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Extensions of linear operators from hyperplanes of l
(n)
∞

Marco Baronti, Vito Fragnelli, Grzegorz Lewicki

Abstract. Let Y ⊂ l
(n)
∞ be a hyperplane and let A ∈ L(Y ) be given. Denote

A = {L ∈ L(l
(n)
∞ , Y ) : L | Y = A} and

λA = inf{‖L‖ : L ∈ A}.

In this paper the problem of calculating of the constant λA is studied. We present
a complete characterization of those A ∈ L(Y ) for which λA = ‖A‖. Next we consider
the case λA > ‖A‖. Finally some computer examples will be presented.

Keywords: linear operator, extension of minimal norm, element of best approximation,
strongly unique best approximation

Classification: 41A35, 41A52, 41A65, 41A55

1. Introduction

Let X be a normed space and let Y ⊂ X be a linear subspace. For given
A ∈ L(Y ) set

(1.1) A(X, Y ) = {L ∈ L(X, Y ) : L | Y = A}

and if A(X, Y ) is nonempty,

λA(X, Y ) = inf{‖L‖ : L ∈ A(X, Y )};(1.2)

A0(X, Y ) = {L ∈ A(X, Y ) : ‖L‖ = λA(X, Y )}.(1.3)

In the case of A = idY , the set A(X, Y ) corresponding to A (which may be empty)
consists of all linear, continuous projections from X onto Y . We will denote it
by P(X, Y ). Note that the constant λidY

(X, Y ) plays an essential role in the
estimate of λA(X, Y ) because of the following inequality:

(1.4) ‖A‖ ≤ λA(X, Y ) ≤ ‖A‖ · λidY
(X, Y ).

Moreover, if the set P(X, Y ) is nonempty and P ∈ P(X, Y ), then A◦P belongs to
A(X, Y ) for every A ∈ L(Y ). By (1.4), if λidY

(X, Y ) = 1 then λA(X, Y ) = ‖A‖.
It is worth saying that the case λA(X, Y ) > ‖A‖ is much more complicated (for
examples of couples (X, Y ) with λidY

(X, Y ) > 1 see [1], [2] and references in [4]).
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In this paper the problem of calculating λA(X, Y ) and the determination of

the set A0(X, Y ) is investigated. We consider the case X = l
(n)
∞ (the space Rn

with the maximum norm) and Y ⊂ X being a hyperplane.
In Section 2 we will be concerned with the case λA(X,Y ) = ‖A‖. We prove

a complete characterization of those A ∈ L(Y ) for which λA(X, Y ) = ‖A‖. This
characterization leads to an effective method of a determination of an element
from the set A0(X, Y ).
In Section 3 we deal with the case λA(X, Y ) > ‖A‖. We prove, under some

nonrestrictive assumptions on Y (see 2.5) that A0(X, Y ) consists of exactly one
element, which means that there exists exactly one extension L0 of A of minimal
norm. (Since X is finite dimensional, the set A0(X, Y ) is nonempty.) Moreover,
this extension is strongly unique, i.e.

‖L‖ ≥ ‖L0‖ + r‖L− L0‖

for every L ∈ A(X, Y ) with a constant r > 0 depending only on A ∈ L(Y ). Next,
we present as in Section 2 an effective method of calculating L0 and λA(X, Y ) in
this case.
Section 4 deals with some computer experiments.
Now we present notations and a terminology which will be frequently used.

In this paper, unless otherwise stated, X will stand for the space l
(n)
∞ and Y

be a hyperplane in X . By L(Y ) (L(X, Y ) resp.) we denote the space of all
linear, continuous operators from Y into Y (from X into Y resp.). We will write
SX(a, r) (SX∗(a, r) resp.) for the sphere with a center a ∈ X and a radius r
(a ∈ X∗ resp.). If a = 0 and r = 1 we abbreviate SX(0, 1) (SX∗(0, 1) resp.) to
SX (SX∗ resp.). For the same reason we will write A, A0, λA instead of A(X, Y ),
A0(X, Y ), λA(X, Y ). The symbol ext (A) will stand for the set of all extremal
points of a set A.
In this paper we assume that λid > 1, since, by (1.4), in the opposite case

λA = ‖A‖ for every A ∈ L(Y ). Moreover, if P is a projection from X onto Y of
norm 1, then A ◦ P ∈ A0. So the problem of calculating an extension of minimal
norm reduces to finding a projection of norm 1 which is well known in this case
(see [2]). By [2], λid > 1 if and only if

(1.5) | fi | < 1/2

for every f = (f1, . . . , fn) ∈ SX∗ with Y = ker f .
Now we present some results which will be frequently used in this paper. Denote

for x ∈ X , x = (x1, . . . , xn) and i ∈ {1, . . . , n}

(1.6) ei(x) = xi.

