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Realcompactification of frames

Nizar Marcus

Abstract. We give a construction of Wallman-type realcompactifications of a frame L by
considering regular sub σ-frames the join of which generates L. In particular, we show
that the largest such regular sub σ-frame gives rise to the universal realcompactification
of L.

Keywords: frame, σ-frame, realcompactification

Classification: 18D35, 54D35, 54D52, 54J05

1. Background

We shall be concerned with completely regular frames and regular sub σ-frames
which join generate them. A σ-frame is a bounded distributive lattice A for which
every countable subset S has a join such that

a ∧
∨

A

S =
∨

A

{a ∧ s | s ∈ S}

for each a ∈ A. We denote the top and bottom elements of a σ-frame A respec-
tively by 1A and 0A. σ-Frame homomorphisms preserve countable joins and finite
meets. The resulting category is denoted σFrm. Extending the above notions
by allowing arbitrary subsets and arbitrary joins in the definitions leads to the
notions of a frame and a frame homomorphism, and the corresponding category
Frm of frames. For further details on frames and σ-frames we refer to Johnstone
[4] and Banaschewski-Gilmour [1].
Given a bounded distributive lattice A, and supposing a, b ∈ A, then a is said

to be rather below b (written a ≺ b) if there exists s ∈ A such that a∧s = 0A and
b ∨ s = 1A. We say a is completely below b (written a ≺≺ b) if there is a family
{xi | i ∈ Q ∩ [0, 1]} of elements in A satisfying x0 = a, x1 = b and i < j implies
xi ≺ xj . The lattice A is called normal if for each pair a, b of elements of L with
a ∨ b = 1A, there exists u, v ∈ A such that a∨ u = 1A = b ∨ v and u∧ v = 0A. In
a normal lattice, the two relations ≺ and ≺≺ coincide.

This paper is part of a Masters thesis written under the supervision of Christopher Gilmour.
I am indebted both to him and to Bernhard Banaschewski for the many fruitful discussions and
useful suggestions. I also acknowledge the facilities and assistance of the Categorical Topology
Research Group at the University of Cape Town under funding from that university and from
the Foundation for Research and Development
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Given a frame L, an element a ∈ L is called a completely regular element if a is
a join of elements completely below it. We say L is completely regular if each a ∈ L
is completely regular. A σ-frame A is regular if each a ∈ A is a countable join
of elements rather below it. In [1] it is shown that regular σ-frames are normal.
The full subcategories of Frm and σFrm consisting of completely regular frames
and regular σ-frames are denoted CrgFrm and RegσFrm respectively.
One important notion, particularly in the study of realcompact frames, is that

of the cozero part of a frame. Given a completely regular frame L, an element a ∈
L is called a cozero element of L if a = h(R\{0}) for some frame homomorphism

OR
h

−→ L. The sublattice of all cozero elements of L is in fact the largest regular
sub σ-frame of L and is denoted CozL. It is immediate from the definition that
frame homomorphisms preserve cozero elements. Thus, Coz is a functor from
CrgFrm to RegσFrm. The following useful result, as well as other important
properties of the cozero-set lattice can be extracted from [4].

Lemma 1.1. Let L be a completely regular frame. Then a ∈ CozL iff a =
∨

L an,

for some sequence (an) in L with ai ≺≺ ai+1 for all i ∈ N.

2. Realcompact frames

Madden and Vermeer [5] obtained a localic version of realcompactness by way
of the following result:

Theorem 2.1. For a completely regular frame L, the following are equivalent:

(i) L is Lindelöf.
(ii) L is a closed quotient of

⊕

I OR, for some index set I.
(iii) L ∼= HCozL.

Remark. Property (ii) above is suggestive of the well-known characterization
of realcompactness. For this reason Schlitt [6] refers to this notion as Stone-
realcompactness. However, the frame of open sets of a realcompact topological
space need not be Stone-realcompact. Consider an uncountable discrete space
X with a non-measurable cardinality. Then X is realcompact, but OX is not
Lindelöf, and therefore not Stone-realcompact. Schlitt formulated a definition
of realcompactness, for which a space X is realcompact if OX is realcompact
(which he refers to as Herrlich-realcompactness, or H-realcompactness); and it is
this definition which we adopt below.

Definition 2.2. For any frame L, an ideal I ⊆ L is σ-proper if
∨

L S 6= 1L for
any countable S ⊆ I. I is said to be completely proper if

∨

L I 6= 1L.

