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Linear transforms supporting circular convolution

over a commutative ring with identity

M.M. Nessibi

Abstract. We consider a commutative ring R with identity and a positive integer N.
We characterize all the 3-tuples (L1,L2,L3) of linear transforms over R

N, having the

“circular convolution” property, i.e. such that x∗y = L3(L1(x)⊗L2(y)) for all x, y ∈ RN.

Keywords: circular convolution property

Classification: 15A04

1. Introduction

Let R be a commutative ring with identity, N a positive integer and A = (aij)
(0 ≤ i, j ≤ N − 1) a square matrix of order N over R. The linear transform

LA : R
N → RN defined by

LA(x0, x1, · · · , xN−1) = (y0, y1, · · · , yN−1),

where yk = ak0x0 + ak1x1 + · · · + akN−1xN−1 (0 ≤ k ≤ N − 1) is the linear

transform over RN with matrix A.
For the case R being the field C of complex numbers and A = (akl) the square

matrix defined by

akl = (e
−2iπ kl

N ) (0 ≤ k, l ≤ N − 1),

the linear transform LA is the discrete Fourier transform D. This transform
is often used to compute the circular convolution product of two elements x =
(x0, x1, · · · , xN−1) and y = (y0, y1, · · · , yN−1) of C

N as follows:

(1) x ∗ y = D−1(D(x) ⊗ D(y)),

where D−1 = ( 1N e+2iπ
kl

N ) is the inverse discrete Fourier transform and

x ⊗ y = (x0y0, x1y1, · · · , xN−1yN−1),(2)

x ∗ y = (z0, z1, · · · , zN−1),(3)

where zk =
∑N−1

j=0 xjyk−j (0 ≤ k ≤ N −1) and yk−j = ym for the integer m such

thatm ≡ k−j (modN) and 0 ≤ m ≤ N−1. The discrete Fourier transform plays
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a key role in physics because it can be used as a mathematical tool to describe
the relationship between the time domain and frequency domain representation
of a discrete signal (see [5, p. 211]). In this paper, we characterize all 3-tuples

(L1, L2, L3) of linear transforms over R
N, having the “circular convolution” prop-

erty, i.e. such that x ∗ y = L3(L1(x)⊗L2(y)) for all x, y ∈ RN, where ∗ and ⊗ are
defined as in (2) and (3).
This question for an integral domain and for the case N = 2 was completely

solved by L. Skula in [3]. For the case N ≥ 3, L. Skula gave in [3] a sufficient
condition for linear transforms over a commutative ring with identity to have the
“circular convolution” property. The converse direction (necessary condition) was
established by P. Cikánek ([1, p. 74]). This gives another characterization of the
linear transforms supporting circular convolution over a commutative ring R with
identity.
In this work, by applying Theorem 2.2 we characterize all linear transforms

supporting circular convolution over a residue class ring Z/m Z for any integer
m ≥ 2.
In [4], L. Skula, by means of p-adic integers, described all linear transforms

supporting circular convolution over a residue class ring Z/m Z, for any integer
m ≥ 2.

2. Characterization of linear transforms supporting circular

convolution over R.

Definition 2.1. Let A = (akl), B = (bkl) and C = (ckl) (0 ≤ k, l ≤ N−1) be
square matrices over the ring R. We say that the matrices A, B, C support circular
convolution or briefly are SCC-matrices if for each u, v and w in {0, 1, · · · , N −1}
the following relation holds:

N−1
∑

k=0

akubkvckw =

{

1 for u+ v ≡ w (modN)

0 otherwise.

Theorem 2.1. The matrices A, B, C support circular convolution if and only if
the 3-tuple (LA, LB , LC∗) supports circular convolution, where C∗ = (c∗kl) is the
square matrix of order N over R defined by

c∗kl = clj (0 ≤ k, l ≤ N − 1)

with 0 ≤ j ≤ N − 1 and j ≡ −k (modN).
(See [3, p. 12–14]).

Proposition 2.1. Let A, B, C be SCC-matrices over R. Then the determinants
of A, B, C are not zero-divisors in R.
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Corollary 2.1. Let A, B, C be SCC-matrices over R. We suppose that each non
zero-divisor element of R is invertible. Then for each k (0 ≤ k ≤ N − 1) there
exists gk ∈ R such that

(1) gNk = 1.
(2) aku = gu

kak0, bku = gu
k bk0, cku = gu

k ck0 for each u ∈ {0, · · · ,N−1}.
(3) For each i, j ∈ {0, · · · , N − 1} such that i 6= j, gi − gj is not a zero-divisor

in R.

Corollary 2.2. If N.1 is invertible in R and if there exist g0, · · · , gN−1 ∈ R such
that

(1) gNk = 1 for each k ∈ {0, · · · , N − 1}.
(2)

N−1
∑

k=0

gm
k =

{

N for m ≡ 0 (modN),

0 otherwise.

Then for each i, j ∈ {0, · · · , N − 1} such that i 6= j, (gi − gj) is not a zero-divisor
in R.

Proposition 2.2. Let g0, · · · , gN−1 ∈ R satisfying

(1) gNk = 1 for each k ∈ {0, · · · , N − 1}.
(2) gi − gj is not a zero-divisor in R for each i, j ∈ {0, · · · , N − 1} such that

i 6= j.

Then we have
g0g1 · · · · · · gN−1 = (−1)

N−1.

Proof: We denote by D(g0, · · · , gN−1) the Vandermonde determinant defined
as follows:

D(g0, · · · , gN−1) =

∣

∣

∣

∣

∣

∣

∣

1 g0 · · · gN−1
0

...
...

. . .
...

