has a maximal element, that is, if (T,≥) is well-founded; in this case
there is a dual rank function r∗. Because all totally ordered subsets of T must
now be finite, r must be finite-valued; but r∗ need not be, and indeed we have
the following well-known fact. (See [13, p. 236].)

Notation. Write Seq for the tree
⋃

n∈N
Nn, ordered by inclusion. If t =

(n0, . . . , nr) ∈ Seq, write tai for (n0, . . . , nr, i) and i
at for (i, n0, . . . , nr).

6. Lemma. For every ordinal α < ω1 there is a non-empty well-capped subtree
Tα of Seq such that r

∗(∅, Tα) = α and every member t of Tα either has no

successors in Tα (so that r
∗(t, Tα) = 0) or has all its successors t

ai in Tα, and in

this latter case has r∗(t, Tα) = limi→∞(r
∗(tai, Tα) + 1).

Proof: Induce on α. Start with T0 = {∅}. For the inductive step to α > 0, let
〈αn〉n∈N be a sequence of ordinals such that α = supn∈N(αn+1) = limn→∞(αn+

1), and set Tα = {∅} ∪ {nat : n ∈ N, t ∈ Tαn}. �

7. Embedding trees

Let Z be a Hausdorff space. I will say that a map t 7→ zt : Seq → Z is
a sequentially regular embedding if

(i) limi→∞ zta i = zt for every t ∈ Seq;
(ii) whenever 〈ti〉i∈N is a sequence in Seq such that there are t, 〈m(i)〉i∈N with

tam(i) < ti and m(i) < m(i + 1) for every i ∈ N, then 〈zti〉i∈N has no
limit in Z;

(iii) zs 6= zt for all distinct s, t ∈ Seq.
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8. Lemma. Let Z be a Hausdorff space and t 7→ zt : Seq → Z a sequentially
regular embedding.

(a) If α < ω1 and Tα ⊆ Seq is a well-capped subtree as constructed in Lemma 6,
and A = {zt : t ∈ Tα is maximal}, then

sβ(A,Z) = {zt : t ∈ Tα, r
∗(t) ≤ β}

for every ordinal β; so that σ(A,Z) = r∗(∅) = α.
(b) Consequently Σ(Z) = ω1.

Proof: (a) The point is that if 〈ti〉i∈N is any sequence in T = Tα, then there
is a t ∈ T which is maximal subject to {i : i ∈ N, t ≤ ti} being infinite. Now
〈ti〉i∈N has a subsequence 〈t′i〉i∈N which is either constant (equal to t), or is

a subsequence of 〈tai〉i∈N, or is such that t
′
i > tam(i) for each i, with 〈m(i)〉i∈N

strictly increasing. So conditions (i) and (ii) of § 7 tell us that if 〈zti〉i∈N is
convergent, its limit must be zt, with infinitely many of the ti either equal to t or
successors of t.
An easy induction on β now shows that sβ(A) = {zt : r∗(t) ≤ β} for every β.

(b) now follows at once. �

9. Theorem. Let X be any topological space, and give C(X) the topology of
pointwise convergence. Then Σ(C(X)) must be either 0 or 1 or ω1.

Proof: Suppose that there is an A ⊆ C(X) such that σ(A,C(X)) > 1. Then
there must be a double sequence 〈fij〉i,j∈N in C(X) such that fi = limj→∞ fij is
defined in C(X) for each i ∈ N, f = limi→∞ fi is similarly defined in C(X), but f
is not the limit of any sequence in {fij : i, j ∈ N}. Setting hij(x) = i|fij(x)−fi(x)|
for i, j ∈ N and x ∈ X , we see that each hij is continuous, that limj→∞ hij = 0
for each i, but that no sequence of the form 〈hm(i),n(i)〉i∈N, where 〈m(i)〉i∈N is

strictly increasing, can be bounded in RX , since otherwise

|fm(i),n(i) − f | ≤ m(i)−1hm(i),n(i) + |fm(i) − f | → 0.

Now, for t ∈ Seq, take

Jt = {(i, j) : ∃ u, uaiaj ≤ t},

gt(x) = max({0} ∪ {hij(x) : (i, j) ∈ Jt}).

