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On maximum principle for weak subsolutions

of degenerate parabolic linear equations

Salvatore Bonafede

Abstract. Sufficient conditions are obtained so that a weak subsolution of (0.1), bounded
from above on the parabolic boundary of the cylinder Q, turns out to be bounded from
above in Q.
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Classification: 35B50, 35K10, 35K65

1. Introduction

In a recent Note [1] this author has indicated sufficient conditions allowing

a weak subsolution (1) of the parabolic differential equation

(0.1) −

m
∑

1

i
∂

∂xi

(

m
∑

1

jaij
∂u

∂xj
+ diu

)

+

(

m
∑

1

ibi
∂u

∂xi
+ cu− f

)

+
∂u

∂t
= 0

bounded from above on the parabolic boundary of the cylinder Q, to turn out
to be bounded from above in Q, assuming the ellipticity condition to be of the
following kind:

m
∑

1

ijaij(x, t)ξiξj ≥ µ

m
∑

1

iξ
2
i

with µ = ν(x)ψ(t), ν and ψ satisfactory hypotheses sufficiently general.
Such results do not generally require the subsolutions of (0.1) to have second

derivatives with respect to the space variables or the derivative with respect to t.
In this Note similar results are obtained regarding a class of subsolutions less

weak as compared to the ones considered in [1], working, however, on more re-
strictive hypotheses concerning the functions f and ψ.
Moreover, the comparison between these results and the results cited above

would require either the functions ψ and ψ−1 to be essentially bounded, or,
working on more restrictive hypotheses concerning the coefficients of (0.1), ψ ∈

C0(]0, T [) ∩ L∞(0, T ) and ψ−1 to be r-integrable with r ≥ 1.(2) When µ is

(1) see Definition 1, p. 134 of [1].
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constant, sufficient conditions for the boundedness of weak subsolutions may be
obtained from [2], [6] and [9], whilst the case where µ depends on x and t has
been studied by A.V. Ivanov in [4] (see Theorem 5.3) but with a further hypoth-
esis (Condition II) obviously limiting the kind of degeneration (with respect to
the variable t) and which has been suppressed in [4] (see the remark at p. 41),
assuming, however, that the subsolutions have square-integrable derivative on t.

2. Functional spaces

Let R
m be the Euclidean m-dimensional space having generical point x ≡

(x1, . . . , xm), Ω an open and bounded set of R
m, T a positive number.

The symbol measx(meas) will henceforth indicate the m-dimensional (m + 1-
dimensional) LEBESGUE’s measure.
If u(x, t) is a function defined in Q and k is a real number, we will indicate

with Ω(t, k), t ∈ ]0, T [, the set of points of Ω in which u(x, t) > k.

Hypothesis 2.1. Let ν(x) be a positive function defined in Ω such that:

ν(x) ∈ L1(Ω), ν−1(x) ∈ L1loc(Ω).

H̃1(ν,Ω) indicates the completion of C1(Ω̄) with respect to the norm

‖u‖1 =

(

∫

Ω

(

|u|2 +

m
∑

1

iν(x)

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

2
)

dx

)1/2

.

H̃10 (ν,Ω) is the closure of C
∞
0 (Ω) in H̃

1(ν,Ω).

Hypothesis 2.2. Let ψ(t) be a positive function defined in ]0, T [ such that:

ψ(t) ∈ L1(0, T ).

H̃1,0(νψ,Q(τ1, τ2)) (0 ≤ τ1 < τ2 ≤ T ) stands for the completion ofC1(Q(τ1, τ2))
with respect to the norm

‖u‖1,0,(τ1,τ2) =

(

∫

Q(τ1,τ2)

(

|u|2 +
m
∑

1

iν(x)ψ(t)

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

2
)

dx dt

)1/2

;

‖u‖1,0 = ‖u‖1,0,(0,T ) .

H̃1,0(νψ,Q(τ1, τ2)) is a HILBERT space with respect to the norm ‖u‖1,0,(τ1,τ2).
0

H̃1,0(νψ,Q(τ1, τ2)) (0 ≤ τ1 < τ2 ≤ T ) is the closure of C∞
0 (Q(τ1, τ2)) in

H̃1,0(νψ,Q(τ1, τ2)).

