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Continuous selections, Gδ-subsets

of Banach spaces and usco mappings

Valentin G. Gutev

Abstract. Every l.s.c. mapping from a paracompact space into the non-empty, closed,
convex subsets of a (not necessarily convex) Gδ-subset of a Banach space admits a single-
valued continuous selection provided every such mapping admits a convex-valued usco
selection. This leads us to some new partial solutions of a problem raised by E. Michael.
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1. Introduction

The famous Michael Theorem [2, Theorem 3.2′′] tells that every lower semi-
continuous (l.s.c.) mapping from a paracompact space into the non-empty, closed,
convex subsets of a Banach space admits a single-valued continuous selection. In
the present paper we show that, in a more general situation, this is actually
equivalent to the existence of “nice” set-valued selections. The following theorem
will be proved.

Theorem 1.1. Let X be a paracompact space, E be a Banach space, and let
Y ⊂ E be a Gδ-subset. Then, the following two conditions are equivalent:

(a) every l.s.c. ϕ : X → Fc(Y ) admits a single-valued continuous selection;
(b) every l.s.c. ϕ : X → Fc(Y ) admits a convex-valued usco selection.

Here, Fc(Y ) = {S ∈ F(Y ) : S is convex}, where F(Y ) = {S ∈ 2Y : S is
closed in Y } and 2Y = {S ⊂ Y : S 6= ∅}. A set-valued mapping ϕ : X → 2Y

is l.s.c. if ϕ−1(U) = {x ∈ X : ϕ(x) ∩ U 6= ∅} is open in X for every open
U ⊂ Y . A set-valued mapping θ : X → 2Y is upper semi-continuous (u.s.c.) if
θ#(U) = {x ∈ X : θ(x) ⊂ U} is open in X for every open U ∈ Y . A set-valued

mapping θ : X → 2Y is called usco provided that it is u.s.c. and compact-valued
simultaneously. A map f : X → Y (resp. θ : X → 2Y ) is a selection for ϕ if
f(x) ∈ ϕ(x) (resp. θ(x) ⊂ ϕ(x)) for every x ∈ X .
Turning to the possible applications of Theorem 1.1, let us especially mention

that this result is closely related to the following E. Michael’s problem in [6]:
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Problem 396. Let X be paracompact, E be a Banach space, Y ⊂ E a convex
Gδ-subset, and let ϕ : X → Fc(Y ) be l.s.c.; Does there exists a single-valued
continuous selection f for ϕ?

What is known to this question in all, is that it has an affirmative answer if
X is finite-dimensional [3, Theorem 1.2 and Example 2.5] or if Y is such that

conv (K) ⊂ Y for every compact K ⊂ Y [4, Theorem 1.1] and [2, Propositions 2.6
and 2.3 and Theorem 3.2′′]. But, in general, it is still open even if X is a compact
metric space (see [6]).
Using Theorem 1.1 we now obtain two further partial results to this problem.

First, let us recall that a space X is of countable dimension provided that it is
a countable union of finite-dimensional subsets; A space X is strongly countable-
dimensional provided it is a countable union of closed finite-dimensional subsets.

Corollary 1.2. Let X be a countable-dimensional metric space, E be a Banach
space, and let Y ⊂ E be a Gδ-subset. Then every l.s.c. ϕ : X → Fc(Y ) admits
a single-valued continuous selection.

Proof: Suppose ϕ : X → Fc(Y ) is l.s.c. . Since X is countable-dimensional
and Y is completely metrizable, by [1, Theorem 2.1], ϕ admits a finite-valued
u.s.c. selection ψ. Setting then θ(x) = conv (ψ(x)), we get a convex-valued usco
selection θ for ϕ. Finally, Theorem 1.1 completes the proof. �

Corollary 1.3. Let X be a strongly countable-dimensional paracompact space,
E be a Banach space, and let Y ⊂ E be a Gδ-subset. Then every l.s.c. ϕ : X →
Fc(Y ) admits a single-valued continuous selection.

Proof: Following the previous proof, it suffices to show that every l.s.c. ϕ : X →
Fc(Y ) admits a finite-valued u.s.c. selection. That this is so, it follows from [9,
Theorem 4.5]. �

A construction of continuous selections avoiding Fσ-sets is exhibited in the
next Section 2. A proof of Theorem 1.1 is obtained in the last Section 3.

2. A construction of continuous selections avoiding Fσ-sets

Throughout this section, (E, d) will denote a Banach space with a metric d
generated by the norm of E, and Y =

⋂

{Vn : 1, 2, . . . } where each Vn ⊂ E is

open. For ε > 0 and F ∈ 2E , we use Bε(F ) to denote the ε-neighbourhood of F

in (E, d). If ϕ : X → 2E , we shall, for convenience, denote by ϕ̄ : X → F(E) the

mapping defined by ϕ̄(x) = ϕ(x) (i.e. the closure of ϕ(x) in E).