Then gt ∈ C(X), and the map t 7→ gt : Seq → C(X) satisfies the conditions (i)
and (ii) of § 7. It is not of course injective. However, if we look at the family
of rational linear combinations of the gt, this can contain only countably many
constant functions, so there is a real δ > 0 such that the constant function δχX is
not a rational linear combination of the gt. Choose a family 〈δt〉t∈Seq of distinct
rational multiples of δ such that (i) 0 ≤ δt ≤ 1 for every t (ii) limi→∞ δta i = δt
for every t. Set et = gt + δtχX for each t ∈ Seq. Now t 7→ et : Seq → C(X)
is a sequentially regular embedding in the sense of § 7. So by Lemma 8 we have
Σ(Z) = ω1. �
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10. s1-spaces

The trichotomy above is satisfyingly sharp, and it is natural to look for methods
of determining Σ(C(X)) in terms of other topological properties of X . Of course
Σ(C(X)) = 0 iff X = ∅. For brevity, I will say that an s1-space is a topological
space X such that Σ(C(X)) ≤ 1. Before going further with this, I give a theorem
which provides some relevant information and introduces a useful technique.

11. Theorem. Let X be a topological space such that there is a continuous sur-
jection from X onto a non-meager subset of R. Give C(X) and RX the topology

of pointwise convergence. Then

sup{σ(A,C(X)) : A ⊆ C(X) is uniformly bounded, sω1(A,R
X ) ⊆ C(X)} = ω1.

Proof: (a) I write ‘sω1(A,R
X )’ in order to avoid the difficulty of distinguishing

Ã, taken in RX , from Ã, taken in C(X).
Let me say that a topological space X is adequate if there is a function t 7→ ft

from Seq to a uniformly bounded subset of C(X) which is a sequentially regular

embedding of Seq into RX . The first thing to observe is that in this caseX satisfies
the conclusion of the theorem; for if α < ω1 and Tα is the corresponding tree from
Lemma 6, then A = {ft : t ∈ Tα is maximal} is a uniformly bounded subset of
C(X) such that sω1(A,R

X ) = {ft : t ∈ Tα} ⊆ C(X) and σ(A,C(X)) = α. The
second point is that if Y is adequate and h : X → Y is a continuous surjection,
thenX is adequate. For we have a map ψ : RY → RX given by writing ψ(g) = g◦h
for every g ∈ RY . This map ψ has the properties

(α) it is Tp-continuous and injective;

(β) for any sequence 〈gn〉n∈N in RY , 〈gn〉n∈N is convergent iff 〈ψ(gn)〉n∈N is
convergent;

(γ) ψ(g) is continuous whenever g is continuous;

(δ) supx∈X |ψ(g)(x)| = supy∈Y |g(y)| for all g ∈ RY .

Now it is easy to see that if t 7→ ft : Seq → C(Y ) witnesses that Y is adequate,
then t 7→ ψ(ft) : Seq→ C(X) witnesses that X is adequate.

(b) I begin with a special case. Let Y be the compact metrizable space N∪{∞},
the one-point compactification of the discrete space N. Set X0 = Y Seq, with the
compact metrizable product topology, and let D ⊆ X0 be any set which meets
every non-empty open subset of X0 in a non-meager set. For each t ∈ Seq define
ft ∈ C(D) by setting

ft(x) = 1 if there is a u < t such that x(u) 6=∞ and uax(u) ≤ t,

= 0 otherwise.

(c) The map t 7→ ft : Seq → RD is a sequentially regular embedding in the
sense of § 7. To see this, take the conditions in order.
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(i) For t ∈ Seq and n ∈ N, ftan(x) = 1 iff either ft(x) = 1 or x(t) = n.

Consequently ft = limn→∞ ftan in RX0 for every t ∈ Seq.

(ii) If t ∈ Seq, 〈m(i)〉i∈N is strictly increasing, 〈n(i)〉i∈N is any sequence in

N and tam(i)an(i) ≤ ti for every i, set

U = {x : ft(x) = 0},

Gr = {x : ∃ i ≥ r, fti(x) = 0, fti+1(x) = 1};

then because all the m(i) are distinct, U \Gr is nowhere dense for every r, and
U \

⋂
r∈N

Gr is meager. Accordingly there is a point x ∈ D ∩
⋂

r∈N
Gr; but now

limi→∞ fti(x) cannot exist, so that 〈fti〉i∈N has no limit in RD.

(iii) Of course all the ft are distinct, because D is dense in X0.

(d) Thus D is adequate whenever D ⊆ X0 meets every non-empty open subset
of X0 in a non-meager set. In particular, X0 itself is adequate. But X0, being
compact, metrizable, zero-dimensional, non-empty and without isolated points, is
homeomorphic to the Cantor set X1 ⊆ [0, 1] ([5, 6.2.A(c)]), so X1 is adequate.