Finally, we will denote with
∗
H1,0(νψ,Q) the space of functions u(x, t) belonging

to H̃1,0(νψ,Q), continuous in [0, T ] with respect to values in L2(Ω).

(2) if ψ ∈ C0(]0, T [) ∩ L1(0, T ) and ψ−1 ∈ L1loc(0, T ), the space C
∞

0 (Q) is dense in: Wψ =n
w |w ∈ L2ψ(0, T ;H

1
0 (ν,Ω)), wt ∈ L2

1/ψ
(0, T ;L2(Ω)), w(x, 0) = w(x, T ) = 0 a.e. in Ω

o
endowed

with the graph norm.
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Hypothesis 2.3. Let us assume that:

ψ, ψ−1 ∈ L∞
loc(0, T ) .

(3)

Definition 1. We will say that a subsolution of the equation (0.1) is a function

u(x, t) ∈
∗
H1,0(νψ,Q) such that

(2.1)

∫

Q

{

m
∑

1

ijaij
∂u

∂xj

∂ϕ

∂xi
+

m
∑

1

ibi
∂u

∂xi
ϕ+ cuϕ+

m
∑

1

idiu
∂ϕ

∂xi
−

−u
∂ϕ

∂t

}

dx dt ≤

∫

Q
fϕ dx dt

for any ϕ ∈ C∞
0 (Q) such that ϕ(x, t) ≥ 0 a.e. in Q.

Definition 2. Given a real number k, if u ∈ H̃1,0(νψ,Q(τ1, τ2)) (0 ≤ τ1 < τ2 ≤
T ), we will say that u(x, t) ≤ k on ∂Ω× [τ1, τ2] if there exists a sequence {un} of

functions of C1(Q(τ1, τ2)) such that

un(x, t) ≤ k on ∂Ω× [τ1, τ2]

and

(2.2) lim
n→∞

‖un − u‖1,0,(τ1,τ2) = 0 .

If k is such that u(x, t) ≤ k on ∂Ω× [τ1, τ2], we will say that u(x, t) is bounded
from above on ∂Ω × [τ1, τ2]. In this case, the symbol sup

[τ1,τ2]

∗u stands for the

greatest lower bound of the real numbers k such that u(x, t) ≤ k on ∂Ω× [τ1, τ2];

sup ∗ u = sup
[0,T ]

∗u .

Definition 3. We shall say that a function u(x, t) belonging to
∗
H1,0(νψ,Q) is

bounded from above on (Ω × {t = 0}) ∪ (∂Ω × [0, T ]) if u(x, 0) is bounded from
above in Ω and, also, if u(x, t) is bounded from above on ∂Ω× [0, T ].

(3) hypotheses 2.2 and 2.3 do not imply ψ and ψ−1 to be essentially bounded in ]0, T [; e.g.
it will be sufficient to consider:

ψ(t) =

( √
t 0 < t ≤ 1

2

(
√
1− t)−1 1

2
< t ≤ 1 .
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3. Hypotheses on coefficients

Let us denote with A the set of pairs (α∗, α), with 2 ≤ α∗, α ≤ +∞, such that
there exists a positive constant β for which

‖u‖α∗,α ≤ β(‖u‖2,∞ + ‖u‖1,0)
(4)

for any u ∈ L2,∞(Q) ∩ H̃1,0(νψ,Q). The set A obviously contains the pair
(2,+∞). Let us indicate with B the subset of A formed by the pairs (α∗, α) with
2 < α∗, α < +∞.
We will need the following

Hypothesis 3.1. The set B is not empty. (5)

It is therefore reasonable to postulate the following hypotheses on the coeffi-
cients of (0.1):

Hypothesis 3.2. The functions ai,j , bi, c, di, f (i, j = 1, . . . ,m) are defined and
measurable in Q;

ai,j(νψ)
−1 ∈ L∞(Q) , bi(νψ)

−1/2 ∈ Lp
∗,p(Q) ,

c ∈ Lq
∗,q(Q) , di(νψ)

−1/2 ∈ Lr
∗,r(Q) , f ∈ Lg

∗,g(Q) ,

where p∗, p, q∗, q, r∗, r, g∗, g are to be such that 2 < 2g∗, 2g < +∞
1

p∗
+
1

α∗1
=
1

2
,
1

p
+
1

α1
=
1

2
,
1

q∗
+
2

α∗2
= 1

1

q
+
2

α2
= 1 ,

1

r∗
+
1

α∗3
=
1

2
,
1

r
+
1

α3
=
1

2

1

g∗
+
2

α∗4
< 1 ,

1

g
+
2

α4
< 1

with (α∗1, α1), (α
∗
2, α2), (α

∗
3, α3), belonging to A and (α

∗
4, α4) belonging to B.