Lemma 2.1. Let X be a topological space such that, for every l.s.c. mapping
ϕ : X → Fc(Y ) and every n, there is a continuous selection f : X → Vn for

ϕ̄. Then every l.s.c. mapping ϕ : X → Fc(Y ) admits a single-valued continuous
selection.

Proof: Suppose ϕ : X → Fc(Y ) is l.s.c. . By our hypotheses, there is a continu-
ous selection f1 : X → V1 for ϕ̄. Define a continuous mapping r1 : X → (0, 1] by
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letting
r1(x) = min{d(f1(x), E \ V1), 1}, x ∈ X .

By induction, we shall construct a sequence {fn} of continuous selections fn :
X → Vn for ϕ̄ and a sequence {rn} of continuous maps rn : X → (0, 1] such that,
for every n and x ∈ X ,

(1) rn(x) ≤ min{d(fk(x), E \ Vk) : k ≤ n}, and
(2) d(fn+1(x), fn(x)) ≤ 3

−n · rn(x).

This will be sufficient because, by (2), {fn} is a Cauchy sequence. So, it
must converge to some continuous f : X → E. By (1) and [8, Lemma 6.1.1],
f(x) /∈

⋃

{E \ Vn : n = 1, 2, . . .}. That is, f : X → Y and therefore f is
a selection for ϕ.
So, it only remains to define these fn and rn. Since f1 and r1 were defined

above, we may suppose that f1, . . . , fn and r1, . . . , rn have already been defined,
and we must define fn+1 and rn+1. Define a set-valued mapping ϕn : X → Fc(Y )
by letting

ϕn(x) = B3−n
·rn(x)(fn(x)) ∩ ϕ(x)

Y
, x ∈ X .

Note, by [7, Lemma 2.2] and [2, Proposition 2.3], ϕn is l.s.c. . Then, by our

hypotheses, there is a continuous fn+1 : X → Vn+1 such that fn+1(x) ∈ ϕn(x) ⊂

ϕ(x) for every x ∈ X . Since fn+1(x) ∈ B3−n
·rn(x)(fn(x)), (2) holds. Defining

finally rn+1 : X → (0, 1] by rn+1(x) = min{d(fn+1(x), E \ Vn+1), rn(x)}, we
finish the proof. �

Corollary 2.2. Let Y be such that, for every n and every K ⊂ Y compact,
conv (K)∩Vn is convex. Then every l.s.c. ϕ : X → Fc(Y ), with X a paracompact
space, admits a single-valued continuous selection.

Proof: Suppose ϕ : X → Fc(Y ) is l.s.c. and n is a positive integer. Define first

a set-valued mapping ψ : X → 2E by ψ(x) = Vn for every x ∈ X . Next, define

θ : X → 2E by θ(x) = ϕ̄(x) ∩ ψ(x). Notice, that ψ has an open graph in X × E
and θ(x) is convex and non-empty for all x ∈ X . Then, by [5, Theorem 9.1], θ
admits a continuous selection f . That is, there exists a continuous f : X → Vn

which is a selection for ϕ̄. Applying finally Lemma 2.1, we complete the proof.
�

3. Proof of Theorem 1.1.

In preparation for the proof of Theorem 1.1 we begin by proving the following

Lemma 3.1. Let X be a paracompact space, (E, d) a metric space, ϕ : X → 2E

l.s.c., and let θ be an usco selection for ϕ. Then, for every open cover W of X
and every map δ : X → (0,+∞) there exist

(1) a locally-finite open cover U of X ,
(2) a map u : U → W , and
(3) a map κ : U → X ,
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such that

(a) U ′ ⊂ U and
⋂

U ′ 6= ∅ implies κ(U ′) ⊂
⋂

u(U ′) =
⋂

{u(U) : U ∈ U ′},
(b) θ(z) ⊂ Bδ(κ(U))(θ(κ(U))), z ∈ U ∈ U ,

(c) θ(κ(U)) ⊂ Bδ(κ(U))(ϕ(z)), z ∈ U ∈ U .

Proof: Since X is a paracompact space, by [3, Lemma 11.4], there is an open
cover V of X and a map v : V → W such that

(∗) V ′ ⊂ V and
⋂

V ′ 6= ∅ implies
⋃

V ′ ⊂
⋂

v(V ′) .

Define, in a natural fashion, a map S : X → V such that, for every x ∈ X ,
x ∈ S(x). Next, for every x ∈ X , we set

Gx = {z ∈ S(x) ∩ θ#(Bδ(x)(θ(x))) : θ(x) ⊂ Bδ(x)(ϕ(x))} .

