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Bipolar barotropic nonnewtonian fluid

SARKA MATUSU - NECASOVA, MARIA MEDVIDOVA

Abstract. The paper describes the special situation of barotropic nonnewtonian fluid,

where stress tensor can be written in the form of potentials which depend on e;; and
(;TZ;) For this case, we prove the existence and uniqueness of weak solution.

Keywords: barotropic nonnewtonian fluid, bipolar fluid, existence, uniqueness, weak
solution

Classification: 76N, 35Q

1. Introduction

In this paper we follow the ideas of the works of [2], [4], [8]. The main step is
the study of nonnewtonian bipolar barotropic fluid. We investigate the properties
of the momentum equations.

First we prove the existence of the weak solutions. We use the Galerkin method
and the method of characteristics. We obtain apriori estimates. Now, similarly
as in [5], we pass to the limit and we use a very useful Aubin lemma. Having
obtained the existence of solution we prove its uniqueness.

2. Formulation of the problem

We consider the barotropic fluid, which means that the pressure p € C'* (0, +0)
depends only on the density p. The expression

(2.1) Plo) = /OQ P 4,

g

exists for every o > 0.

Let Q ¢ RV, N = 2,3, be a bounded domain with a smooth infinitely differ-
entiable boundary and let I = (0,T"), Q7 = I x Q be the time-space cylinder. We
assume that the body forces are given and

(2.2) be L®(Qr).

Our aim is to find the velocity vector v = (vq,...,vy) : Qr — RN and the
density o : Q7 — R of compressible barotropic viscous fluid, the motion of which
is governed by the continuity equation

do . 9(ov;)
54— 8:10@-

(2.3) =0
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and the momentum equations

d(ov; 0
(ov;) + ——(ouivj + Sijp — Ty = obs,  i=1,2,...,N.

2.4
( ) ot a.%'j

Let us note that we always use the summation convention that one has to take
the sum over an index occurring twice in some term. Now we will specify our
bipolar nonnewtonian fluid.

A standard symmetric stress tensor 7;; is considered such that

(2.5) Tij = —Pdij + Tidj'
The deformation stress tensor is supposed to be expressed in the form of two
potentials
ov a (oW (D
(2.6) 7 = 36(?) - 37(73(%6))
i kY 0(gzt)
N deij\N 1/0v; , Ov;
where e = (ej;);;_y, De = (3xk)i,j,k:17 eij = ij(v) = 3 (55- + 75t)-

We also consider a third stress tensor Tidj 1> the form of which is the following

OW (De
Noz2)

The Clausius-Duhem inequality implies (see [2])

0%v;

d d J
(2.8) Ti;(v)eij(v) + 755, (v) 91,077 +
9 4

+ g () gt 20

The reader interested in the physical background is referred to [2]. We use (2.6),
(2.7) and (2.8) and derive

0 0 0 ov;
(2.8) (%jxe(v» - = (W&(Dew))) o+

2, .
7y (S ot + S e 20
p 8(Wp) 8(8—2}1) Ji=
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We assume the following conditions:

=2 o *W(De) i iy
) [ 50 5 Do) i
(529G )

(2.9) c1 (1 + ’De

q_2 2
§02(1+‘D€D €%, g>N;

_ 9%V (e)
/ q—2|¢|2 < Py S
(29 ) 03(1 + |€|) |§| - 861']'861'1]'1 52]511]1

< eq(1+|e)) T3¢,

where ¢1, ¢2, ¢3, ¢4 are positive constants and |-| is a usual Euclidean norm
of vector. Let us note that we will always suppose throughout the paper that
q> N.
Assume
(2.10) wW(0)=0, V(0)=0;
ow oV

(2.11) Der] (0) =0, J(O) =0.

a( 8mk ) K

The system (2.3), (2.4), is completed by the initial conditions

(2.12) v(0) =vo, 0(0) =00, €0 >0
and the boundary conditions
(2.13) vk =0 on (0,T) x 99,
(2.14) v=0 on (0,T) x O.
Now, we are ready to give the weak formulation of (2.3), (2.4), (2.12)—(2.14).