Moreover, if p = +∞ [q = +∞, r = +∞] and p∗ < +∞ [q∗ < +∞, r∗ < +∞],
then there exists a function η1(σ) [η2(σ), η3(σ)], defined for σ ≥ 0, non decreasing,
vanishing for σ approaching zero, having such a property as to give, for almost
any t in the interval ]0, T [:

m
∑

1

i





∫

E

(

|bi(x, t)|
√

ν(x)

)p∗

dx





1/p

≤ η1(σ)
√

ψ(t)

[(∫

E
(|c(x, t)| − c(x, t))q

∗

dx

)1/q

≤ η2(σ) ,

m
∑

1

i





∫

E

(

|di(x, t)|
√

ν(x)

)r∗

dx





1/r

≤ η3(σ)
√

ψ(t)

]

(4) if 1 ≤ p, q ≤ +∞, ‖ ·‖p,q,(τ1,τ2) stands for the norm in Lp,q(Q(τ1, τ2)) (0 ≤ τ1 < τ2 ≤ T );

‖ · ‖p,q = ‖ · ‖p,q,(0,T ) .
(5) sufficient conditions so that Hypothesis 3.1 holds may be obtained from § 2 of [7].
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for all measurable subsets E of Ω such that measxE ≤ σ.

Hypothesis 3.3. The following inequality results a.e. in Q for all the real num-
bers ξ1, ξ2, . . . , ξm

m
∑

1

ijaij(x, t)ξiξj ≥ ν(x)ψ(t)

m
∑

1

iξ
2
i .

Hypothesis 3.4. There exists a nonnegative constant ̺:

c−

m
∑

1

i
∂di

∂xi
≥ −̺

in the distributional sense over Q.

In § 5 we will prove the following

Theorem. Let us assume Hypotheses 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 3.4 hold and let
u(x, t) be a subsolution of the equation (0.1) bounded from above on (Ω × {t =
0}) ∪ (∂Ω× [0, T ]). Then u is bounded from above in Q; moreover,

ess sup
Q

u ≤ e̺T {max(0, ess sup
Ω

u(x, 0), sup ∗u) + γ‖f‖g∗,g}. (6)

4. Preliminary lemmas

Lemma 4.1. Let u ∈ H̃1,0(νψ,Q(τ1, τ2)) (0 ≤ τ1 < τ2 ≤ T ) bounded from
above on ∂Ω× [τ1, τ2] and h > sup

[τ1,τ2]

∗u, then there exists a sequence of functions

{Uν}ν such that

Uν ∈ C1(Q(τ1, τ2)), Uν(x, t) < h on ∂Ω× [τ1, τ2]

for any ν ∈ N and
lim
ν→∞

‖Uν − u‖1,0,(τ1,τ2) = 0 .

(6) having fixed a number

l ≥ max(1, T, β,measi Ω,
mX
1

i‖
bi(x, t)√
νψ

‖p∗,p, ‖c‖q∗,q,
mX
1

i‖
di(x, t)√

νψ
‖r∗,r)

if p < +∞ or p∗ = p = +∞, q < +∞ or q∗ = q = +∞, r < +∞ or r∗ = r = +∞, γ stands
for a constant dependent on m, p, q, r, l. If p = +∞ [q = +∞, r = +∞] and p∗ < +∞
[q∗ < +∞, r∗ < +∞] γ stands for a constant dependent on m, p, q, r, l, η1(σ) [η2(σ), η3(σ)].
The constants dependent on the same arguments will be denoted with the same symbol although
their values are different.
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It is possible to get, for any ν ∈ N, a sequence {uν,n}n such that:

uν,n ∈ C1(Q(τ1, τ2)), uν,n < h+
1

ν
on ∂Ω× [τ1, τ2] for any n ∈ N

and
lim
n→∞

‖uν,n − u‖1,0,(τ1,τ2) = 0 .