Definition 2.3 (Schlitt). A completely regular frame L is realcompact if every
σ-proper maximal completely regular ideal is completely proper.

The definition given above differs from the original definition given by Schlitt,
which he chose for the reason of avoiding choice principles. On the assumption of
the axiom of choice, the two definitions are equivalent, as pointed out by Schlitt.
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Given a bounded distributive lattice L, MaxL denotes the topological space
consisting of all maximal ideals on L with a base for open sets consisting of the
sets {I ∈ MaxL | a /∈ I}, where a ∈ L. We denote by MaxcL the topological
space consisting of all maximal completely regular ideals with basic open sets of
the form {I ∈ MaxcL | a /∈ I}, where a ∈ L. We also denote by kL(a) the set
{b ∈ L | b ≺≺ a}.
The following lemma is a generalization of a result obtained by Schlitt [6], and

allows for our characterization of realcompactness in Proposition 2.5.

Lemma 2.4. For any completely regular frame L, MaxcL ∼= MaxCozL.

Proof: Consider the maps

ϕ :MaxcL −→MaxCozL

ψ :MaxCozL −→MaxcL

defined by

ϕ(I) = {a ∈ CozL | kL(a) ⊆ I}

ψ(J) = {u ∈ L | u ≺≺ v, for some v ∈ J} .

We show that the maps ϕ and ψ are indeed well-defined. It is clear that ϕ(I) is
an ideal in CozL. To see that ϕ(I) is maximal, consider a ∈ CozL with a /∈ ϕ(I).
Then kL(a) * I, and consequently kL(a)∨I = L, since I is a maximal completely
regular ideal in L. Thus, kL(a)∨kL(s) = L and hence a∨ s = 1L, for some s ∈ I.
But s ∈ ϕ(I) since kL(s) ⊆ I, so it follows that ϕ(I) is maximal.
To see that ψ is well-defined, let J be a maximal ideal in CozL. Since the

relation ≺≺ interpolates, it follows that ψ(J) is a completely regular ideal in
L. Suppose that K is a completely regular ideal properly containing ψ(J). Let
u ∈ K\ψ(J). Then there exists v ∈ K such that u ≺≺ v. From Lemma 1.1 there
exists w ∈ CozL such that u ≺≺ w ≺≺ v, ie w /∈ J . Now, J is maximal so there
exists a ∈ J such that a ∨ w = 1L. Since CozL is normal, there exists t ≺≺ a
with t ∨ w = 1L. But then K is not a proper ideal, since t ∈ ψ(J) ⊆ K, and
w ∨ t = 1L.
It is easily seen that ϕ and ψ are continuous and are inverse to each other. �

Proposition 2.5. A completely regular frame L is realcompact if every σ-proper
maximal ideal in CozL is completely proper.

Remark. From the above Proposition it is clear that Schlitt’s definition of re-
alcompactness is conservative, ie a completely regular space X is realcompact iff
OX is realcompact. Also, every Lindelöf frame is realcompact, since a completely
regular frame L is Lindelöf iff every σ-ideal in CozL is completely proper.

The full subcategory of realcompact frames is denoted RKFrm.
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3. Realcompactification of frames

Definition 3.1. Let L be a completely regular frame. Then (M,h) is a realcom-

pactification of L ifM is a realcompact frame, andM
h

−→ L is a dense surjection.

For any regular σ-frame A, we denote by HA the frame of all σ-ideals of A.
It was shown by Madden and Vermeer [5] that HA is in fact regular Lindelöf.
We construct a realcompactification of a completely regular frame L by forming
a suitable quotient ofHA, where A is a regular sub σ-frame of L, with the property
that each a ∈ L can be written as a join of elements in A, ie A join generates L.
The technique used here is essentially an adaptation of that used by Schlitt [6] in
his construction of the Hewitt realcompactification for frames, and is motivated
by the construction of realcompactification of spaces using Alexandroff bases,
and the adjunction between Alexandroff spaces and regular σ-frames obtained by
Gilmour [3]. As this construction is akin to that of Wallman for compactifications,
we will call the realcompactification obtained the Wallman realcompactification
of L with respect to A.
Let L be a completely regular frame, and let A be a regular sub σ-frame join

generating L. Define HA
hL−→ HA by

hLI =↓ (
∨

L

I) ∩
⋂

{J ∈ σPMaxA | I ⊆ J} ,

where σPMaxA is the collection of all σ-proper maximal ideals in A.