Following [3, Theorem 2.2.a]

(1.7) ext (S(L(X,Y ))∗) = {ei ⊗ x : x ∈ ext (SX ), i = 1, . . . , n},
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where

(1.8) (ei ⊗ x)(L) = ei(Lx)

for every L ∈ L(X, Y ).
Now assume that X is a normed space (real or complex ) and let Y ⊂ X be

an n-dimensional linear subspace. Given x ∈ X set

(1.9) E(x) = {f ∈ ext (SX∗) : f(x) = ‖x‖}.

A set U = {f1, . . . , fk} ⊂ E(x) is called an I-set if and only if there exist positive
numbers λ1, . . . , λk with

(1.10) 0 =

k
∑

i=1

λifi | Y

and any essential subset of U does not have this property. If k = n+ 1, the I-set
U is called regular. The notion of I-set was introduced in [7]. The role of regular
I-sets illustrates

Theorem 1.1 (see [7, Theorem 5.8]). Assume X is a normed space and let

Y ⊂ X be an n-dimensional subspace. Let x ∈ X \ Y and let y0 ∈ Y be the best
approximation to x from Y . If E(x− y0) contains a regular I-set, then y0 is the
strongly unique best approximation to x from Y , i.e.

‖x− y‖ ≥ ‖x− y0‖ + r‖y − y0‖

for any y ∈ Y , where the constant r > 0 is independent of y ∈ Y .

2

We start with the following

Proposition 2.1. Let Y = ker(f) for some f ∈ SX∗ satisfying 1/2 > | fi | > 0
for i = 1, . . . , n. Assume A ∈ L(Y ) and λA = ‖A‖. Denote for each i0 ∈

{1, . . . , n}, i ∈ {1, . . . , n} \ {i0} yi0
i = (y

i0
i (1), . . . , y

i0
i (n)) ∈ Y by

(2.1) yi0
i (j) =











0 if j 6= i0, i

1 if j = i

−fi/fi0 if j = i0.

If L ∈ A0, then for each i0 ∈ {1, . . . , n}, i ∈ {1, . . . , n} \ {i0} there exists gi ∈ X∗

with

(2.2) gi | Y = ei ◦A, ‖gi‖ ≤ ‖A‖
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such that

(2.3) Lx =
∑

i6=i0

gi(x)y
i0
i for x ∈ X.

Conversely, if L has property (2.3) for some i0 ∈ {1, . . . , n} with gi satisfying

(2.2) and ‖ei0 ◦ L‖ ≤ ‖A‖, then L ∈ A0.

Proof: Fix i0 ∈ {1, . . . , n}, L ∈ A0 and let Ui0 =
∑

i6=i0(ei ◦ L)(·)yi0
i . We show

that Ui0 = L. Note that for j 6= i0 and x ∈ X

(ej ◦ Ui0)(x) =
∑

k 6=i0

ek(Lx)ej(y
i0
k ) = ej(Lx).

Since fi0 6= 0 and Ui0x, Lx ∈ Y , Ui0x = Lx. Put, for i 6= i0, gi = ei ◦ L. Since
L ∈ A0 and λA = ‖A‖, gi | Y = ei ◦A and ‖gi‖ = ‖ei ◦ L‖ ≤ ‖A‖ for i 6= i0. Now
assume that L has property (2.3) with gi satisfying (2.2) and ‖ei0 ◦ L‖ ≤ ‖A‖.
Hence for i, j 6= i0

ej(Lyi0
i ) =

∑

k 6=i0

gk(y
i0
i )ej(y

i0
k ) = ej(Ayi0

i )

and consequently L ∈ A. Note that ei ◦ L = gi for i 6= i0. Since ‖L‖ =
maxi=1,...,n ‖ei ◦ L‖, we immediately get that L ∈ A0.
Note that A0 is a compact convex set. Hence, by the Krein-Milman Theorem,

the set ext (A0) is nonempty. Moreover, we have

Proposition 2.2. Let A ∈ L(Y ) and let λA = ‖A‖. If L ∈ ext (A0), then

card {i : ‖ei ◦ L‖ = ‖L‖} ≥ n− 1.