Let us fix nν ∈ N such that ‖uν,nν − u‖1,0,(τ1,τ2) <
1
ν , and assume for any

ν ∈ N, Uν = uν,nν −
1
ν .

We get Uν ∈ C1(Q(τ1, τ2)), Uν(x, t) < h on ∂Ω × [τ1, τ2] for any ν ∈ N and
also:

‖Uν − u‖1,0,(τ1,τ2) ≤ ‖uν,n − u‖1,0,(τ1,τ2) +
1

ν
(measQ)1/2 .

Lemma 4.2. Let u ∈ H̃1,0(νψ,Q(τ1, τ2)) (0 ≤ τ1 < τ2 ≤ T ) bounded from above
on ∂Ω× [τ1, τ2] and k > sup

[τ1,τ2]

∗u, then v = u −min(u, k) in Q(τ1, τ2) belongs to

0

H̃1,0(νψ,Q(τ1, τ2)).
(7)

Let us fix k1 : sup
[τ1,τ2]

∗u < k1 < k, then (Lemma 4.1) there exists a sequence of

functions {un}n such that

un(x, t) ∈ C1(Q(τ1, τ2)), un(x, t) < k1 on ∂Ω× [τ1, τ2] for any n ∈ N

and (2.2) holds.

As un < k1 on ∂Ω × [τ1, τ2], un is uniformly continuous in Q(τ1, τ2), it is
possible to determine a δ = δ(n), δ > 0 such that for any (x, t) belonging to

Q(τ1, τ2) with
d((x, t), ∂Ω× [τ1, τ2]) < δ ,

we get: un(x, t) < k.

Consequently, assuming ψn = un −min(un, k) in Q(τ1, τ2), for any n ∈ N, we
get:

‖ψn‖
2
1,0,(τ1,τ2)

≤ 2‖un‖
2
1,0,(τ1,τ2)

+ 2k2measQ(τ1, τ2) and(4.1)

supp{ψn(x, t)} ⊂ Ω× [τ1, τ2].
(8)

We call, for µ ∈ N great enough, αµ(t) the characteristic function of the interval

]τ1 +
1
µ , τ2 −

1
µ [ and we assume in Q(τ1, τ2) : χµ,n = αµ(t)ψ(x, t).

(7) the function v does not generally belong to H̃1,0(νψ, Q(τ1, τ2)).
(8) if g : C → R, we denote with the symbol supp{g} the support of g in C.
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The functions χµ,n,
∂χµ,n
∂xi

(i = 1, 2, . . . ,m) are bounded and have a compact

support in Q(τ1, τ2) for any µ, n ∈ N; moreover,

(4.2) lim
n→∞ ‖χµ,n − ψn‖1,0,(τ1,τ2) = 0 .

Thus, fixed µ and n, a sequence {dλ} of nonnegative equibounded functions of
C∞
0 (Q(τ1, τ2)) converging a.e. in Q(τ1, τ2) to χµ,n can be constructed via a well-

known regularization procedure; (9) moreover, also the functions in the sequence

{∂dλ∂xi
}λ are equibounded in Q(τ1, τ2) and the sequence converges to

∂χµ,n
∂xi

a.e. in

Q(τ1, τ2) (i = 1, 2, . . . ,m).
We deduce from LEBESGUE’s theorem that the function χµ,n belongs to

0

H̃1,0(νψ,Q(τ1, τ2)) for any µ, n ∈ N.
Recalling (4.1) and (4.2), it is also proved that, for any n ∈ N,

ψn ∈
0

H̃1,0(νψ,Q(τ1, τ2)).