Now observe that there is a linear map φ : RX1 → R[0,1] such that φ has the
properties (α)-(δ) of part (a) of this proof. This is a special case of Dugundji’s
theorem ([4]), but it can be easily proved directly; just take φ(f) to be the exten-
sion of f whose graph is a straight line on the closure of each of the components
of [0, 1] \ X1. So the argument of (a) applies here also, and [0, 1] is adequate.
Moreover, if X is any topological space such that [0, 1] is a continuous image of
X , then X will be adequate.

(e) Now let D be any non-meager subset of R. If D includes some non-
empty closed interval [a, b], then [a, b] is a continuous image of D (under the map
x 7→ max(a,min(x, b))), and [a, b], being homeomorphic to [0, 1], is adequate; so
D is also adequate. So let us suppose that R \ D is dense in R. Next, there
must be a non-trivial interval [a, b], with endpoints in D, such that D ∩ U is
non-meager for every non-empty open U ⊆ [a, b]; set D′ = D ∩ [a, b], so that, as
above, D′ is a continuous image of D. Now let Q be a countable dense subset of
[a, b]\D. Then [a, b]\Q is a non-empty Gδ subset of R without isolated points, so

is homeomorphic to NN ([5, 6.2.A(a)]; [12, § 36.II]) and therefore to NSeq, which
is a dense Gδ subset of X0. This homeomorphism carries D

′ to a subset D′′ of
X0 which meets every non-empty open subset of X0 in a non-meager set, and is
therefore adequate. So D′ and D are also adequate.

(f) Finally, if X is such that some non-meager subset of R is a continuous
image of X , then X is adequate, putting (a) and (e) together. This proves the
theorem. �

12. In particular, if X is an s1-space, any continuous image of X in R is meager.
But this is by no means the whole story. I continue the argument with some
general remarks on s1-spaces.
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Proposition. Let X be a topological space, and give C(X) the topology of
pointwise convergence; write B1(C(X)) for its unit ball, that is, the space of
continuous functions from X to [−1, 1]. Then the following are equivalent:

(i) X is an s1-space;
(ii) Σ(B1(C(X))) ≤ 1, that is, σ(A,C(X)) ≤ 1 for every uniformly bounded
set A ⊆ C(X);

(iii) whenever 〈fmn〉m,n∈N is a uniformly bounded double sequence in C(X)
such that limn→∞ fmn = 0 for each m, there are sequences 〈m(i)〉i∈N,

〈n(i)〉i∈N such that 〈m(i)〉i∈N is strictly increasing and limi→∞ fm(i),n(i)
= 0;

(iv) whenever 〈fmn〉m,n∈N is a double sequence in C(X) such that
limn→∞ fmn = 0 for every m, then there is an infinite I ⊆ N such that

limm→∞ fm,k(m) = 0 whenever 〈k(m)〉m∈N is a strictly increasing se-

quence in I;
(v) h[X ] is an s1-space for every continuous h : X → R.

Proof: (a)(i)⇒(iv) Suppose that X is an s1-space, and let 〈fmn〉m,n∈N be
a double sequence in C(X) such that limn→∞ fmn = 0 for every m. Set

gmn(x) = 2
−m + 2−n +max

i≤m
|fin(x)|

for m,n ∈ N and x ∈ X . Then limm→∞ limn→∞ gmn = 0 in C(X), so there
is a sequence in A = {gmn : m, n ∈ N} converging to 0, because 0 ∈ s2(A) =
s1(A). This sequence is of the form 〈gr(i),s(i)〉i∈N where 〈r(i)〉i∈N, 〈s(i)〉i∈N are

sequences in N; because gmn(x) ≥ 2−m + 2−n for all m,n and x, we must have
limi→∞ r(i) = limi→∞ s(i) = ∞, and we may take it that both sequences are
strictly increasing. Set I = {s(i) : i ∈ N}. If 〈k(m)〉m∈N is any strictly increasing
sequence in I, then for each m ∈ N there is an im ∈ N such that s(im) = k(m),
and m ≤ im ≤ r(im) for each m, so

|fm,k(m)| ≤ gr(im),s(im) → 0

as m→ ∞.

(b)(iv)⇒(iii) is trivial.

(c)(iii)⇒(i)Assume (iii); let A be any subset ofC(X) and take g ∈ s2(A,C(X)).
Then there is a double sequence 〈gmn〉m,n∈N in A such that gm = limn→∞ gmn

is defined in C(X) for each m and g = limm→∞ gm. Set

fmn = min(1, |gmn − gm|) for m,n ∈ N.