Lemma 3.2. The map hL, given above, is a nucleus.

Proof: We firstly show that hL is well-defined. Let I ∈ HA. Suppose S is
a countable subset of hLI, then

∨

L S ∈↓ (
∨

L I). Let J be a σ-proper maximal
ideal containing I. Then J is a σ-ideal, and since S ⊆ J , it follows that

∨

L S ⊆ J .
Let u ∈ hLI, and suppose v ≤ u. Then v ∈↓ (

∨

L I), since u ∈↓ (
∨

L I). Given
any σ-proper maximal ideal J ⊇ I. Then u ∈ J , and hence v ∈ J , ie v ∈ hLI.
Thus hLI ∈ HA and hence hL is well-defined. We now show that hL is a nucleus:

(i) It is clear that I ⊆ hLI.
(ii) Since hL is order-preserving, it follows that hL(I∩K) ⊆ hLI∩hLK. Now,
suppose u ∈ hLI ∩hLK. Then, u ≤

∨

L I ∧
∨

LK =
∨

L(I ∩K). Suppose
J ⊇ I ∩ K is a σ-proper maximal ideal in A. Since J is maximal, and
hence prime, J ⊇ I, or J ⊇ K. But then u ∈ J and so u ∈ hL(I ∩K), ie
hL(I ∩K) = hLI ∩ hLK.

(iii) Let u ∈ h2LI. Then u ≤
∨

L hLI ≤
∨

L I. Now, suppose I ⊆ J , where J is
a σ-proper maximal ideal in A. Then hLI ⊆ J , by definition of hL. Thus,
u ∈ J and hence u ∈ hLI, ie h

2
LI ⊆ hLI.

�

Let (HA)hL
= {I ∈ HA | hLI = I} be the quotient frame corresponding to

the nucleus hL.
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Lemma 3.3. Let L be a completely regular frame, and let A be a regular sub
σ-frame join generating L. Then Coz(HA)hL

∼= A.

Proof: We show that the σ-frame Coz(HA)hL
is precisely the σ-frame of prin-

cipal ideals in A. Firstly, suppose I ∈ Coz(HA)hL
. Then there exists a sequence

(Jn) in (HA)hL
with J1 ≺≺ J2 ≺≺ J3 ≺≺ · · · , and I =

∨

(HA)hL

Ji. Now,

for each n ∈ N, Jn ≺ I. Thus, for each n ∈ N, there exists Sn ∈ (HA)hL
such

that Jn ∧ Sn = {0A} and I ∨ Sn = A. For each n ∈ N, take sn ∈ Sn. Then
jni

∧ sn = 0L for each jni
∈ Jn, and there exists kn ∈ I such that kn ∨ sn = 1L,

ie jni
≺ kn for each jni

∈ Jn. Let k =
∨

L kn. Then k ∈ I, since I is a σ-
ideal. Also, jni

≺ k, for each jni
∈ Jn and each n ∈ N. But then Jn ⊆↓ k for

each n ∈ N. Hence
∨

HA Ji ⊆↓ k. Now, hL is order preserving, and therefore
hL

∨

HA Ji =
∨

(HA)hL

Ji ⊆ hL ↓ k =↓ k. Since k ∈ I, it follows that I =↓ k.

On the other hand, let a ∈ A, Then, since A is a regular σ-frame, a =
∨

A S,
where S = {ai | i ∈ N} and ai ≺ a for each i ∈ N. Now, the relation ≺ interpolates
in regular σ-frames, so ↓ ai ≺≺↓ a in HA. But then there is an Ii ∈ CozHA such
that ↓ ai ≺≺ Ii ≺≺↓ a. Hence

∨

HA Ii =↓ a, and thus ↓ a ∈ CozHA since it is
a countable join of cozero elements. �

Lemma 3.4. The frame (HA)hL
is realcompact.

Proof: Let J be a σ-proper maximal ideal in Coz(HA)hL
. Then J = {↓ a |

a ∈ J}, where J is a σ-proper maximal ideal in A. But then
∨

(HA)hL

J =

hL(
∨

HA J ) = hL(J) = J . Thus
∨

(HA)hL

J is a σ-proper maximal ideal in A,

so that J is completely proper in (HA)hL
. �

Proposition 3.5. The map (HA)hL

jL−→ L given by join is a dense surjection.

