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Classical global solutions of the initial boundary value

problems for a class of nonlinear parabolic equations

Chen Guowang*

Abstract. The existence, uniqueness and regularities of the generalized global solutions
and classical global solutions to the equation

ut = −A(t)ux4 + B(t)ux2 + g(u)x2 + f(u)x + h(ux)x +G(u)

with the initial boundary value conditions

u(−ℓ, t) = u(ℓ, t) = 0, ux2(−ℓ, t) = ux2(ℓ, t) = 0, u(x, 0) = ϕ(x),

or with the initial boundary value conditions

ux(−ℓ, t) = ux(ℓ, t) = 0, ux3(−ℓ, t) = ux3(ℓ, t) = 0, u(x, 0) = ϕ(x),

are proved. Moreover, the asymptotic behavior of these solutions is considered under
some conditions.

Keywords: nonlinear parabolic equation, initial boundary value problem, classical global
solutions

Classification: 35K35, 35K60

1. Introduction

In the present paper, we are going to consider the following nonlinear parabolic
equation

(1) ut = −A(t)ux4 +B(t)ux2 + g(u)x2 + f(u)x + h(ux)x +G(u)

where u(x, t) is an unknown function, A(t) andB(t) are the given functions defined
on [0, T ] (T > 0), g(s), f(s), h(s) and G(s) are the given nonlinear functions
defined in R. Partial differential equations of this kind are often found in the study
of biology, chemistry, physics and engineering technology. For example, in the
study of growth and dispersal in populations, there arises the model equation [1]

(2) ut = −a1ux4 + a2ux2 + (au3)x2 + f(u),
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which is a special case of (1). Here a1 > 0, a > 0 and a2 6= 0 are constants. The
existence and uniqueness of the classical global solutions of the periodic boundary
value problem for the nonlinear parabolic equation

(∗) ut = −a1ux4 + a2ux2 + (g(u))x2 + f(u)

have been proved by the integral equation method in [6]. In [7] the initial value
problem for the nonlinear system of parabolic type which is an analogous equa-
tion (∗) has been studied by the integral estimates.
In the following, we consider the initial boundary value problem for the equa-

tion (1)

(3)
u(−ℓ, t) = u(ℓ, t) = 0, ux2(−ℓ, t) = ux2(ℓ, t) = 0, 0 ≤ t ≤ T,

u(x, 0) = ϕ(x), x ∈ Ω = [−ℓ, ℓ],

in which ϕ(x) is the given function. Then, we consider the initial boundary value
problem for the equation (1) (f(u)x ≡ 0)

(4)
ux(−ℓ, t) = ux(ℓ, t) = 0, ux3(−ℓ, t) = ux3(ℓ, t) = 0, 0 ≤ t ≤ T,

u(x, 0) = ϕ(x), x ∈ Ω.

By means of integral estimates and Galerkin method we prove the existence and
regularities of the generalized global solutions and the classical global solutions
to problems (1), (3) and (1), (4). We also prove the uniqueness of the solutions
and asymptotic behavior of these solutions as t → ∞. Let

(u, v) =

∫ ℓ

−ℓ
uv dx, |u(·, t)|2L2(Ω) = (u, u),

[u, v] =

∫ t

0
(u, v) dt =

∫ ∫

Qt

uv dx dt,

‖u‖2L2(Qt)
= [u, u],

where Qt = Ω× [0, t].
In an other place the usual symbols of Sobolev spaces are used.

2. Initial boundary value problems (1), (3)

Let {yn(x)} be the orthonormal complete system composed of the eigenfunc-
tions of the following boundary problem of the ordinary differential equation [2]

y(4) = λy,(5)

y(−ℓ) = y(ℓ) = 0, y′′(−ℓ) = y′′(ℓ) = 0(6)
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corresponding to eigenvalues λn (n = 1, 2, . . . ). Then the Galerkin approximate
solution uN (x, t) for the problems (1), (3) can be expressed as

(7) uN (x, t) =
N

∑

n=1

αN,n(t)yn(x),

where αN,n(t) (n = 1, 2, . . . , N) are the undetermined coefficients and N is a nat-
ural number. According to the Galerkin method, the undetermined coefficients
αN,s(t) (s = 1, 2, . . . , N) satisfy the system of ordinary differential equations

(8) (uNt, ys) + (A(t)uNx4 , ys)− (B(t)uNx2 , ys)

= (g(uN )x2 + f(uN )x + h(uNx)x +G(uN ), ys)

with the initial condition

(9) (uN (x, 0), ys) = (ϕ(x), ys),

where s = 1, 2, . . . , N .