Definition 2.15. A couple (p,v) is said to be a weak solution to the problem
(2.3), (2.4), (2.12)—(2.14), if the following conditions are fulfilled

(i) 0 € L= (I;Whi()),

(i) % € L*(I; LY(9)),

(iii) v e L=(LW29(0Q) N W, 2 (Q),
(iv) % e 12(Qp),

at



S. Matust - Necasova, M. Medvidova

(v) the continuity equation (2.3) is satisfied in the sense of distributions
on Qr,

0 Op; Jp;
(vi) /g)g(@vi)spi_/ﬂgvivjafj - QpaiiJr
- /Q L(e(v))eg(w)ﬂt /Q 78W(De(v))%(<ﬂ):

5€ij a(geTlZ) oxy,

= / obip;
Q

holds for a.e. t € I and for every ¢ € W24(Q;RV) N Wol’z(Q; RM),
(vii)  the initial conditions (2.12), where gg € C1(Q) and vg € W24(Q)N
WO1 )2 (2), are fulfilled.
3. A modified Galerkin method

First we construct a sequence of suitable approximations. Let us denote

(3.1) V = WY RY) N w2 (;RY),
W =W22(QRY) n Wy (4 RY).

It is easy to see that V C W, W is a Hilbert space. Let << . , . >> be a scalar
product in W, {zk}gozl be a complete orthogonal system of eigenfunctions in W
which is given by the solution of the following eigenvalue problem

<<, 2P >>= )\k(v,zk) Yo e W,

where (v, 2¥) = Ja vzF dz and 0 < A\; < Ao < ... . From the regularity of elliptic
equations (see [3]) we obtain z¥ € C®(Q)NCy(R), k=1,2,....
Let L2, = span{z!,..., 2™} in L2(Q;RN), Wy, = span{z!,.... 2"} in W and

Vin = span{z!,..., 2™} in V. Then we have an orthogonal projector Py, :
m

(3.2) Pnv =Y N(v,25)2F v e L?(Q)
k=1

from L2 onto L%n and also from W onto Wy,. Moreover the continuity of P, in
V can be shown by Banach-Steinhaus theorem (see [7]), so

IPnollwzag) < cllvllwza@) Vo€ W9(Q).
We put

(3.3) VMt w) =Y ep(t)(a),

k=1
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where ¢ = (c1,...,cm) € CH(I).
Let us look for g, € C1(Q7) such that

0om 0

4 dom , 9
(3-4) ot | o

(omvy") = 0.
We shall suppose throughout the paper
m(0,7) = oo(z) € C*(Q);  go(x) > 0in Q.
The relation between Lagrangian and Euler coordinates leads us to the problem

(3.5) ™ (t) = o™ (t,a™(t))
2™0) =y, ye.

For every t € I, y — 2™ (t) is a diffeomorphism of Q onto Q. For oy, = In g, we

have 5 5 d 5
dom , 9 m_ 2 M) = —— (y™M(t, 2™
5 + a1, (om)v] dtom(t,x (t)) o (v (¢, 2™)).
Hence
Qv (T, 2™ (T
(39) o) = sy ([ PEEEID gr ),
0 €Ly

where y = 2"(0), x = 2™ ().
Now, let us look for 7™, 5™ (t,z) = 30", &(t)2"(x) such that for every t € I
we have:

(3.7)
o m 0" Op
/(Qm ot +Qm1}] O +(9$L'Z)Z dz =
_ ov . o /aW(De(ﬁm)) 86,']‘ ) / o
=~ [ e @™ et - | o) G fembit
(=1,2,...,m

The equations (3.7) will be completed by the initial conditions

al l
(3.8) c z z dx = 7;(0, )z (x) dz,
[ a0 9>

k=1i=1

where £ = 1,...,m. Now, it is enough to assume that

(3.9 vo(x) = (0, z) € L2(Q;RY).