Proof: Firstly note that for any family {Iλ | λ ∈ Λ} ⊆ (HA)hL
, we have:

jL
∨

(HA)hL

Iλ =
∨

L

hL

∨

HA

Iλ

=
∨

L

∨

HA

Iλ

=
∨

L

jL(Iλ) .

Obviously, jL preserves binary meets, so jL is indeed a frame homomorphism.
Now, for each a ∈ L, hL(↓ a ∩ A) = (↓ a ∩ A), and hence (↓ a ∩ A) ∈ (HA)hL

.
Also jL(↓ a∩A) = a for each a ∈ L, since A join generates L, so jL is surjective.
Suppose jL(I) = 0L, then I = {0L}, ie jL is dense. �

Definition 3.6. Let L be a completely regular frame, and let A be a regular
sub σ-frame of L, join generating L. Then ((HA)hL

, jL) is called the Wallman
realcompactification of L with respect to A. (HA)hL

is denoted υAL.
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Lemma 3.7. If L is realcompact, then υCozLL ∼= L.

Proof: It suffices to show that υCozLL
jL−→ L is codense. Suppose jL(I) = 1L,

ie I is not completely proper. Now, if I 6= 1IdlCozL, then since I ∈ υCozLL, there
is a σ-proper maximal ideal J ⊇ I. But then J is completely proper, since L is
realcompact. This contradicts the fact that I is not completely proper. Hence
I = 1IdlCozL. �

Remark. The above result cannot be generalized to arbitrary regular sub σ-
frames of L. As a counterexample, let L = PR, the power set of R and let A be
the collection of all countable and cocountable subsets of R. Then A is a regular
sub σ-frame join generating L, but υAL 6∼= L. For if υAL ∼= L, then CozυAL and
CozL would be isomorphic as σ- frames. But CozυAL ∼= A, and CozL = L, from
which it would follow that L and A are isomorphic as σ-frames.

Definition 3.8. Let L andM be completely regular frames and let A be a regular

sub σ-frame join generating L. Then the map M
h

−→ L is said to be over A if M
is generated by a regular sub σ-frame B such that h[B] ⊆ A.

Lemma 3.9. Let L be a completely regular frame, and let A be a regular sub
σ-frame join generating L. If {Kλ | λ ∈ Λ} is a collection of σ-ideals in A, then
hL

∨

HA hLKλ = hL

∨

HAKλ.

Proof: So as not to complicate the notation, we shall suppress mentioning the
index set Λ.

hL

∨

HA

hLKλ = hL

∨

HA

(↓ (
∨

L

Kλ) ∩
⋂

{K ∈ σPMaxA | K ⊇ Kλ})

= hL(
∨

HA

↓ (
∨

L

Kλ) ∩
∨

HA

⋂

{K ∈ σPMaxA | K ⊇ Kλ})

= hLJ, say

=↓ (
∨

L

∨

HA

↓ (
∨

L

Kλ))∩ ↓ (
∨

L

∨

HA

⋂

{K ∈ σPMaxA | K ⊇ Kλ})∩

⋂

{I ∈ σPMaxA | I ⊇ J}

=↓ (
∨

L

∨

HA

Kλ) ∩
⋂

{I ∈ σPMaxA | I ⊇ J} .

Let I be a σ-proper maximal ideal in A containing
∨

HAKλ, then I contains
⋂

{K ∈ σPMaxA | K ⊇ Kλ}, for each λ from which it follows that I contains
∨

HA

⋂

{K ∈ σPMaxA | K ⊇ Kλ}.
Consequently, I ⊇

∨

HA ↓
∨

LKλ ∩
∨

HA

⋂

{K ∈ σPMaxA | K ⊇ Kλ} = J so
that

⋂

{I ∈ σPMaxA | I ⊇ J} ⊆
⋂

{K ∈ σPMaxA | K ⊇
∨

HA

Kλ}
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from which it follows that

hL

∨

HA

hLKλ ⊆↓ (
∨

L

∨

HA

Kλ) ∩
⋂

{K ∈ σPMaxA | K ⊇
∨

HA

Kλ}

= hL

∨

HA

Kλ .

For the reverse inclusion, note that Kλ ⊆ hLKλ for each λ. Since hL is order-
preserving, it follows that hL

∨

HAKλ ⊆ hL

∨

HA hLKλ.
�

Proposition 3.10. Let L be a completely regular frame and let A be a regu-

lar sub σ-frame join generating L. Then the map υAL
jL−→ L is the universal

realcompactification of L over A.