Since θ(x) is compact and since ϕ is l.s.c., by [3, Lemma 11.3], Gx is a neighbour-
hood of x. So, {Gx : x ∈ X} is an open cover of X refining V . Let, then, U be
a locally-finite open cover of X which refines {Gx : x ∈ X}. For every U ∈ U pick
a fixed point κ(U) ∈ X such that U ⊂ G

κ(U), and then define u : U → W by

u(U) = v(S(κ(U))), U ∈ U .

These U , u and κ satisfy all our requirements. In fact, we have only to check
(a). Suppose U ′ ⊂ U with

⋂

U ′ 6= ∅. Then κ(U) ∈ S(κ(U)) and U ⊂ G
κ(U) ⊂

S(κ(U)), U ∈ U ′, implies κ(U ′) ⊂
⋃

{S(κ(U)) : U ∈ U ′} ⊂
⋂

{v(S(κ(U))) : U ∈
U ′} =

⋂

u(U ′) (see (∗)), which completes the proof. �

Having established Lemma 3.1, we now proceed to the proof of Theorem 1.1.
In fact, we have only to prove (b) →(a). Suppose Y =

⋂

{Vn : n = 1, 2, . . . },
where each Vn ⊂ E is open. Pick a fixed n, and let ϕ : X → Fc(Y ) be l.s.c. . By
virtue of Lemma 2.1, it suffices to construct a continuous selection f : X → Vn for
ϕ̄. Towards this end, let θ be a convex-valued usco selection for ϕ, which exists
by virtue of (b).
Define ̺ : X → (0,+∞) by ̺(x) = d(θ(x), E \ Vn), x ∈ X . Note that this

definition is correct because θ(x) ⊂ ϕ(x) ⊂ Vn and because θ(x) is compact.
Next, let W be a locally-finite open cover of X and let η :W → X be such that

(3.2) θ(x) ⊂ B̺(η(W ))(θ(η(W ))) ⊂ Vn for every x ∈ W ∈ W .

Such W and η can be obtained by using, for instance, Lemma 3.1.
Next, define another map δ : X → (0,+∞) by

δ(x) = min

{

1

2
d(θ(x), E \B̺(η(W ))(θ(η(W )))) :W ∈ W , x ∈ W

}

, x ∈ X.
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This is possible because θ is compact-valued and W is locally-finite. Let us note
the following property of δ:

(3.3) B2δ(x)(θ(x)) ⊂ B̺(η(W ))(̺(η(W ))) for every x ∈W ∈ W .

Let now U , u : U → W and κ : U → X be as in Lemma 3.1 (applied with
these particular ϕ, θ, W and δ). Because of the paracompactness of X , there is
an open cover {GU : U ∈ U} of X such that GU ⊂ U for every U ∈ U . Whenever
U ∈ U , we define a set-valued mapping ϕU : GU → 2E by letting

ϕU (z) = ϕ(z) ∩Bδ(κ(U))(θ(κ(U))), z ∈ GU .

The following holds:

(3.4) ϕU (z) ∈ Fc(E) .

Indeed, by (c) of Lemma 3.1, ϕ(z) ∩Bδ(κ(U))(θ(κ(U))) 6= ∅. Then, (3.4) follows

from the convexity of ϕ(z) and θ(κ(U)).

(3.5) ϕU (z) ⊂ ϕ̄(z), which follows immediately from the definition of ϕU .

(3.6) ϕU is l.s.c. because ϕ|GU is l.s.c. and because Bδ(κ(U))(θ(κ(U))) is open

(see, [2, Propositions 2.3 and 2.4]).

Now, by (3.4) and (3.6), making use of [2, Theorem 3.2′′], we get a continuous
selection fU : GU → E for ϕU . Let {gU : U ∈ U} be a partition of unity on X
indexed-subordinated to {GU : U ∈ U}. We finally define f : X → E by letting

f(x) =
∑

{gU (x) · fU (x) : U ∈ U} ,

and let us check that f is the required one. Since ϕ is convex-valued, by (3.5),
f is a selection for ϕ̄. So, it only remains to check that f(X) ⊂ Vn. Towards
this end, let x ∈ X . Set Ux = {U ∈ U : x ∈ GU}. Note that gU (x) 6= 0 implies
U ∈ Ux. Pick a fixed W ∈ u(Ux). Then, by (a) of Lemma 3.1, we get that

κ(Ux) ⊂
⋂

u(Ux) ⊂W .

Together with (3.3), this leads us to the inclusions

fU (x) ∈ Bδ(κ(U))(θ(κ(U))) ⊂ B2·δ(κ(U))(θ(κ(U))) ⊂

⊂ B̺(η(W ))(θ(η(W ))), U ∈ Ux .

Therefore,

f(x) =
∑

{gU (x) · fU (x) : U ∈ U} =

=
∑

{gU (x) · fU (x) : U ∈ Ux} ⊂ B̺(η(W ))(θ(η(W ))) ⊂ Vn .

Thus, the proof of Theorem 1.1 is completed. �
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