471
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The main point is that for £ : 0 <t < T

m

N
det </ ng(x,t)zf(x)zf(x) d:v> # 0.
Qi 0k=1

So (3.7), (3.8), turn to a system of ordinary differential equations for ¢;(¢) that is
uniquely solved.

Now, let us consider the mapping ¢ — ¢ in a small enough interval < 0, >.
If we start with ¢;(¢) in the ball
(3.10) max |¢;(t) — ¢ (0)] <1; i=1,2,...,m,

0,0

we get
max |G (t) —¢(0)| <1; i=1,2,...,m,
(0,a)
SO )
max |¢;| < K(«),
max & < K(0)

K (a) > 0if o is small enough. The details of the proof can be found in [3]. Thus,
applying the Schauder fixed point theorem, we find that ¢; = ¢; on (0, «), hence
o™ = v™. For such a solution we get the following estimates:

v
(3.11) / om dx :/ oo dz,
Q Qo

(3.12)
3 L en =5 [ ah™ R+ [ Plom)— [ Ploo)t

ov oW Oe;;(v™
Do Cii o"™) E g( ):/ omb;vi",
Qt 9Cij 8(3$_ZJZ) Tk ¢

where O = {(z,t);2 € Q} for any t € I, Qo = {(z,0);z € Q}.

The equation (3.11) is obtained from (3.4) by integrating over ()¢, applying
the Green theorem for the second term and using the boundary condition (2.14).
The second estimate (3.12) can be derived from (3.7), where we put v = ",
multiply it by ¢, sum for £ =1,2,...,m and integrate over ¢, t € I. Now let us
multiply (3.7) (vm, = Tm,) by ¢, summed for £ = 1,2,...,m and integrated over

Q¢, t €l
A2 dul | gum
(3:13) /Qt () +/t9m ow; 0 ot
Op Do, OV
+Vm+/WDm+/— =
Jo viewmy+ [ wieemy+ [ 2R
:/ V(e(vm(O))) —|—/ W(De(vm(O))) —I—/ mei%-
Q0 Q0 Qe ot
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Remark. In the same way as in [6,10] from the properties of ordinary differential
equations and from (3.12), it follows that a = T.

Let us denote
(3.14) (v,w)) = /Qﬁij(v)eij(w) v,we V.

The next proposition shows that the form ((.,.)) is an elliptic one.
Proposition 3.15. The Clasius-Duhem inequality implies

(1) ((v,v)) >0 VYveV.

If moreover (2.9), (2.9') are fulfilled, then

i) (0.0) 2 allolfyzaq) +ellvlfyaegy  YveV. a,e>0.

PRrROOF: (i) Using (2.8) it is enough to show that

0%v; 0 v,
d j d i _
[ g 4 N =0,

But we have

/. 5y o), = - &0 Prpdr;
0v;
d (=2
Jra 002

It can be proved (see [12]) that

o0vs; o0v;
d i d i
/an Tjip(v)awi = /E)Q Tyinl?) ov P 0

due to the boundary conditions (2.13), (2.14).
To prove (ii) we use LP -version (p > 1) of the Korn inequality (see[13]) which
has the following form

(3.16) / le(@)P = dlwllfyr,q — Ywe Wy ().
Moreover, a “version” of (3.16) for De can be proved, for more details see [13].

(3.16') / De(w)P > clwllyapq — Vwe W(Q), w=0on o0



474 S. Matust - Necasova, M. Medvidova

Further, using the mean-value theorem, (2.9'), (2.11) we get

(3.17)

oV oV ov
e CORCHO RS i COCHORS i ORCIOR

862']'

La ov 1 92y
/0 ar 861’]’ (Te(v))eij (v) dT = A W(T@(U))eij (U)eiljl (v) dr >

;j0€i1j,
1
/0 c3(1+ 7le))T2|el?dr > cqle|? + calel?, c1,c2 > 0.