Proof: Let M be a realcompact frame, and suppose the frame homomorphism

M
ϕ

−→ L is over A, with B a regular sub σ-frame join generating M such that
h[B] ⊆ A.

M
ϕ

−−−−→ L
x





jL

υBM
ϕ̄

−−−−→ υAL

Consider the map υBM
ϕ̄

−→ υAL defined by ϕ̄(J) = hL < ϕ[J ] >, where< ϕ[J ] >
is the σ-ideal in A generated by ϕ[J ]. (In order not to complicate the notation
we shall simply denote < ϕ[J ] > by ϕ[J ].) We now show that ϕ̄ is a frame
homomorphism.
It is clear that ϕ̄ preserves intersection. We show that ϕ̄ preserves arbitrary

joins. Let {Jλ | λ ∈ Λ} be a collection of σ-ideals in (HB)hM
. Then

ϕ̄(
∨

(HB)hM

Jλ) = ϕ̄(hM

∨

HB

Jλ)

= hLϕ[hM

∨

HB

Jλ]

=↓
∨

L

ϕ[hM

∨

HB

Jλ] ∩
⋂

{J ∈ σPMaxA | J ⊇ ϕ[hM

∨

HB

Jλ]}

=↓ (ϕ(
∨

M

hM

∨

HB

Jλ)) ∩
⋂

{J ∈ σPMaxA | J ⊇ ϕ[hM

∨

HB

Jλ]} .

Now, for any J ∈ HB, hMJ ⊆↓ (
∨

M J), and hence
∨

M hMJ ≤
∨

M J . Also,
J ⊆ hMJ , so that

∨

M J ≤
∨

M hMJ . Thus,
∨

M J =
∨

M hMJ . So we get:

ϕ̄(
∨

(HB)hM

Jλ) =↓ (ϕ(
∨

M

∨

HB

Jλ)) ∩
⋂

{J ∈ σPMaxA | J ⊇ ϕ[hM

∨

HB

Jλ]}

=↓ (
∨

L

ϕ[
∨

HB

Jλ]) ∩
⋂

{J ∈ σPMaxA | J ⊇ ϕ[hM

∨

HB

Jλ]} .
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On the other hand,

∨

(HA)hL

ϕ̄(Jλ) = hL

∨

HA

hLϕ[Jλ]

= hL

∨

HA

ϕ[Jλ], from Lemma 3.9 above

=↓ (
∨

L

∨

HA

ϕ[Jλ]) ∩
⋂

{J ∈ σPMaxA | J ⊇ ϕ[
∨

HB

Jλ]} .

We now show that

{J ∈ σPMaxA | J ⊇ ϕ[
∨

HB

Jλ]} = {J ∈ σPMaxA | J ⊇ ϕ[hM

∨

HB

Jλ]} .

It is clear that

{J ∈ σPMaxA | J ⊇ ϕ[hM

∨

HB

Jλ]} ⊆ {J ∈ σPMaxA | J ⊇ ϕ[
∨

HB

Jλ]} .

Conversely, suppose J is a σ-proper maximal ideal in A, containing ϕ[
∨

HB Jλ].
Let K =

∨

HB{I ∈ HB | ϕ[I] ⊆ J}. Suppose K ′ is an ideal properly containing
K. Then ϕ[K ′] = 1IdlA, ie there exists k

′ ∈ K ′ such that ϕ(k′) = 1M . Now,
since k′ ∈ B, and B is a regular σ-frame, there exists a set S = {ki ∈ B | i ∈ N}
with ki ≺ k′ for each i ∈ N, and k′ =

∨

M S. But, since K is σ-proper, there
exists j ∈ N such that kj /∈ K, ie ϕ(kj) ∨ p = 1L, for some p ∈ J . But then
ϕ(k∗j ) ≤ (ϕ(kj))

∗ ≤ p, where k∗j denotes the pseudocomplement of kj inM . Since

kj ≺ k′, there exists s ∈ B such that kj ∧ s = 0M and k′ ∨ s = 1M . But then

s ≤ k∗j , and therefore ϕ(s) ≤ ϕ(k∗j ) ≤ p. Hence, s ∈ K ′, from which it follows that

K ′ = 1IdlB. Thus, K is a σ-proper maximal ideal in B, and hence hMK = K.
Now,

∨

HB Jλ ⊆ K so that ϕ[hM

∨

HB Jλ] ⊆ ϕ[hMK] = ϕ[K] ⊆ J , and hence

{J ∈ σPMaxA | J ⊇ ϕ[hM

∨

HB

Jλ]} ⊆ {J ∈ σPMaxA | J ⊇ ϕ[
∨

HB

Jλ]} .