By (iii), there are sequences 〈m(i)〉i∈N, 〈n(i)〉i∈N such that 〈m(i)〉i∈N is strictly
increasing and limi→∞ fm(i),n(i) = 0. Then

0 = lim
i→∞

|gm(i),n(i) − gm(i)| = lim
i→∞

gm(i),n(i) − g,
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and g ∈ s1(A). As A, g are arbitrary, Σ(C(X)) ≤ 1, as required.

(d)(i)⇒(ii) is trivial. For (ii)⇒(iii), use the arguments of (a).

(e)(i)⇒(v) If h : X → R is continuous and 〈fmn〉m,n∈N is a double sequence
in C(h[X ]) such that limn→∞ fmn = 0 for every m, then limn→∞ fmn ◦ h = 0
in C(X) for every m, so there are sequences 〈m(i)〉i∈N, 〈n(i)〉i∈N such that
〈m(i)〉i∈N is strictly increasing and limi→∞ fm(i),n(i) ◦ h = 0 in C(X); now

limi→∞ fm(i),n(i) = 0 in C(h[X ]).

(f)(v)⇒(iii) Assume (v), and let 〈fmn〉m,n∈N be a double sequence in C(X)

such that limn→∞ fmn = 0 for each m. Define h : X → RN×N by setting
h(x)(m,n) = fmn(x); then h is continuous. Theorem 11 tells us that [0, 1] is
not a continuous image of h[X ]. Thus h[X ] is zero-dimensional; being separable
and metrizable, it is homeomorphic to a subset of R ([5, 6.2.16 and 3.1.28]),
and is therefore an s1-space. Setting gmn(y) = y(m,n) for m,n ∈ N and
y ∈ h[X ], we have limn→∞ gmn = 0 for each m, so (because (i)⇒(iv)) there
is a sequence 〈k(m)〉m∈N such that limm→∞ gm,k(m) = 0 in C(h[X ]), and now

limm→∞ fm,k(m) → 0 in C(X). Because (iii)⇒(i), X is an s1-space, as claimed.
�

13. Corollary. (a) A continuous image of an s1-space is an s1-space.
(b) Let X be a topological space expressible as

⋃
r∈N

Xr where each Xr is an

s1-space. Then X is an s1-space.
(c) Let X be a normal s1-space. Then all zero sets and all cozero sets in X are

s1-spaces.

(d) Let X be a metrizable s1-space. Then all open sets, closed sets and Fσ sets

in X are s1-spaces.
(e) Let X be a topological space and µ a finite measure defined on the σ-

algebra generated by the zero sets in X . If every µ-negligible subset of X is an
s1-space, then X itself is an s1-space.
(f) In particular, if X ⊆ R meets every Lebesgue negligible subset of R in

a countable set (e.g., if X is a Sierpiński set), then X is an s1-space.
(g) If X is a compact space, then X is an s1-space iff [0, 1] is not a continuous

image of X .

Proof: (a) By 12 (v), or otherwise.

(b) Let 〈fmn〉m,n∈N be a double sequence in C(X) such that limn→∞ fmn = 0
for eachm. By (i)⇒(iv) of Proposition 12 we may choose inductively a decreasing
sequence 〈Ir〉r∈N of infinite subsets of N such that limm→∞ fm,k(m)(x) = 0 when-

ever x ∈ Xr and 〈k(m)〉m∈N is a strictly increasing sequence in Ir . If we now take
〈k(m)〉m∈N to be a strictly increasing sequence such that {m : k(m) /∈ Ir} is finite
for every r, then limm→∞ fm,k(m) = 0 in C(X). By (iii)⇒(i) of Proposition 12,
X is an s1-space.

(c) Let F ⊆ X be a zero set, and 〈fmn〉m,n∈N a uniformly bounded double
sequence in C(F ) such that limn→∞ fmn = 0 for every m ∈ N. For each m, n
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let f ′mn be a continuous extension of fmn to the whole of X , still bounded by the
uniform bounds of the fmn. Let g : X → R be a continuous function such that
F = g−1[{0}]. For x ∈ X , n ∈ N set gn(x) = max(0, 1 − 2n|g(x)|). Set f ′′mn =
f ′mn × gn for m,n ∈ N; then limn→∞ f ′′mn(x) = 0 for x ∈ X , m ∈ N. Because X
is an s1-space, there is a sequence 〈k(m)〉m∈N such that limm→∞ f ′′

m,k(m) = 0 in

C(X), and now limm→∞ fm,k(m) = 0 in C(F ). Because 〈fmn〉m,n∈N is arbitrary,
F is an s1-space.
Now a cozero set in X is a countable union of zero sets, so is an s1-space by (b).