Lemma 1. Suppose that the following conditions are satisfied:

(1) There exist constants a0 > 0, b > 0, such that A(t) ≥ a0 > 0, B(t) ≥ −b

on [0, T ];

(2) g ∈ C2; ∀ s ∈ R, g′(s) ≥ 0 and |g′(s)| ≤ K1|s|
ξ+1, |g′′(s)| ≤ K1|s|

ξ, where

0 < ξ < 3, K1 is a positive number;
(3) f ∈ C1, F (u) =

∫ u
0 f(s) ds and |f(s)| ≤ K2|s|

η+1, |f ′(s)| ≤ K2|s|
η, where

0 < η < 6 and K2 > 0 is a constant;
(4) h ∈ C1; ∀ s ∈ R, h′(s) ≥ 0 and |h(s)| ≤ K3|s|

µ+1, where 0 < µ < 4
3 and

K3 > 0 is a constant;
(5) G ∈ C1; ∀ s ∈ R, G′(s) ≤ γ and |G′(s)| ≤ K4|s|

ζ , where 0 < ζ < 8;
K4 > 0 and γ are constants;

(6) ϕ ∈ V2, and ϕ satisfies the boundary conditions, where V2 is the closed

linear extension of the orthonormal complete system {yn(x)} in H2(Ω).

Then for any N there exists a solution uN (x, t) of the initial value problems
(8), (9) in [0, T ] and there is the estimation

(10) |uN (·, t)|
2
H2(Ω) + ‖uN‖2H4(Qt)

≤ C, t ∈ [0, T ],

where C is a constant independent of N .

Proof: Multiplying (8) by αN,s(t), summing up the products for s = 1, 2, . . .N ,
integrating by parts and integrating with respect to t, we get

(11)
|uN (·, t)|

2
L2(Ω)

+ 2[A(t)uNx2 , uNx2 ] + 2[B(t)uNx, uNx]

= 2[g(uN )x2 + f(uN )x + h(uNx)x +G(uN ), uN ] + |ϕ|2L2(Ω).
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We have

(g(uN )x2 , uN ) = −(g′(uN )uNx, uNx) ≤ 0,(12)

(f(uN )x, uN ) = −(f(uN ), uNx) = −

∫ ℓ

−ℓ

∂F

∂x
dx = 0,(13)

(h(uNx)x, uN ) = −

∫ ℓ

−ℓ
h(uNx)uNx dx ≤

1

2
|h(0)|2L2(Ω)(14)

+
1

2
|uNx|

2
L2(Ω)

,

(G(uN ), uN ) ≤ (γ +
1

2
)|uN |2L2(Ω) +

1

2
|G(0)|2L2(Ω) .(15)

Substituting formulas (12)–(14) into formula (11), we get

(16)
|u(·, t)|2L2(Ω) + 2a0‖uNx2‖

2
L2(Qt)

≤ (2b+ 1)‖uNx‖
2
L2(Qt)

+(2γ + 1)‖uN‖2L2(Qt)
+ ‖h(0)‖2L2(Qt)

+ ‖G(0)‖2L2(Qt)
+ |ϕ|2L2(Ω) .

By means of interpolation formula for |uNx|
2
L2(Ω)

, from (16) it follows

|uN (·, t)|
2
L2(Ω)

+ ‖uNx2‖
2
L2(Qt)

≤ C1‖uN‖2L2(Qt)
+ C2

{

‖h(0)‖2L2(Qt)
+ ‖G(0)‖2L2(Qt)

+ |ϕ|2L2(Ω)

}

.

Thus, by Gronwall’s inequality we obtain

(17) |uN (·, t)|
2
L2(Ω)

+ ‖uNx2‖
2
L2(Qt)

≤ C3

{

‖h(0)‖2L2(Qt)
+ ‖G(0)‖2L2(Qt)

+ |ϕ|2L2(Ω)

}

, ∀ t ∈ [0, T ],

where C3 is a constant independent of N .