Proof: Suppose that there exists L ∈ ext (A0) such that

card {i : ‖ei ◦ L‖ = ‖L‖} < n− 1.

Let ‖ei1 ◦L‖ < ‖L‖ = ‖A‖ and ‖ei2 ◦L‖ < ‖A‖ for i1, i2 ∈ {1, . . . , n}, i1 6= i2. It is

easy to check that L =
∑

i6=i1
(ei ◦L)(·)y

i1
i . Define for λ ∈ R Lλ =

∑

i6=i1
gi( )y

i1
i ,

where

(2.4) gi =

{

ei ◦ L if i 6= i2

ei ◦ L+ λf if i = i2.

Note that Lλ ∈ A, Lλ 6= L for λ 6= 0 and L = (L−λ+Lλ)/2 for every λ ∈ R. We
show that Lλ ∈ A0 for |λ | sufficiently small. It is clear that for j = i1, i2,

‖ej ◦ Lλ‖ = ‖ej ◦ (L+ λf(·)yi1
i2
)‖

≤ ‖ej ◦ L‖ + |λ | ‖yi1
i2
‖.

For j 6= i1, i2,
‖ej ◦ Lλ‖ = ‖ej ◦ L‖ ≤ ‖A‖.

Since ‖ei1 ◦ L‖ < ‖A‖ and ‖ei2 ◦ L‖ < ‖A‖, the proof is complete. �
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Proposition 2.3. Assume Y = ker f , where f satisfies (1.5) fi 6= 0 for i =
1, . . . , n and

(2.5) f(x) 6= 0 for every x ∈ ext (SX∗).

Let A ∈ L(Y ). If ‖ei ◦ A‖ = ‖A‖, then there exists exactly one g ∈ SX∗(0, ‖A‖)
with g | Y = ei ◦ A. If ‖ei ◦ A‖ < ‖A‖, then there exist exactly two functionals
g1, g2 ∈ SX∗(0, ‖A‖) with gj | Y = ei ◦A for j = 1, 2.

Proof: Without loss of generality we can assume that ‖A‖ = 1. First we consider
the case ‖ei ◦ A‖ = ‖A‖. Note that by (1.5) ‖ei | Y ‖ = 1 (an element y =
(y1, . . . , yn), where

yj =

{

(− sgn fj/
∑

k 6=i | fk | )fi if j 6= i

1 if j = i

belongs to SY ). By [5], ext (SY ∗) ⊂ {±ej | Y }j=1,...,n. Now take y0 = (y01 , . . . , y
0
n)

∈ ext (SY ) with (ei ◦ A)y0 = ‖ei ◦ A‖ = 1. By (2.5), there exists exactly one
i0 ∈ 1, . . . , n with | y

0
i0
| < 1. Following [6, Lemma 1.1, p. 166]

(2.6) ei ◦A =
∑

j∈Ji⊂{1,...,n}\i0

λjy
0
j ej | Y .

where λj > 0 and
∑

j∈Ji
λj = 1. We show that (2.6) is the unique expression of ei◦

A as a convex combination of points from the set ext (SY ∗) (with strictly positive
coefficients). Indeed, let ei ◦A =

∑

j∈J1
γjy
0
j ej | Y , where 0 < γj ,

∑

j∈J1
γj = 1.

Since | y0i0 | < 1, J1 ⊂ {1, . . . , n} \ {i0}. Hence, because {ej | Y }j 6=i0 is a basis of

Y ∗, J1 = Ji and γj = λj . Now define

g =
∑

j∈Ji

λjy
0
j ej .

It is evident that ‖g‖ = 1 and g | Y = ei◦A. We show that g is the unique extension
of ei ◦A which preserves the norm. To do this, take h ∈ SX∗ , h | Y = ei ◦ A. By
[6, Lemma 1.1, p. 166]

h =
∑

j∈Z

γjy
0
j ej ,

where γj > 0,
∑

j∈Z γj = 1. Since h(y0) = (ei ◦ A)(y0), Z ⊂ {1, . . . , n} \ {i0}.
Consequently, reasoning as above, we get Z = Ji and λj = γj for j ∈ Ji. Now
assume ‖ei ◦ A‖ < ‖A‖ = 1. Applying the first part of the proof, we can show
that there exists exactly one hi ∈ X∗, ‖hi‖ = ‖ei ◦ A‖ and hi | Y = ei ◦ A. Note
that if g ∈ X∗ and g | Y = ei ◦ A, then g = hi + λf for some λ ∈ R. Since
‖hi‖ < ‖A‖ = 1, the line hi+λf intersects SX∗ in exactly two points g1, g2. The
proof is complete. �
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Now for given A ∈ L(Y ) and i ∈ {1, . . . , n} denote

(2.7) critA = {i ∈ {1, . . . , n} : ‖ei ◦A‖ = ‖A‖}

and

(2.8) Ei = {g ∈ SX∗(0, ‖A‖) : g | Y = ei ◦A}.