Similarly for W (De) we obtain

ow 6€ij 2
D C—_— > c3|Del? D
a(862.3_)(e<v>) 52 (1) = 3| Del + ea| Def?,

xr
oxy, k

(3.18)

where c3,¢cq4 > 0.

oV (e(v)) 0 (OW(De(v))
mw»—é—ag—%w—aaGgﬁgrymw—

oxy,

e s
= ( Green theorem and (2.13) ) = / 8‘/—(6)62']' —|—/ % %ig
o Oeij @ O(5l) O

((3.17), (3.18) ) 201/ |e|Q+C2/ |e|2—|—03/ |De|Q+C4/ Def2 >
Q Q Q

((3.16), (3:16) ) 2 e5l[vly1.0(0) + collvlBaay + crllelyaoy+

Y%

V

2 2
+csllvlliy22 0 2(Q) > C7||”||W2 a( + CSHU||W2,2(Q)-

The following proposition gives apriori estimates based on (3.11)—(3.13).

Proposition 3.19 (apriori estimates). Let vg € V. The solutions (om,v™)
of (3.4), (3.7) (v'™ = ©™) satisfy the following estimates uniformly with respect

to m.

(1) ||Qm||Loo (I;Ll(Q)) < const.,
.. m

(ii) [lv HL‘I(I;WM(Q)) < const.,
(111) ||vaL2 (I;W2’2(Q)) S COHSt.,
(IV) ||Qm||Loo(QT) < COHSt.,
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(v) HQm”Loo (I;WUI(Q)) < const.,
; dom
(vi) HWHLM (1.L9() < const.,
(vii) H HL2(QT) < const.,
(viii) vaH < const..

Lo (W2 (2)nWy 2 (9))

PROOF:
(i): From (3.11) we have

Vtel: ||QmHL1(Qt) < HQ”Ll(Qo)’

that proves (i).

(ii) and (iii) follow from (3.12) and the ellipticity of the form ((.,.)). More
precisely,

T
() / ombit!” < /0 om0 bl ooy 1™ 202y <
t

< (Young inequality) < e1(&) lom | (1,11 a0 e @)

q
+ EHUm”Lq(I;Wz,q(Q))a

where ¢’ % + % = 1; ¢ > 0 arbitrary. From the properties of the function P, it
follows (see [4,11])
®) / Plom) > 0.
Q

Further,

1 mi2 < L 2
(v) = 00lv™(0)]* < e= oolvg]* < const. and P(po) < const. ,

2 Qo 2 Qo Q0

due to gg € C1(Q), vg € V — L%(Q) and Py, is orthogonal on L%(Q2), (2.1).

t
© [ 2l o gy + 2l o nwe )
Putting «, 3, v, 4, into (3.12) we find that

2
HQm|Um| ||Loo([;L1(Q)) < const.
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and

||vaL2([;W2,2(Q)) < const.,

V"™ | La(r;w2a(q)) < const..
(iv): Since we can solve the continuity equation precisely, i.e.

om(t,) = 0(2(0)) exp < - /Ot %im (7,2™(7)) d7'> ,

we get

T
/ 1 1
om/(t,z) > cexp (—7/ V"™ lw2.a(q) dT) > cexp(—71-TY9), ¢ : E—l—? =1
0

Similarly we obtain the estimate from above. These estimates imply (iv).
Analogously as in [5] we get from (3.6):

() om e L¥(1WH9@) and 22 ¢ 19(1; 19(0),

Now we will estimate terms in (3.13):

/t (8;) —Cluag—;n

/Q V(™) + W(De(w™) > ea (o™ 1)Ly + 100 Fr22(0,)).

(@)

2
L2(Qr)

(8)

here we used the same idea as in (3.17), LP-version of Korn inequality and (2.9),
(2.9%), (2.10), (2.11). In an analogous way, one can find