(d) Put (b) and (c) together.

(e) Let 〈fmn〉m,n∈N be a double sequence in C(X) such that limn→∞ fmn = 0
for every m. For m ∈ N take l(m) ∈ N such that

µ(
⋃

i≥l(m)

{x : |fmi(x)| ≥ 2
−m}) ≤ 2−m.

Set
E =

⋂

p∈N

⋃

m≥p,i≥l(m)

{x : |fmi(x)| ≥ 2
−m};

then µE = 0, so E is an s1-space and by (i)⇒(iv) of Proposition 12 there is an
infinite I ⊆ N such that limm→∞ fm,k(m)(x) = 0 whenever x ∈ E and 〈k(m)〉m∈N

is a strictly increasing sequence in I. Choose such a sequence such that k(m) ≥
l(m) for every m; then limm→∞ fm,k(m)(x) = 0 for every x ∈ X . By (iii)⇒(i) of
Proposition 12, X is an s1-space.

(f) follows immediately (using (b), if you wish, to deal with the fact that
Lebesgue measure is σ-finite rather than totally finite).

(g) If [0, 1] is a continuous image of X , then X cannot be an s1-space, by
Theorem 11. On the other hand, if [0, 1] is not a continuous image of X , then
every metrizable continuous image of X is countable, therefore an s1-space, and
X is an s1-space.

14. The structure of s1-spaces

Proposition 12 suggests that in order to describe s1-spaces in general we should
investigate their images under real-valued continuous functions. Theorem 11 tells
us that if X has a non-meager continuous image in R then it cannot be an s1-
space; in particular, if [0, 1] is a continuous image of X then X is not an s1-

space. We can go a little further. Suppose that X is a subspace of NN which is
essentially unbounded in the sense of § 4; then X is not an s1-space, because if
we write fmn(x) = 1 if x(m) ≥ n, 0 otherwise, then limn→∞ fmn = 0 in C(X)
but limm→∞ fm,k(m) 6→ 0 for any sequence 〈k(m)〉m∈N. Thus we can say that

if X is an s1-space, then neither [0, 1] nor any essentially unbounded subset of

NN can be a continuous image of X . We also have a description of the least
cardinal of any space which is not an s1-space. This must be b; for if #(X) < b,
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then χ(f, C(X)) ≤ max(ω,#(X)) < b for every f ∈ C(X), so Σ(C(X)) ≤ 1 by
Proposition 4, while there is an essentially unbounded set X ⊆ NN of cardinal b,
and this X is not an s1-space.
If we look at the family S of s1-subsets of R, we see that S is closed under

continuous images, countable unions and intersection with Fσ sets ((a), (b) and
(d) of Corollary 13). I believe that I have an example, subject to the continuum
hypothesis, of an X ∈ S such that X \ Q /∈ S (see [6, § 1]); in particular, Gδ

subsets of s1-spaces need not be s1-spaces.
It is natural to think of s1-spaces as ‘thin’. Among the familiar classes of ‘thin’

sets, the most immediately relevant is the class of ‘γ-spaces’ of [7]; these are all
s1-spaces because if X is a γ-space then C(X), with the pointwise topology, is
a Fréchet-Urysohn space ([7, § 2, Theorem 2]). A Sierpiński set in R cannot be
a γ-space, while a Lusin set cannot be an s1-space; so (under the continuum
hypothesis) there is an s1-space which is not a γ-space, and there is a set with
Rothberger’s property (that is, all its continuous images in R have strong mea-
sure 0) which is not an s1-space.
Again using the continuum hypothesis, it is easy to construct two Sierpiński

sets X , Y ⊆ R such that X +Y = R; so that X and Y are s1-spaces while X ×Y
is not (because X + Y is a continuous image of X × Y ).
It is perhaps worth remarking that (at least if the continuum hypothesis is

true) there is an s1-space X with a double sequence 〈fmn〉m,n∈N in C(X) such
that limn→∞ fmn = 0 for every m, but for every sequence 〈k(m)〉m∈N in N and
every infinite J ⊆ N there are 〈n(m)〉m∈N, x ∈ X such that n(m) ≥ k(m) for
every m and lim supm∈J,m→∞ fm,n(m) > 0 ([6, 1C]).