Multiplying (8) by λsαN,s(t), summing up the products for s = 1, 2, . . . , N ,
integrating by parts and integrating with respect to t, we get

(18)
|uNx2(·, t)|

2
L2(Ω)

+ 2a0‖uNx4‖
2
L2(Qt)

≤ 2b|uNx3|
2
L2(Qt)

+ 2[g(uN )x2

+f(uN )x + h(uN )x +G(uN ), uNx4 ] + |ϕx2 |
2
L2(Ω)

.

By means of interpolation formulas [3], assumptions, Hölder’s inequality and
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Young’s inequality, we have

|(g(uN )x2 , uNx4)| ≤ |g′′(uN )|L∞(Ω)|uNx|
2
L4(Ω)

|uNx4 |L2(Ω)

+|g′(uN )|L∞(Ω)|uNx2 |L2(Ω)|uNx4 |L2(Ω) ≤ C4|uN |
ξ

8

H4(Ω)
|uN |

5
8

H4(Ω)
·

|uNx4 |L2(Ω) + C5|uN |
ξ+1
8

H4(Ω)
|uN |

1
2

H4(Ω)
|uNx4 |L2(Ω) ≤ ε|uNx4 |

2
L2(Ω)

+ C6;(19)

|(f(uN )x, uNx4)| ≤ C7|uN |
7
8

H4(Ω)
|uN |

1
4

H4(Ω)
|uNx4 |L2(Ω)

≤ ε|uNx4 |
2
L2(Ω)

+ C8;(20)

|(h(uNx)x, uNx4)| ≤ C9|uN |
3µ
8

H4(Ω)
|uN |

1
2

H4(Ω)
|uNx4 |L2(Ω)

≤ ε|uNx4 |
2
L2(Ω)

+ C10;(21)

|(G(uN ), uNx4)| ≤ |G′(uN )|L∞(Ω)|uNx|L2(Ω)|uNx3 |L2(Ω)

≤ C11|uN |
1+ ζ

8

H4(Ω)
≤ ε|uNx4 |

2
L2(Ω)

+ C12;(22)

2b|uNx3|
2
L2(Ω)

≤ C13|uN |
3
2

H4(Ω)
≤ ε|uNx4 |

2
L2(Ω)

+ C14 .(23)

Substituting formulas (19)–(23) into formula (18), we obtain

(24) |uNx2(·, t)|
2
L2(Ω)

+‖uNx4‖
2
L2(Qt)

≤ C15(1+ |ϕx2 |
2
L2(Ω)

) ≤ c16, ∀ t ∈ [0, T ],

where C16 is a constant independent of N . From (17) and (24) it follows (10).
The existence of the solution αN,s(t) (s = 1, 2, . . . , N) is global for 0 ≤ t ≤ T ,
can be proved by the fixed-point technique and the a priori bounded estimation
for αN,s(t) (s = 1, 2, . . . , N), which follows immediately from the uniform bound-
edness of the approximate solution uN (x, t) given in (10) and the expressions
αN,s(t) = (uN , ys) for (s = 1, 2, . . . , N). Lemma 1 has been proved. �

Lemma 2 ([4]). LetG(z1, z2, . . . , zh) be the function of the variables z1, z2, . . . , zh

and suppose that G is continuously differentiable for k-times (k ≥ 1) with respect

to every variable. Let zi(x, t) ∈ L∞([0, T ]; Hk(Ω)) (i = 1, 2, . . . , h), then the
estimation

∫ ℓ

−ℓ
|Dk

xG(z1(x, t), . . . , zh(x, t))|2 dx ≤ C(M, k, h)

h
∑

i=1

|zi|
2
Hk(Ω)

holds, where

M = max
i=1,...,h

max
0≤t≤T
−ℓ≤x≤ℓ

|zi(x, t)|, Dx =
∂

∂x
.
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Lemma 3. Suppose that the following conditions are satisfied:

(1) The conditions of Lemma 1 are satisfied;

(2) g ∈ C2k, f ∈ C2k−1, h ∈ C2k−1, G ∈ C2k−1 and ϕ ∈ V2k (k ≥ 1 is
a natural number);

(3)

(25)
∂β

∂xβ
[g(u)x2 ]| x=−ℓ =

∂β

∂xβ
[g(u)x2 ]| x=ℓ = 0, β = 0, 2, . . . , 2(k−1),

(26)
∂β

∂xβ
[f(u)x]| x=−ℓ =

∂β

∂xβ
[f(u)x]| x=ℓ = 0, β = 0, 2, . . . , 2(k−1),

(27)
∂β

∂xβ
[h(ux)x]| x=−ℓ =

∂β

∂xβ
[h(ux)x]| x=ℓ = 0, β = 0, 2, . . . , 2(k−1),

(28)
∂β

∂xβ
G(u)| x=−ℓ =

∂β

∂xβ
G(u)| x=ℓ = 0, β = 0, 2, . . . , 2(k−1).