() /QV(e(vm(O)))+W(De(vm(0))) < c(|lv™(0)][y2.0 (0

I O ms gy + -+ 0Oz <

( using continuity of Py, ) < 03(HUOH({1/V2M(Q)+

2
+ ||U0||W2 a-1(Q) to Tt HUOHW“(Q))'
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Further,

o o™
O ombi i < xllomllim ) Pl - lixar

(e)
o ., 0"
_/ om 8:1:j Y ot

ovm 1 Su™
S(Z/Qt (em al;fj 7)) |
i

1 1
510l Zoe guylomlt™ P13 oz 1™ N o w20 | 5

< ( Holder inequality) <

L2(Qt) —

L2(Q)’
©
Op dom Ovi" < cslloml| H
0, 90 0y o = collemllz=wra 12(Q0)’
Putting all these results together into (3.13) we obtain
ov™ |2 2
% e T U O zagy + 10" Olfrzza,) <
q 2 o™
c3(lvollyyzqiq) + -+ lvolli22(0)) + callomll L@ 1Vl L@ | 57 2oy
3 m|2 B m o™
slenlenlt™ P~ o3 lasoavzo@) | B oo
¢ oo tel
sllemlz=onwsaon| 5| 20
Hence using (i)—(v) and the Young inequality we find that
i) |5 <c and  (vii) o <
vii 12Q5) = ¢ an vitd) 0™ oo pw2a@)awd @) S ©

To prove (vi) we show that 6 -(omv]™") € L*°(I; L9(Q)) and the rest follows from
the continuity equation. So
1/q
! dx) +

1/q
(st )<}
Q4 8 £
q 1/q
da:) <Moo @l VemllLaan) +

n < | ov”
o
Q4 " Ox;

V™[l e@n llomll Loy < Fllv™ lw2aap) lomllwra@,) < ¢
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4. Limit process

Our aim will be to prove the existence theorem. To this goal we will need the
well-known Aubin lemma.

Lemma 4.1 (Aubin lemma). Let B be a Banach space, B; (i = 0,1) reflex-
ive Banach spaces Let By —<— B — B1, 1 < p; < co. Let W = {v;v €
LPo(7, Bo) 7 € LP1(I, By)}, then W << LP°(I, B). (Here, < denotes com-
pact 1mbedd1ngs )

Theorem 4.1. Let g9 € C1(Q), oo > 0 in Q, vg € V. Let the assumptions (2.8),
(2.8), (2.9)—(2.13) be satisfied. Then we can choose a subsequence of solutions
o (3.4), (3.7) {o™,v™}y, such that

(

() 0™ — o strongly in L*(Qr):

(ii) v™ — v strongly in L*(I; WhH2(Q));
o™ — v weakly in L9(I; W24(Q));

o™ v

o 12 )
Er gt weakly in L*(Qr);

)
) B~ 5
ot ot
6 ¢Z q 2,q 1,2
(V) Jopplem) 5t = Jou ple Vo € LI(I;W24(Q) N Wy (Q));
) omv™ — ov strong]y in LQ(QT)'
(vii) @mvg%;” — ov;v; weakly in L2(Q7).

*—Weakly in L®(I; L9(Q));

PrOOF: (i) follows from Lemma 4.1 with B = By = L?(Q), By = WhH2(Q),
p1 = po = 2, and 3.19, the assertions (v), (vi).

(ii) can be proved analogously. In Lemma 4.1 we put By = W22(Q), B =
W12(Q), By = L?(Q) and pg = p1 = 2. The second assertion is obtained from
(3.14)(id).

(iii) and (iv) are the consequences of (3.14)(vii), (vi), respectively.

To prove (v) we will need the following lemma (see [6]).

Lemma 4.2. Let G be a bounded domain in RN x R, ¢, and q be functions
from LV (@), 1 < p/ < oo such that qu”LP’(G) < cand ¢y — q a.e. in G. Then

gm — ¢ in LP'(G).
Since g — o in L?(Q7) we find a subsequence, still denoted by o, such that
om — ¢ a.e.in Q. Because of (3.14)(iv) [[p(om) | Lr(Q,) < cfor every 1 < p < oco.