15. Problems
(a) The problem arises: if X is a topological space such that neither [0, 1] nor

any essentially unbounded subset of NN is a continuous image of X , must X be
an s1-space? For compact spaces, this is true, by 13 (g). Of course it is enough to
consider subspaces of R. Note that if E is a non-meager subset of R, then either E
includes an interval and [0, 1] is a continuous image of E, or R \E is dense and E
is homeomorphic to a non-meager subset of R\Q, which is in turn homeomorphic

to a non-meager subset of NN, which must be essentially unbounded; so if neither
[0, 1] nor any essentially unbounded subset of NN is a continuous image of X ,
then nor is any non-meager subset of R. It is consistent to suppose that every
subset of R of cardinal b is meager (add ω2 random reals to a model of ZFC +
CH); in these circumstances there will be an X , not an s1-space, such that every
continuous image of X in R is meager.
(b) Another problem arises if we look at uniformly bounded sets. Writing

B1(C(X)) for the unit ball of C(X), I do not know whether Σ(B1(C(X))) is al-
ways equal to Σ(C(X)), even though Σ(B1(C(X))) ≤ 1 iff Σ(C(X)) ≤ 1 (Propo-
sition 12). The methods of Theorem 11 may be relevant; they show, in particular,
that for compact X we do have Σ(B1(C(X))) = Σ(C(X)). I believe that I can
prove the same equality for metrizable X ([6, § 2]).
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(c) In 13 (b) we saw that a countable union of s1-spaces is an s1-space. Of
course the union of b s1-spaces need not be an s1-space. But is the union of fewer
than b spaces necessarily an s1-space, even when b > ω1?

16. Weak topologies on Banach spaces

Some of the interest of the pointwise topology on C(X) for compact Hausdorff
spaces X arises from the study of weak topologies on Banach spaces. If E is
a normed space with dual E∗, and X is the unit ball of E∗ with the w∗-topology
Ts(E

∗, E), then X is a compact Hausdorff space and E, with its weak topology
Ts(E,E

∗), can be identified with a subspace of C(X), which if E is a Banach
space is Tp-closed, by Grothendieck’s theorem ([10, 21.9.(4)]).
If we now examine the possible values of Σ(E), we get a sharp dichotomy just

as in Theorem 9.

17. Theorem. Let E be a normed space, with its weak topology Ts(E,E
∗).

(a) If every weakly convergent sequence in E is norm-convergent, then
Σ(E) ≤ 1.

(b) If there is a weakly convergent sequence in E which is not norm-con-
vergent, then Σ(E) = ω1.

Proof: (a) If weakly convergent sequences in E are norm-convergent, then σ(A),
for the weak topology, is always equal to σ(A) for the norm topology; but the
latter is metrizable, so σ(A) is never greater than 1, for any A ⊆ E.

(b) Otherwise, there is a sequence which converges to 0 for the weak topology,
but is bounded away from 0 for the norm; dividing each term of the sequence
by its norm, we obtain a sequence 〈xn〉n∈N of vectors of norm 1 which is weakly
convergent to 0. Now enumerate Seq as 〈un〉n∈N. For t ∈ Seq set

zt =
∑

{4mxn : m, n ∈ N, um < un ≤ t}.

Recalling that any Ts(E,E
∗)-convergent sequence must be norm-bounded ([2,

§ II.3, Theorem 1]), it is easy to see that the map t 7→ zt : Seq → E satisfies the
conditions (i) and (ii) of § 8. Now, just as in the proof of Theorem 9, we can take
any non-zero e ∈ E and find a family 〈δt〉t∈Seq in [0, 1] such that t 7→ zt + δte is
a sequentially regular embedding. So Lemma 8 gives the result. �

18. Remarks

(a) Alternative (a) of the dichotomy above is the ‘Schur property’. The sim-
plest non-trivial example is E = ℓ1(I) for any set I ([10, 22.4.(2)]; [8, 27.13]). For
further examples see [1, Chapter V].

(b) Note that Theorem 17 really seems to differ from Theorem 9 because [0, 1]
is a continuous image of the unit ball of E∗ for any non-trivial normed space
E; moreover, if E∗ is norm-separable, then bounded subsets of E are metrizable
for Ts(E,E

∗), so that the sets A of Theorem 17 certainly cannot be taken to be
bounded. Again, if E is separable, the unit ball of E∗ will be w∗-metrizable, so
that σ(A) < ω1 for every A ⊆ E, by §§ 2–3 above.
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