Then there is the estimate for the approximate solution uN (x, t) as

(29) |uN (·, t)|
2
Hk(Ω) + ‖uN‖2

H2(k+1)(Qt)
≤ C17, ∀ t ∈ [0, T ],

where C17 is a constant independent of N .

Proof: In order to get further estimates of uN (x, t), the following properties of
the orthonormal complete system {yn(x)} on the boundary points of Ω are used:

(30) y
(L)
s (−ℓ) = y

(L)
s (ℓ) = 0, L = 2ν, ν = 0, 1, . . . ,

where (L) denotes the order of the derivatives of the function ys(x).
By means of the method of induction we shall prove the estimation (29). It is

known from Lemma 1 that the estimation (29) holds when k = 1. Suppose that

when k = p estimation (29) holds. Multiplying (8) by λ
p+1
s αN,s(t), summing

up the products for s = 1, 2, . . . , N , taking notice of (25)–(28) and (30) and
integrating by parts, we obtain

(31)

d

dt
|uNx2(p+1)(·, t)|

2
L2(Ω)

+ 2a0|uNx2(p+2) |
2
L2(Ω)

≤ 2b|uNx2(p+2)−1 |
2
L2(Ω)

+ C18
{

|g(uN )x2(p+1) |L2(Ω) + |f(uN )x2p+1 |L2(Ω) + |h(uNx)x2p+1 |L2(Ω)

+ |G(uN )x2p |L2(Ω)
}

· |uNx2(p+2) |L2(Ω).

From Lemma 2, assumptions of the method of induction and interpolation for-
mulas, it follows

(32) |g(uN )x2(p+1) |L2(Ω) ≤ C19|uN |H2(p+1)(Ω) ≤ C20 + C21|uNx2(p+2) |
1
2

L2(Ω)
.
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In a similar manner we have

|f(uN )x2p+1 |L2(Ω) ≤ C22 + C23|uNx2(p+2) |
1
4

L2(Ω)
;(33)

|h(uNx)x2p+1 |L2(Ω) ≤ C24 + C25|uNx2(p+2) |
1
2

L2(Ω)
;(34)

uNx2(p+2)−1 |
2
L2(Ω)

≤ C26 + C27|uNx2(p+2) |
3
2

L2(Ω)
.(35)

Substituting formulas (32)–(35) into (31) and using Young’s inequality, we obtain

d

dt
|uNx2(p+1)(·, t)|

2
L2(Ω)

+ |uNx2(p+2) |
2
L2(Ω)

≤ C28 .

Hence

(36) |uN (·, t)|
2
H2(p+1)(Ω)

+ ‖uNx2(p+2)‖
2
L2(Qt)

≤ C29, ∀ t ∈ [0, T ],

where C29 is a constant independent of N . Lemma 3 has been proved. �

Lemma 4. Suppose that the conditions of Lemma 3 are held and A′(t) and B′(t)
are bounded in [0, T ]. If k ≥ 2, k = 2+p0, p0 ≥ 0, then there exists the estimation

(37) |uNt(·, t)|
2
H2p0 (Ω) + ‖uNt‖

2
H2(p0+1)(Qt)

≤ C30, ∀ t ∈ [0, T ],

where C30 is a constant independent of N .

Proof: We apply the method of induction. Differentiating (8) with respect to
t, multiplying it by α′

N,s(t), summing up the products for s = 1, 2, . . . , N and

integrating by parts, we get

(38)

d

dt
|uNt(·, t)|

2
L2(Ω)

+ 2a0|uNx2t|
2
L2(Ω)

≤ 2b|uNxt|
2
L2(Ω)

− 2(A′(t)uNx2 , uNx2t)− 2(B
′(t)uNx, uNxt)

+ 2(g(uN )x2t + f(uN )xt + h(uNx)xt +G(uN )t, uNt).