Moreover p(om) — p(0) a.e. in Qp, p € C1(0,00). Applying Lemma 4.2 we obtain
p(om) — p(o) weakly in LP(Q7) for every 1 < p < oo that implies (v).
(vi) is a consequence of the following estimates:

o™ — ou|?) /2 o™ p))2) /2 v —0))V/?
(/QTlem ovf*) S(/QT(Qm( )?) +(/QT((gm 0)%) " <

< llomll oo (@ Iv™ = vl z2(Qr) + IVl oo (1 @y llom — @llr2(@r) <
< cllv™ = vllp2(Qp) + 10l Loe (;w2a@y)llom = ollL2(@p) — 0, as m — o0,
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due to (i) and (ii).
(vii) is shown in this way:

/ (omviol" szv])cp</ (vaim—gvi)v}”%L/ (0vi)(vj" —vj)p <
T Qr Qr

< llomvi™ — ovill L2yl L2(@) 105" | Los (1) +
+ [v§" = vjllL2(@mllellL2@mllel Lo (@r) - I1vill Lo (1;v7)
for every ¢ € L2(Qr). Both terms tend to zero due to (i) and (vi). O

Now we are able to prove the existence of the weak solution to the problem
(2.3), (2.4), (2.12)—(2.14), defined in (2.15).

Theorem 4.2. Let the assumptions of Theorem 4.1 be satisfied. Then there
exists at least one weak solution to the problem (2.3), (2.4), (2.12)—(2.14), s.t

(4.3) 0 € L®(I;WhH(Q)),

(1.9 o € (15 L9(9).

(4.5) v e LI, W24(0) N Wh3(Q)),
(46) % e 12@n)

PROOF: Let us multiply (3.4) by any ¢ € C5°(Qr). Letting m — oo and using
(4.1)(iv); (vi) we easily verify that the continuity equation (2.2) holds in the sense
of distributions and a.e. in Q7.

Now we prove that (p,v) satisfy (2.15)(vi) and also (2.4) in the sense of dis-
tributions on Q7. In (3.7) let us put v = ¥™, instead of zf we multiply the
equation by any ¢ € CY(I; Vi) s.t. ¢(T) = 0. By integrating over Q7 we obtain

dp; / i / i
_ m _ m, m _
7 /QT OB Jop O By Jgp M B
AV (e(v™)) ow de;j
+ [ F e+ [ (™) 5 )
o Oy Y Qr a(gilg)( )fh“k
— [ oubipi+ [ " ©)0i0) Vo€ CHT V).
Qr Q

Letting m — oo in (4.7) we find that (2.15)(vi) holds a.e. in I and for any smooth
test function from [ JO7_; Vin. The proof is based on the results from Theorem 4.1.
Let us show more precisely the limit process in ((v™, ¢)).

T oV (e(v™ AV (elv
[ /Q (2 (J ) Va((] D)o, =

/ /Qt / 86:]9(295,1]1 (e(v+0(™ —v))) b - ey, (V" = v)eij ().

479
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Put wy = v+ 0(v™ —v). Using (2.9") we can estimate the second derivative of
the potential V:

T 1
—2 m—’U e
/o /Q/O c(1+ le(wg)|)™= dfe(v Me(p)] <

1 1/2
clleller vy o™ —U||L2(1r;wlvz(ﬂ))/0 (/Q 1+ |€(we)|)2(q_2)) de.
T
The last term is bounded by a constant, because
wg € L®(I;W>9(Q)) — L¥(I;CH(Q)) Vo (01).

Due to the strong convergence of v™ in L%(I; W1H2(Q)) the limit equals zero.
Further,

I ( o e(vm>)—afg)(z)e@)))‘;jg(w—

2w oe; oe; i
D do 1.]1 . [ .
/ / A (9 86” 862131) ( 8(109)) 6:ckl ( ’U) 6:% (‘P)

Now we use that v — v weakly in LI(I; W29(£2)) and show that for all 6 € (0,1):

T 662-]- Oe;s
q—227Y P
ARl e JETEE

where p : %4—% = 1. But this can be done by Hélder inequality and using the facts
wy € LYL;W24(Q)), ¢ € CYT;U,, Vin) € CHI; W24(Q) 0 Wy 2(Q2)). Notice
that it is enough to take ¢ € C1(I; W24(Q) N W01’2(Q))

Other terms in (4.7) are evaluated easily. We use (4.1)(vi), (vii), (v), (i), and
the fact

[v™(0) = vollL2() =0 m — o0,

due to the definition of projector Py,. So, we can pass to the limit in (4.7) and
obtain that (4.7) holds for (,v) and smooth test functions.