1 gN−1 · · · gN−1
N−1

∣

∣

∣

∣

∣

∣

∣

.

Using the assertion (1) we obtain

D(g0, · · · , gN−1) =

∣

∣

∣

∣

∣

∣

∣

g0 · · · gN−1
0 gN0

...
. . .

...
...

gN−1 · · · gN−1
N−1 gNN−1

∣

∣

∣

∣

∣

∣

∣

.

We deduce that

D(g0, · · · , gN−1) = (−1)
N−1g0g1 · · · gN−1D(g0, · · · , gN−1).

The result follows from the last relation, the assertion (2) and the following
equality:

D(g0, · · · , gN−1) =
∏

0≤i<j≤N−1

(gi − gj).

�
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Corollary 2.3. Under the same hypothesis as in Proposition 2.2 we have

(1) D(g0, · · · , gN−1) = Ngs
rD

∗
rs (0 ≤ r, s ≤ N − 1), where D∗

rs means the

cofactor of the rth row and the sth column of the determinant D.
(2)

N−1
∑

k=0

gm
k =

{

N if m ≡ 0 (modN),

0 otherwise.

Using Corollaries 2.1–2.3 and considering the total quotient ring of R (see [6,
p. 221]) we deduce the following theorem:

Theorem 2.2. Let A, B, C be square matrices of order N over R. Then the
following statements are equivalent:

(1) The matrices A, B, C support circular convolution.
(2) N ak0 bk0 ck0 = 1 (0 ≤ k ≤ N − 1) and there exist g0, · · · , gN−1 in R
satisfying

(i) gNk = 1 for k ∈ {0, · · · , N − 1}.
(ii) aku = gu

kak0, bku = gu
kbk0, cku = gu

kck0 (0 ≤ k, u ≤ N−1).
(iii) For each i, j in {0, · · · , N − 1} such that i 6= j, (gi − gj) is not

a zero-divisor in R.

Remark. For the case R being an integer domain, the condition (2) (iii) of The-
orem 2.2 becomes gi 6= gj for i 6= j and we find the result of L. Skula [3, p. 20].

Theorem 2.3. Let T = (tij) (0 ≤ i, j ≤ N − 1) be an invertible square matrix
of order N over R. Then the following statements are equivalent:

(1) The matrices T, T−1 support circular convolution.

(2) N.1 is invertible in R and there exist g0, · · · , gN−1 in R such that

(i) gNk = 1 for k ∈ {0, · · · , N − 1}.
(ii) tku = gu

k (0 ≤ k, u ≤ N−1).
(iii) (gi−gj) is not a zero-divisor in R for each i, j in {0, · · · , N −1} such

that i 6= j.

Furthermore, T−1 = (Tij) (0 ≤ i, j ≤ N−1) with

Tij = (N.1)−1g−i
j (0 ≤ i, j ≤ N−1).

3. Matrices supporting circular convolution over a residue class

ring Z/m Z, m integer ≥ 2

First we suppose that m = pn, where n is a positive integer and p is a prime.
In [3], [4] L. Skula showed that there exist SCC-matrices A, B, C of order N
over the ring Z/pn Z if and only if N divides p − 1. In [4] he described all the
linear transforms supporting circular convolution over Z/pn Z by means of p-adic
integers.
Using another method we give in this section another characterization of all

the linear transforms supporting circular convolution over Z/pn Z.
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Theorem 3.1. We suppose thatN divides (p−1). Let A, B, C be square matrices
of order N over Z/pn Z. The following statements are equivalent:

(1) The matrices A, B, C support circular convolution.
(2) Nak0bk0ck0 = 1 for k ∈ {0, · · · , N − 1} and aku = gu

kak0, bku = gu
k bk0,

cku = gu
k ck0 (0 ≤ k, u ≤ N−1), where

{g0, · · · , gN−1} = {α ∈ (Z/pn
Z) | αN = 1}.

Proof: By using the fact that the multiplicative group (Z/pn Z)∗ is cyclic (see
[2, p. 55–58]) and by applying the Hensel’s lemma (see [2, p. 169]) we deduce that
if N divides p − 1 we have the two following results:

- The set Hn = {x ∈ Z/pn Z | xN = 1} contains exactly N elements.

- For each x, y ∈ Hn such that x 6= y, x − y is not a zero-divisor in Z/pn Z.

The result follows from these properties together with Theorem 2.2.

For general integer m; m ≥ 2 we write m = pα1
1 · · · pαr

r , where α1, · · · , αr are
positive integers and pi (1 ≤ i ≤ r) are primes such that pi 6= pj for i 6= j. Hence
we have

Z/m Z ≃ (Z/pα1
1 Z)⊗ · · · ⊗ (Z/pαr

r Z).

We denote by Πi (1 ≤ i ≤ r) the canonical homomorphism from the ring Z/m Z

onto the ring (Z/pαi

i Z). �

By using Theorem 3.1 and Proposition 2.6 in [3, p. 14] we deduce the following
theorem:

Theorem 3.2. Let A, B, C be square matrices of order N over Z/m Z. The

following statements are equivalent:

(1) The matrices A, B, C support circular convolution.
(2) N ak0 bk0 ck0 = 1 (0 ≤ k ≤ N−1) and there exist g0, · · · , gN−1 ∈ (Z/m Z)
such that

(i) gNk = 1 for k ∈ {0, · · · , N − 1}.
(ii) aku = gu

kak0, bku = gu
kbk0, cku = gu

kck0 (0 ≤ k, u ≤ N−1).
(iii) Πi(gk) 6= Πi(gl) for each k, l in {0, · · · , N − 1} such that k 6= l.
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