It is easy to prove that

(g(uN )x2t, uNt) = −(g′(uN )uNxt + g′′(uN )uNtuNx, uNxt)

≤ −(g′′(uN )uNxuNt, uNxt);(39)

(f(uN )xt, uNt) = −(f ′(uN )uNt, uNxt);(40)

(h(uNx)xt, uNt) = −(h′(uNx)uNxt, uNxt) ≤ 0;(41)

(G(uN )t, uNt) ≤ γ|uNt|
2
L2(Ω)

.(42)
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Substituting formulas (39)–(42) into (38), by means of Cauchy’s inequality and
interpolation formula, we have

(43)
d

dt
|uNt(·, t)|

2
L2(Ω)

+ |uNx2t|
2
L2(Ω)

≤ C31|uNt|
2
L2(Ω)

+ C32 .

Let us now prove that |uNt(·, 0)|
2
L2(Ω)

is uniformly bounded with respect to N .

Multiplying (8) by α′
N,s(t), summing up the products for s = 1, 2, . . . , N and

putting t = 0, we obtain

|uNt(·, t)|
2
L2(Ω)

≤ C33

{

|uNx4(·, 0)|
2
L2(Ω)

+ |uNx2(·, 0)|
2
L2(Ω)

+ |g(uN (·, 0))x2 |
2
L2(Ω)

+ |f(uN (·, 0))x|
2
L2(Ω)

+ |h(uNx(·, 0))x|
2
L2(Ω)

+ |G(uN (·, 0))x2 |
2
L2(Ω)

}

.

By virtue of the assumptions of ϕ, g, f, h and G, the right side of the above
inequality is uniformly bounded, then |uNt(·, 0)|

2
L2(Ω)

is uniformly bounded with

respect to N . From (43) and using Gronwall’s inequality, we have

|uNt(·, t)|
2
L2(Ω)

+ ‖uNx2t‖
2
L2(Qt)

≤ C34, ∀ t ∈ [0, T ],

where C34 is a constant independent of N .
Now suppose that when 0 ≤ p0 ≤ n, the estimation (37) holds. We can

prove that when p0 = n + 1, the estimation (37) holds, too. Differentiating (8)
with respect to t, multiplying it by λn+1

s α′
N,s(t), summing up the products for

s = 1, 2, . . . , N , taking notice of (25)–(28) and (30) and integrating by parts, we
obtain

(44)

d

dt
|uNx2(n+1)t|

2
L2(Ω)

+ 2a0|uNx2(n+2)t|
2
L2(Ω)

≤ 2b|uNx2(n+2)−1t|
2
L2(Ω)

+ 2|(A′(t)uNx2(n+2) , uNx2(n+2)t)|+ 2|(B
′(t)uNx2(n+1) , uNx2(n+2)t)|

+ 2
{

|g(uN )x2(n+1)t|L2(Ω) + |f(uN )x2n+1t|L2(Ω)

+ |h(uNx)x2n+1t|L2(Ω) + |G(uN )x2nt|L2(Ω)
}

|uNx2(n+2)t|L2(Ω) .

Let g(uN )x2(n+1)t = w(uN , uNt)x2(n+1) . From Lemma 2 and the interpolation
formula it follows

(45)

|g(uN )x2(n+1)t|L2(Ω) = |w(uN , uNt)x2(n+1) |L2(Ω)

≤ C35
(

|uN |H2(n+1)(Ω) + |uNt|H2(n+1)(Ω)
)

≤ C36 + C37|uNt|
n+1
n+2

H2(n+2)(Ω)
.

Similarly, we get

|f(uN )x2n+1t|L2(Ω) ≤ C38 + C39|uNt|
2n+1
2(n+2)

H2(n+2)(Ω)
;(46)

|h(uNx)x2n+1t|L2(Ω) ≤ C40 + C41|uNt|
n+1
n+2

H2(n+2)(Ω)
;(47)

|G(uN )x2nt|L2(Ω) ≤ C42 + C43|uNt|
n

n+2

H2(n+2)(Ω)
.(48)
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We also have

(49) |uNx2n+3t|L2(Ω) ≤ C44|uNt|
2n+3
2(n+2)

H2(n+2)(Ω)
.

Substituting formulas (45)–(49) into formula (44), by means of Young’s inequality,
we obtain

(50)
d

dt
|uNx2(n+1)t|

2
L2(Ω)

+ |uNx2(n+2)t|
2
L2(Ω)

≤ C45 .