From (4.1) we deduce that a subsequence {ψnk}k weakly converging in
0

H̃1,0(νψ,Q(τ1, τ2)) can be obtained from the sequence {ψn}n.
On the other hand, ψn converges to v in L

2(Q(τ1, τ2)), so that

v ∈
0

H̃1,0(νψ,Q(τ1, τ2)).
(10)

Remark 4.1. In the particular case where u ∈ C1(Q(τ1, τ2)) and k > u on

∂Ω × [τ1, τ2], the function v = u − min(u, k) is the limit in
0

H̃1,0(νψ,Q(τ1, τ2))
of a sequence {dλ}λ of nonnegative equibounded functions of C

∞
0 (Q(τ1, τ2)) such

that the functions of the sequence {∂dλ∂xi
}λ are equibounded (i = 1, 2, . . . ,m).

Lemma 4.3. Let us assume that Hypotheses 2.1, 2.2, 2.3, 3.1, 3.2, hold and let
u(x, t) be a subsolution of the equation (0.1) bounded from above on (Ω × {t =
0}) ∪ (∂Ω× [0, T ]). Then, if 0 ≤ τ̃1 < τ < T and k > sup∗ u, we get

(4.3)

∫

Q(τ̃1,τ)

{

m
∑

1

ijaij
∂v

∂xi

∂v

∂xj
+

m
∑

1

ibi
∂v

∂xi
v + cuv+

+

m
∑

1

idiu
∂v

∂xi

}

dx dt+
1

2

∫

Ω
v2(x, τ) dx ≤

≤

∫

Q(τ̃1,τ)
fv dx dt+

1

2

∫

Ω
v2(x, τ̃1) dx

(9) see, e.g. [3, pp. 109–110].
(10) we get |v − ψnk

| ≤ |u− unk
| a.e. in Q(τ1, τ2) for any k ∈ N.
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where v = u−min(u, k) in Q. (11)

Let τ̃1, τ be such that 0 < τ̃1 < τ < T ; setting τ1 =
τ+T
2 , we denote with

C∞
τ (Q) the set formed by those nonnegative functions of C

∞
0 (Q) whose support

is contained in Q(0, τ1). Let ϕ(x, t) be a function of C
∞
τ (Q), we extend u, ϕ and

the coefficients of (0, 1) in Ω×]−∞,+∞[, assuming that these functions are equal
to zero in those points where they are not defined.
Set τ2 =

T−τ
2 , we then define in Ω×]−∞,+∞[ and for any integer ̺:

Φ̺(x, t) =
̺

τ2

∫ t

t−(τ2/̺)
ϕ(x, λ) dλ , U̺(x, t) =

̺

τ2

∫ t+(τ2/̺)

t
u(x, λ) dλ ,

Ai,̺(x, t) =
̺

τ2

∫ t+(τ2/̺)

t

m
∑

1

jaij(x, λ)
∂u(x, λ)

∂xi
dλ ,

B̺(x, t) =
̺

τ2

∫ t+(τ2/̺)

t

m
∑

1

ibi(x, λ)
∂u(x, λ)

∂xi
dλ ,

C̺(x, t) =
̺

τ2

∫ t+(τ2/̺)

t
c(x, λ)u(x, λ) dλ , F̺(x, t) =

̺

τ2

∫ t+(τ2/̺)

t
f(x, λ) dλ ,

Di,̺(x, t) =
̺

τ2

∫ t+(τ2/̺)

t
di(x, λ)u(x, λ) dλ .

(12)

From (2.1), in correspondence with ϕ = Φ̺(x, t), via an exchange in the order
of the integrations with respect to t and λ, we get:

(4.4)

∫

Q

{

m
∑

1

iAi,̺
∂ϕ

∂xi
+B̺ϕ+ C̺ϕ+

m
∑

1

iDi,̺
∂ϕ

∂xi
+
∂U̺

∂t
ϕ

}

dx dt ≤

≤

∫

Q
F̺ϕdxdt

for all ϕ belonging to the functional class C∞
τ (Q).

Let h2 : sup
∗ u < h2 < k. Because h2 > sup

∗ u, there exists a sequence of
functions {un}n such that un ∈ C1(Q), un < h2 on ∂Ω×[0, T ] and satisfying (2.2).
For all pairs of positive integer numbers ̺ and n, we assume:

U̺,n(x, t) =
̺

τ2

∫ t+(τ2/̺)

t
un(x, λ) dλ ;

the function U̺,n(x, t) is defined in the closure of the cylinder Q(0, τ1) and is

therein of class C1.