This gives equality, and therefore ϕ̄(
∨

(HB)hL

Jλ) =
∨

(HA)hL

ϕ̄(Jλ).

Also, the map M
d

−→ υBM defined by d(m) =↓ m is a frame homomorphism.
Obviously, d preserves binary meets. To see that d preserves arbitrary joins,
consider {mi | i ∈ I} ⊆M , with m =

∨

M mi. Then

∨

υBM

↓ mi =↓
∨

M

∨

HB

↓ mi ∩
⋂

{J ∈ σPMaxB | J ⊇
∨

HB

↓ mi}

=↓ m.
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Note that the above equality holds even if m = 1M , in which case
{J ∈ σPMaxB | J ⊇

∨

HB ↓ mi} = φ, since M is realcompact.
Now,

jL · ϕ̄ · d(m) =
∨

L

hLϕ[↓ m]

=
∨

L

hL ↓ ϕ(m)

=
∨

L

↓ ϕ(m)

= ϕ(m) .

Uniqueness of the map ϕ̄ ·d follows from the fact that jL is dense and hence monic
in the category of frames. �

Corollary 3.11. Let L be a completely regular frame. Then υCozLL
jL−→ L is

the universal realcompactification of L.

Gilmour [3] showed that the Alexandroff bases of Alexandroff spaces are pre-
cisely those bases giving rise to Wallman realcompactifications for the underlying
topologies. These bases were shown to be precisely the regular sub σ-frames of
the frame of open sets of the underlying topological space.
Let X be a topological space with A an Alexandroff base on X . We shall

denote by υAX , the Wallman realcompactification of X with respect to A.
Recall that the spectrum ΣL of a given frame L is the topological space consist-

ing of all frame homomorphisms ξ : L→ 2 with open sets Σa = {ξ | ξ(a) = 1}. A
frame L is called spatial if OΣL ∼= L, ie the map η : L→ OΣL given by η(a) = Σa

is an isomorphism.
An element s ∈ L is called prime if s = a ∧ b ⇒ s = a or s = b. It is

a well-known fact that L is spatial iff each a ∈ L is a meet of prime elements.

Corollary 3.12. Let X be a topological space, and let A be an Alexandroff base
on X . Then υAOX ∼= OυAX .

Proof: Let e : X →֒ υAX be the Wallman realcompactification of the space
X with respect to the Alexandroff base A. Now, OυAX is a realcompact frame,

and Oe is over A, and thus there is a unique map OυAX
ϕ

−→ υAOX such that

jOX · ϕ = Oe, where the map υAOX
jOX
−→ OX takes an ideal to its union.

We now show that every proper ideal I ∈ υAOX is a meet of prime ideals.
Note that I = hOXI =↓

⋃

I ∩
⋂

{J ∈ σPMaxA | J ⊇ I}. If ↓
⋃

I = 1OX , then
we are done, since maximal ideals are prime. Otherwise, if ↓

⋃

I = a 6= 1OX then
a is a meet of prime elements in OX , and I is the meet of the principal ideals
generated by these prime elements. Hence υAOX is spatial.

Consider the map X
f

−→ ΣυAOX given by f(x) = x̃, where x̃(I) = Card
(
⋃

I ∩ {x}). Note that f is a continuous function, since x ∈
⋃

I iff x̃(I) = 1 iff
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f(x) ∈ ΣI . Furthermore, since υAOX is spatial CozOΣυAOX ∼= CozυAOX ∼=
A, and hence the cozero-sets of ΣυAOX are all of the form Σ↓a, where a ∈ A.
Thus f : (X,A)→ (ΣυAOX,CozΣυAOX) is a coz-map. Gilmour [2] showed that
e : (X,A) →֒ (υAX,A) is the universal realcompactification of X in the category
of Alexandroff spaces. Since ΣυAOX is a realcompact Alexandroff space, there

is a unique map υAX
g

−→ ΣυAOX such that g · e = f . Applying the functor O,
we obtain:

OυAX
Oe

−−−−→ OX
x





Og·η

x





Of

υAOX
η

−−−−→ OΣυAOX

Now, Of · η(I) = Of(ΣI) =
⋃

I = jOX (I). Hence Og · η = ϕ−1, ie OυAX ∼=
υAOX . �
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