Now, since k = 3 + n, it is easy to see that |uNx2(n+1)t(·, 0)|
2
L2(Ω)

is uniformly

bounded with respect to N . Hence, from (50) and using Gronwall’s inequality, it
follows that there is

|uNx2(n+1)t(·, t)|
2
L2(Ω)

+ ‖uNx2(n+2)t‖
2
L2(Qt)

≤ C46, ∀ t ∈ [0, T ],

where C46 is a constant independent of N . Then, the estimation (37) holds. This
completes the proof of Lemma 4. �

Lemma 5. Suppose that the conditions of Lemma 4 are satisfied. Let k =
2r+pr−1, r ≥ 1, pr−1 ≥ 0. If k ≥ 2r (r = 1, 2, . . . ) and A(t), B(t) are for r-times

continuously differentiable in [0, T ], then there exists an estimation

(51) |uNtr |
2
H2pr−1 (Ω)

+ ‖uNtr‖
2
H2+2pr−1(Qt)

≤ C47, ∀ t ∈ [0, T ], (r = 2, 3, . . . ),

where C47 is a constant independent of N .

Proof: We first prove that the estimation (51) holds when r = 2. If r = 2,
then k = 4 + p1. Differentiating (8) with respect to t for 2-times, multiplying it
by λ

p1
s α′′

N,s(t), summing up the products for s = 1, 2, . . . , N , and integrating by

parts, we obtain

(52)

d

dt
|uNx2p1t2 |

2
L2(Ω)

+ 2a0|uNx2+2p1 t2 |
2
L2(Ω)

≤ 2b|uNx1+2p1t2 |
2
L2(Ω)

− 2(2A′(t)uNx2+2p1 t, uNx2+2p1t2)− 2(A
′′(t)uNx2+2p1 , uNx2+2p1t2)

− 2(2B′(t)uNx1+2p1 t, uNx2+2p1 t2)− 2(B
′′(t)uNx1+2p1 , uNx2+2p1t2)

+ 2
(

g(uN )x2+2p1 + f(uN )x1+2p1 t2 + h(uNx)x1+2p1 t2

+G(uN )x2p1 t2 , uNx2p1t2
)

.

Putting p1 = 0, using Cauchy’s inequality and from (52) and the results obtained,
we have

(53)

d

dt
|uNt2 |

2
L2(Ω)

+ 2a0|uNx2t2 |
2
L2(Ω)

≤ 2b|uNxt2|
2
L2(Ω)

+ C48|uNt2 |
2
L2(Ω)

+ C49 + ε
{

|uNx2t2 |
2
L2(Ω)

+ |g(uN )x2t2 |
2
L2(Ω)

+ |f(uN )xt2 |
2
L2(Ω)

+ |h(uNx)xt2 |
2
L2(Ω)

+ |G(uN )t2 |
2
L2(Ω)

}

,



440 Chen Guowang

where ε > 0. Using Lemma 2 we get

|g(uN )x2t2 |
2
L2(Ω)

≤ C50

2
∑

i=0

|uNti |
2
H2(Ω)

≤ C51
{

1 + |uNt2 |
2
L2(Ω)

+ |uNx2t2 |
2
L2(Ω)

}

;(54)

|f(uN )xt2 |
2
L2(Ω)

≤ C52
{

1 + |uNt2 |
2
L2(Ω)

+ |uNxt2 |
2
L2(Ω)

}

;(55)

|h(uNx)xt2 |
2
L2(Ω)

≤ C53
{

1 + |uNt2 |
2
L2(Ω)

+ |uNx2t2 |
2
L2(Ω)

}

;(56)

|G(uN )t2 |
2
L2(Ω)

≤ C54
{

1 + |uNt2 |
2
L2(Ω)

}

.(57)

From the interpolation formula, we have

(58)
|uNxt2 |

2
L2(Ω)

≤ C55|uNt2 |L2(Ω)|uNt2 |H2(Ω) ≤ ε|uNx2t2 |
2
L2(Ω)

+ C56|uNt2 |
2
L2(Ω)

.

Substituting formulas (54)–(58) into (53), taking that ε is sufficiently small, we
obtain

(59)
d

dt
|uNt2 |

2
L2(Ω)

+ |uNx2t2 |
2
L2(Ω)

≤ C57|uNt2 |
2
L2(Ω)

+ C58.

It is easy to prove that |uNt2(·, 0)|
2
L2(Ω)

is uniformly bounded with respect to N .