Now, it is just to realize that every term in (4.7) is a linear continuous func-
tional on V. It means that we can complete the set of test functions: ¢ €
CHI;W24(Q) N WOI’Z(Q)) The necessary estimates in ((v, ™ — ¢)) (where @™
are smooth test functions and ¢™ — ¢ -strongly in V) can be done in the same
way as previously. We only change v™ := v, v := 0 and use (2.11). Other terms in
(4.7) do not make problems. We finally obtain that (2.15)(vi) holds a.e. in I and
for any test function from V. The momentum equation is satisfied also in the sense
of distributions. The estimates (4.3)—(4.6) are fulfilled due to Proposition 3.19.

O
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5. Uniqueness

Theorem 5.1. Let the assumptions of Theorem 4.2 be satisfied. Then there is
the unique weak solution to the problem (2.3), (2.4), (2.12)—(2.14).

PRrROOF: Let (g,v), (9,7) be two solutions. We denote £ = o — g and w = v — ©.
From the continuity equation we obtain

o8, 0v; Bw] 3 00 .
1 S R ke R S — 2y ae. .
(5.1) ot~ o, Yom; 0w,V or,d RemOT

From the weak formulation of the momentum equation we get
(5.2)

/ awl / 68?}2% / 5”6?}2 / éwﬂgvl% @@%@Z
:/Qt/ @(éﬂ%)g de.‘;fj_
/Qt/ 8%86“ (e(v +9"w)) A - epp(w)es; (6) -

2w _ 2 2 aell]l aew
/Qt / aeu 62131) (De(v +o w)) v 8:1751 8xz / it

Z

for every ¢ € V, ¢t € I. Now let us multiply (5.1) by ¢ and integrate over Q,
t € I. We use Proposition 3.19, Young inequality and get the estimate

1 4
(5.3) = | €2 dx < eiKi(e) €2 dz dr + 626/ [|wl[?2, dr,
2 Jo, Qr 0 weHe)
where
c1 = c(vllpos(rwza)) + l2llL (@) + 10l oo (r;wra(a)) )i
2 = (18]l oo (@) + el oo (w10 (02)))s
Ki(e) >0, &> 0 arbitrary .
From (5.2) (¢ = w) using 3.19 and Young inequality
(5.4)

2 _
— w dx—|—/ / v+ hw)) diq - e 4, (w)e;s (w) de dr+
I t ae,]ae,m (6(0 + 91w)) i - e, (w)esj ()

2
/ / oW (De(zwﬁgw)) Avs-
t Tem i1

371@1]1)

. 8—Ike,~j(w) 8xk1 €iyj; (w) da dr <

t
< c3K3(e) €2 dz dr + C4K4(a)/Q lw? dz dr + 056/0 Hw||%/[/2,2(g) dr,

Qr

T
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where

~<(|5;

7 = (0 12le@r) + leleian )

v T~ waa(ay + max | ARMLERE

ey = C(”@”LOO(QT)||UHL°°(I;W2vfI(Q)) + el Loc (@) 10l Lo ;w20 () +
+ 1012 o 1200y )

c5 = (Il @n ol ravaaoy) + max |-E] + 52
Ks(e), K3(e) >0, &>0 arbitrary.

Loo(I; Lq(Q)))

Similarly as in 3.15 we can show that

L2y _
/t/ Bedery, 0+ 01w)) D1 iy (w)esj(w) dw dr+

32
De(7 + Yow) ) dide-
/t/ 3 62] (6x 621J1)( )

0
() gty ) do dr > [ By

Now we add (5.3), (5.4), and find

1 T
(5.5) —/ lw|? + [€)? dz < c/ / lw|? + |¢|% dz dt.
2 Ja, 0o Jo

Hence Gronwall inequality concludes that
E=0, w=0 a.e. € Q.

This finishes the proof.

O
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