(11) according to Lemma 4.2, v ∈
0

H̃1,0(νψ, Q(τ1, τ2)) for any 0 ≤ τ1 < τ2 ≤ T .
(12) we will remark that, because ν ∈ L1(Ω) and ψ ∈ L1(0, T ), aij

∂u
∂xi

is integrable in

]−∞,+∞[.
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Let us now introduce the function V̺,n(x, t) defined in Q assuming:

V̺,n(x, t) =

{

U̺,n(x, t) −min(U̺,n(x, t), k) in Q(τ̃1, τ)

0 in Q \Q(τ̃1, τ) .

Let {χλ}λ be the sequence of nonnegative equibounded functions of
C∞
0 (Q(τ̃1, τ)), having partial derivatives with respect to xi equibounded (i =

1, 2, . . . ,m), approaching V̺,n in
0

H̃1,0(νψ,Q(τ̃1, τ)) (see Remark 4.1). From (4.4),
in correspondence with ϕ = χλ, as λ diverges to +∞, we can deduce the following
relation:

(4.5)

∫

Q(τ̃1,τ)

{

m
∑

1

iAi,̺
∂V̺,n

∂xi
+B̺V̺,n + C̺V̺,n +

m
∑

1

iDi,̺
∂V̺,n

∂xi
+

+
∂U̺

∂t
V̺,n

}

dx dt ≤

∫

Q(τ̃1,τ)
F̺V̺,n dx dt .

Setting, then, in Q:

V̺(x, t) = U̺(x, t)−min(U̺(x, t), k) ,

we get:
‖V̺‖

2
1,0,(τ̃1,τ)

≤ ĉ‖u‖21,0 + k
2measQ, (13) for any ̺ ∈ N .

The sequence {V̺,n}n converges to V̺ in both
0

H̃1,0(νψ,Q(τ̃1, τ)) and

L2,∞(Q(τ̃1, τ)); (14) accordingly, the function V̺ belongs to
0

H̃1,0(νψ,Q(τ̃1, τ))∩

L2,∞(Q(τ̃1, τ)). From (4.5) we deduce, as n goes to +∞, the following:

(4.6)

∫

Q(τ̃1,τ)

{

m
∑

1

iAi,̺
∂V̺

∂xi
+B̺V̺ + C̺V̺ +

m
∑

1

iDi,̺
∂V̺

∂xi
+

+
∂U̺

∂t
V̺

}

dx dt ≤

∫

Q(τ̃1,τ)
F̺V̺ dx dt .

Let us verify, for example, that:

lim
n→∞

∫

Q(τ̃1,τ)
Ai,̺

∂V̺,n

∂xi
dx dt =

∫

Q(τ̃1,τ)
Ai,̺

∂V̺

∂xi
dx dt .

(13) the constant ĉ depends on ‖ψ‖
∞,(τ̃1,τ1), ‖ψ−1‖

∞,(τ̃1,τ1).
(14) we will remark that

‖V̺,n − V̺‖21,0,(τ̃1 ,τ) ≤ ĉ‖un − u‖21,0 + o(
1

n
) for any n ∈ N .
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It will suffice to prove that:

lim
n→∞

∫

Q(τ̃1,τ)
|Ai,̺|

∣

∣

∣

∣

∂V̺,n

∂xi
−
∂V̺

∂xi

∣

∣

∣

∣

dx dt = 0 .

We get:

∫

Q(τ̃1,τ)
|Ai,̺|

∣

∣

∣

∣

∂V̺,n

∂xi
−
∂V̺

∂xi

∣

∣

∣

∣

dx dt ≤

≤ ĉ

∥

∥

∥

∥

∥

Ai,̺
√

ν(x)

∥

∥

∥

∥

∥

2,2,(τ̃1,τ)

‖V̺,n − V̺‖1,0,(τ̃1,τ) ≤

≤ ĉ

∥

∥

∥

∥

ai,j

νψ

∥

∥

∥

∥

∞
· ‖u‖1,0 · ‖V̺,n − V̺‖1,0,(τ̃1,τ) for all n ∈ N .