From (59) and by Gronwall’s inequality it follows that

(60) |uNt2(·, t)|
2
L2(Ω)

+ ‖uNx2t2‖
2
L2(Qt)

≤ C59, ∀ t ∈ [0, T ].

Similarly, we can prove that when p1 ≥ 1, there is the following estimation

|uNx2p1t2 |
2
L2(Ω)

+ ‖uNx2+2p1 t2‖
2
L2(Qt)

≤ C60, ∀ t ∈ [0, T ],

where C60 is a constant independent of N . Similarly, we can prove that the
estimation (51) holds for r = 3, 4, . . . . The lemma is proved. �

Theorem 1. Under the conditions of Lemma 5, if k ≥ 3, then there exists
a unique generalized global solution u(x, t) of the initial boundary value problems
(1), (3) and the solution has continuous derivatives uxs (0 ≤ s ≤ 2k − 5) and the
generalized derivatives uxstr (0 ≤ s+4r ≤ 2k, r = 0, 1). If k ≥ 5, then there exists
a unique classical global solution u(x, t) of the initial boundary value problems
(1), (3) and the solution u(x, t) has continuous derivatives uxstr (0 ≤ s + 4r ≤
2k − 5, r = 0, 1, 2, . . . ) and the generalized derivatives uxstr (0 ≤ s + 4r ≤ 2k,
r = 0, 1, 2, . . . ).

Proof: From Lemmas 3 and 4 we know that

uNxs ∈ L∞([0, T ]× Ω), 0 ≤ s ≤ 2k − 1,

uNxst ∈ L∞([0, T ]× Ω), 0 ≤ s ≤ 2k − 5.
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If k ≥ 3, then we can select a subsequence still denoted by {uN (x, t)} from
{uN (x, t)} such that there exists a function u(x, t) and when N → ∞ the sub-
sequence {uN (x, t)} uniformly converges to the limiting function u(x, t) in QT .
The corresponding subsequence of the derivatives {uNx(x, t)} also uniformly con-
verges to ux(x, t). The subsequences {uNxs(x, t)} (0 ≤ s ≤ 2k) and {uNxst(x, t)}
(0 ≤ s ≤ 2(k−2)) weakly converge to the generalized derivatives uxs (0 ≤ s ≤ 2k)
and uxst (0 ≤ s ≤ 2(k − 2)) in L2(QT ) respectively. Therefore when k ≥ 3 there
exists a generalized global solution u(x, t) of the initial boundary value prob-
lems (1), (3). If k ≥ 5, then from Lemma 5 it follows that uxstr ∈ L2(QT )
(0 ≤ s + 4r ≤ 2k) and uxstr ∈ L∞(QT ) (0 ≤ s ≤ 2(k − 2r) − 1), r = 2, 3, . . . .
Hence there exists a classical global solution u(x, t) of the initial boundary value
problems (1), (3), and this solution has the regularities as those stated in Theo-
rem 1. It is easy to prove the uniqueness of solutions for the problems (1), (3).
This completes the proof of the theorem. �

Theorem 2. Suppose that the following conditions are satisfied:

(1) There exist constants a0 > 0, b0 > 0 such that A(t) ≥ a0 > 0, B(t) ≥
b0 > 0 in [0,∞);

(2) g ∈ C1 and g′(s) ≥ 0, ∀ s ∈ R; f ∈ C, F (u) =
∫ u
0 f(ξ) dξ; h ∈ C1,

h(0) = 0 and h′(ξ) ≥ 0, ∀ ξ ∈ R;

(3) G ∈ C1, G(0) = 0 and there exists a constant γ0 > 0 such that G′(ξ) ≤
−γ0, ∀ ξ ∈ R.

Then the generalized or classical solution u(x, t) of the initial boundary value
problems (1), (3), has the asymptotic behavior

lim
t→∞

|u(·, t)|L2(Ω) = 0.

Proof: Multiplying (1) by u and integrating in Ω, integrating by parts and by
the argument proved in Lemma 1, we can obtain

(61)

d

dt
|u(·, t)|2L2(Ω) + 2a0|ux2(·, t)|

2
L2(Ω)

+ 2b0|ux(·, t)|
2
L2(Ω)

≤ −2γ0|u(·, t)|
2
L2(Ω)

.

By separation of variables from (61) we deduce

(62) |u(·, t)|2L2(Ω) ≤ |ϕ|2L2(Ω)e
−2γ0t .

Theorem 2 is proved. �

3. Initial boundary value problems (1), (4)

In this section we again consider the initial boundary value problems (1), (4) by
the Galerkin method. Let {yn(x)} be the orthonormal complete system composed
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of the eigenfunctions of the following boundary problem of the ordinary differential
equation [2]

{

y(4) = λy,

y′(−ℓ) = y′(ℓ) = 0, y′′′(−ℓ) = y′′′(ℓ) = 0

corresponding to eigenvalues λn (n = 1, 2, . . . ). Observe that the orthonormal
complete system {yn(x)} on the boundary points of Ω has the properties

(63) y
(L)
s (−ℓ) = y

(L)
s (ℓ) = 0, L = 2ν + 1, ν = 0, 1, . . . .

By the method in Section 2 we can obtain the following theorems.

Theorem 3. Suppose that the following conditions are satisfied:

(1) There exist constants a0 > 0, b > 0, such that A(t) ≥ a0 > 0, −b ≤
B(t) ≤ b on [0, T ] and let k = 2r+pr−1, pr−1 ≥ 0 (r = 1, 2, . . . ) and A(t),
B(t) are continuously differentiable for r-times in [0, T ];

(2) g ∈ C2k (k ≥ 1); g′(s) ≥ 0, ∀ s ∈ R and |g′(s)| ≤ K1|s|
ξ+1, |g′′(s)| ≤

K1|s|
ξ , where 0 < ξ < 3 and K1 > 0 is a constant;

(3) h ∈ C2k−1, h′(s) ≥ 0, ∀ s ∈ R and |h(s)| ≤ K2|s|
µ+1, |h′(s)| ≤ K2|s|

µ,

where 0 < µ < 4
3 and K2 is a constant;

(4) G ∈ C2k−1, G′(s) ≤ γ, ∀ s ∈ R, where γ is a constant;

(5)

(64)
∂β

∂xβ
[g(u)x2 ] | x=−ℓ =

∂β

∂xβ
[g(u)x2 ] | x=ℓ = 0, β = 1, 3, . . . , 2k − 1,

(65)
∂β

∂xβ
[h(ux)x] | x=−ℓ =

∂β

∂xβ
[h(ux)x] | x=ℓ = 0, β = 1, 3, . . . , 2k − 1,

(66)
∂β

∂xβ
G(u) | x=−ℓ =

∂β

∂xβ
G(u) | x=ℓ = 0, β = 1, 3, . . . , 2k − 1;

(6) ϕ ∈ V2k, and ϕ satisfies the boundary conditions.

If k ≥ 3, then there exists a unique generalized global solution u(x, t) of the
initial boundary value problems (1), (4), and the solution has continuous deriva-
tives uxs (0 ≤ s ≤ 2k− 5) and the generalized derivatives uxstr (0 ≤ s+4r ≤ 2k,
r = 0, 1). If k ≥ 5, then there exists a unique classical global solution u(x, t) of
the initial boundary value problems (1), (4), and the solution u(x, t) has contin-
uous derivatives uxstr (0 ≤ s + 4r ≤ 2k − 5, r = 0, 1, . . . ) and the generalized
derivatives uxstr (0 ≤ s+ 4r ≤ 2k, r = 0, 1, . . . ).

Theorem 4. Suppose that the following conditions are satisfied:

(1) There exist constants a0 > 0, b0 > 0, such that A(t) ≥ a0 > 0, B(t) ≥
b0 > 0 in [0,∞);

(2) g ∈ C1 and g′(s) ≥ 0, ∀ s ∈ R; h ∈ C1, h′(ξ) ≥ 0, ∀ ξ ∈ R and h(0) = 0;
(3) G ∈ C1, G(0) = 0 and there exists a constant γ0 > 0 such that G′(ξ) ≤

−γ0, ∀ ξ ∈ R.
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Then the generalized or classical solution u(x, t) of the initial boundary value
problems (1), (4), has the asymptotic behavior

lim
t→∞

|u(·, t)|L2(Ω) = 0.

Remark. For example, let G(u) = cu7 in the equation (2), where c < 0 is
a constant, then g(u) (= au3) and G(u) satisfy all conditions of Theorem 1–4. If
a2 > 0 and ϕ ∈ V2k (k ≥ 1), then the initial boundary value problems (2), (3) or
(2), (4), have the conclusions of Theorems 1–4.
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