We can rewrite (4.6) as follows:

(4.7)

∫

Q(τ̃1,τ)

{

m
∑

1

iAi,̺
∂V̺

∂xi
+B̺V̺ + C̺V̺ +

m
∑

1

iDi,̺
∂V̺

∂xi

}

dx dt+

+
1

2

∫

Ω̺(τ,k)
|U̺(x, τ) − k|2 dx ≤

≤

∫

Q(τ̃1,τ)
F̺V̺ dx dt +

1

2

∫

Ω̺(τ̃1,k)
|U̺(x, τ̃1)− k|2 dx. (15)

We call v = u−min(u, k) in Q.
Let us remark now that we get:

‖V̺ − v‖21,0,(τ̃1,τ) ≤ ĉ

∫

Q(τ̃1,τ)
|U̺ − u|2 + ν

m
∑

1

i|
∂U̺,n

∂xi
−
∂u

∂xi
|2 dx dt+ o(

1

̺
)

for any ̺ ∈ N; so, V̺ converges to v in H̃
1,0(νψ,Q(τ̃1, τ)).

(16)

Moreover, because U̺ converges to u in L
2(Ω) uniformly with respect to t ∈

[τ̃1, τ ], it is proved that V̺ converges to v in L
2,∞(Q(τ̃1, τ)).

From (4.7), the conclusion now follows via another passage to the limit.

(15) we will denote with Ω̺(t, k) the set of those points of Ω in which U̺(x, t) > k.
(16) we get (see [5], p. 85):

lim
̺→∞

Z
Q(τ̃1,τ)

|U̺ − u|2 + ν
mX
1

i|
∂U̺

∂xi
− ∂u

∂xi
|2 dx dt = 0 .
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For example, we prove that:

lim
̺→∞

∫

Q(τ̃1,τ)
C̺V̺ dx dt =

∫

Q(τ̃1,τ)
cuv dx dt .

We get:

|

∫

Q(τ̃1,τ)
C̺V̺ − cuv dx dt| ≤

≤ ‖C̺‖ α∗
2

α∗
2
−1
,
α2
α2−1

,(τ̃1,τ)
‖V̺ − v‖α∗

2,α2,(τ̃1,τ)
+

+ ‖C̺ − cu‖ α∗
2

α∗
2
−1
,
α2
α2−1

‖v‖α∗

2,α2
≤

≤ β‖c‖q∗,q‖u‖α∗

2,α2
(‖V̺ − v‖1,0,(τ̃1,τ) + ‖V̺ − v‖2,∞,(τ̃1,τ))+

‖C̺ − cu‖ α∗
2

α∗
2
−1
,
α2
α2−1

‖v‖α∗

2,α2
, (17) for all ̺ ∈ N .

If τ̃1 = 0, assumed τ > 0, it will suffice to consider τn =
τ

n+1 for n ∈ N.
Accordingly, we get:

∫

Q(τn,τ)
{

m
∑

1

ijaij
∂v

∂xi

∂v

∂xj
+

m
∑

1

ibi
∂v

∂xi
v + cuv +

m
∑

1

idiu
∂v

∂xi
} dx dt+

+
1

2

∫

Ω
v2(x, τ) dx ≤

∫

Q(τn,τ)
fv dx dt+

1

2

∫

Ω
v2(x,

τ

n
) dx for any n ∈ N .

The conclusion will follow via another passage to the limit for n approaching +∞,
recalling that the function v(x, t) is continuous in [0, T ] to values in L2(Ω).

Lemma 4.4. Let us assume Hypotheses 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 3.4 with ̺ = 0,
hold and let u(x, t) be a subsolution of the equation (0.1) bounded from above on
(Ω× {t = 0}) ∪ (∂Ω× [0, T ]).
Then, if k > max(0, ess sup

Ω
u(x, 0), sup∗ u), we get:

‖v‖1,0 + ‖v‖2,∞ ≤ γ‖fψk‖s∗,s

where v = u−min(u, k) in Q, ψk is the characteristic function of the set of points
of Q in which u(x, t) > k and s∗, s are defined by the following formulas:

1

s∗
+
1

α∗4
= 1 ,

1

s
+
1

α4
= 1 .

(17) we will remark that the function which equals V̺− v in Q(τ̃1, τ) and vanishes in the re-

maining points belongs to
0

H̃1,0(νψ,Q)∩L2,∞(Q) and that C̺ converges to cu in Lα
∗

2
/(α∗

2
−1)(Q).
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According to our hypothesis, we deduce:

(4.8)

∫

Q
cϕ+

m
∑

1

idi
∂ϕ

∂xi
dx dt ≥ 0

for any ϕ ∈ C∞
0 (Q) such that ϕ(x, t) ≥ 0 a.e. in Q.

From (4.8), via the same procedure adopted in Lemma 4.3, we deduce

(4.9)

∫

Q(τ̃1,τ)
cσ +

m
∑

1

idi
∂σ

∂xi
dx dt ≥ 0 ,

for any τ̃1, τ : 0 ≤ τ̃1 < τ < T .
Recalling that k > max(0, ess sup

Ω
u(x, 0), sup∗ u), from (4.3) and (4.9) we get:

∫

Q(0,τ)

{

m
∑

1

ijaij
∂v

∂xi

∂v

∂xj
+

m
∑

1

ibi
∂v

∂xi
v + cv2+

+

m
∑

1

idiv
∂v

∂xi

}

dx dt +
1

2

∫

Ω
v2(x, τ) dx ≤

∫

Q(0,τ)
fv dx dt .

With slight modifications of the procedure followed in Lemma 4.1 of [7] the
conclusion easily follows.

5. Proof of Theorem

Let us first examine the particular case where ̺ = 0.
There is no loss of generality if we assume that

(5.1) α∗4(1 −
1

g∗
) ≥ α4(1−

1

g
) ;

in fact, the first term of the preceding inequality is greater than 2, so that the
inequality will hold by decreasing g.
Let k̄ be a number greater than max(0, ess sup

Ω
u(x, 0), sup∗ u) and h and k two

numbers such that k̄ ≤ k < h.
Assumed that v = u−min(u, k) in Q, we get:

(5.2) ‖v‖α∗

4,α4
≥ (h− k)(

∫ τ

0
[misxΩ(t, h)]

α4/α∗

4 dt)1/α4 = (h− k)‖ψh‖α∗

4,α4
.

On the other hand (Lemma 4.4 and Hypothesis 3.1)

‖v‖α∗

4,α4
≤ γ‖fψk‖s∗,s ,
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then from (5.2), we get:

(5.3) ‖ψh‖α∗

4,α4
≤

γ

(h− k)
‖f‖g∗,g‖ψk‖λ∗,λ

where

1

λ∗
=
1

s∗
−
1

g∗
= 1−

1

α∗4
−
1

g∗
>
1

α∗4
,

1

λ
=
1

s
−
1

g
= 1−

1

α4
−
1

g
>
1

α4
.

We get:

λ

λ∗
=
1− 1

α∗

4
− 1

g∗

1− 1
α4

− 1g
≥

α4
α∗

4
(1 − 1g )−

1
α∗

4

1− 1
α4

− 1g
=
α4

α∗4
,

from which, a.e. in ]0, T [:

(5.4) [measxΩ(t, k)]
λ/λ∗ ≤ lα4 [measx Ω(t, k)]

α4/α∗

4 .

From (5.3) and (5.4) we deduce that

‖ψh‖α∗

4,α4
≤

γ

(h− k)
‖f‖g∗,g(‖ψk‖α∗

4,α4
)ϑ ,

where ϑ = α4
2 (1−

1
g ) > 1.

If we assume for any k ≥ k̄:

η(k) = ‖ψk‖α∗

4,α4

then we get (see [8], p. 212):

(5.5) η(k̄ + d) = 0 , where d = γ‖f‖g∗,g‖ψk̄‖
ϑ−1
α∗

4,α4
2ϑ/(ϑ−1) .

Remarking that ‖ψk̄‖α∗

4,α4
≤ l, from (5.5) we get:

u(x, t) ≤ k̄ + 2ϑ/(ϑ−1)lϑ−1γ‖f‖g∗,g

a.e. in Q, from which the proof follows in the case where ̺ = 0.
Finally, if ̺ is a nonnegative constant, the proof follows as in Theorem of § 3

of [1].
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