Following Proposition 2.3 card (Ei) = 1 if i ∈ critA and card (Ei) = 2 in the
opposite case. Let us set

(2.9)

D = {L ∈ L(X, Y ) : L =
∑

i6=i0

gi(·)y
i0
i

for some i0 ∈ {1, . . . , n}, gi ∈ Ei}

(yi0
i is defined by (2.1)). Now we can state the main result of this section.

Theorem 2.4. Suppose Y = ker f , f = (f1, . . . , fn), where f satisfies (1.5), (2.5)
and fi 6= 0 for i = 1, . . . , n. Let A ∈ L(Y ). Then λA = ‖A‖ if and only if there
exists L ∈ D, ‖L‖ = ‖A‖.

Proof: It is easy to check that D ⊂ A. Hence if ‖L‖ = ‖A‖ for some L ∈ D,
then λA = ‖A‖. If λA = ‖A‖ take any L ∈ ext (A0). By Proposition 2.2, there
exists i0 ∈ {1, . . . , n} such that ‖ei ◦ L‖ = ‖A‖ for i 6= i0. It is clear that

L =
∑

i6=i0(ei ◦ L(·))yi0
i . Hence L ∈ D. The proof is complete. �

Propositions 2.2, 2.3 and Theorem 2.4 provide a method which permits to
check if λA = ‖A‖ or λA > ‖A‖ for any A ∈ L(Y ). This method consists of the
following steps:

(a) calculating the set ext (SY );
(b) calculating the norm of ei ◦A for i = 1, . . . , n using the set ext (SY );
(c) choosing for each i ∈ {1, . . . , n} yi ∈ ext (SY ) satisfying (ei ◦A)yi = ‖A‖;
(d) finding for i = 1, . . . , n the unique functional hi ∈ X∗ such that hi | Y =

ei ◦A and ‖ei ◦A‖ = ‖hi‖;
(e) finding the set Ei for each i ∈ {1, . . . , n} \ critA;
(f) checking the norms of operators from the set D.

Of course the method presented above is complicated and the point (f) needs
a “good” algorithmic solution. But there exist operators A ∈ L(Y ) for which we
can check a simpler way, if λA = ‖A‖.

Example 2.5. Assume ‖ei ◦ A‖ = ‖A‖ for each i ∈ {1, . . . , n}. Then the set D
consists of exactly one element.
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Example 2.6. Assume L ∈ L(X, Y ) is represented by a matrix [l(i, j)]i,j=1,...,n.
Put A = L | Y and assume that there exists i0 ∈ {1, . . . , n} such that for each
j ∈ {1, . . . , n}

(2.10)

n
∑

i=1

| (−fi/fi0)l(j, i0) + l(j, i) | ≤ ‖A‖.

Then λA = ‖A‖.

Proof: Fix i0 ∈ {1, . . . , n} satisfying (2.10). Define L1 =
∑

i6=i0
ei(·)Lyi0

i . It is

clear that L1 | Y = L | Y = A. Moreover, it is easy to check that

‖L1‖ = max
j=1,...,n

∑

i6=i0

| ej(Lyi0
i ) | .

Observe that | ej(Lyi0
i ) | = | (−fi/fi0)l(j, i0) + l(j, i) | . Following (2.10), the

proof is complete. �

3

We start with the following

Theorem 3.1. Assume that f ∈ SX∗ , f = (f1, . . . , fn) satisfies (1.5), (2.5) and
let fi 6= 0 for i = 1, . . . , n. Assume furthermore that A ∈ L(Y ) and let λA > ‖A‖.
Define

(3.1) LY = {L ∈ L(X, Y ) : L = f(·) · y, y ∈ Y }.

If L0 ∈ A0 then there exists in E(L0) (see 1.9) a regular I-set (see 1.10) with
respect to LY .

Proof: Let L0 ∈ A0. It is easy to verify that

‖L0‖ = dist (L0,LY ).

Hence, by [6, Theorem 1.1, p. 170] 0 ∈ conv (E(L0)) | LY
, i.e.

0 =
k

∑

i=1

λiϕi | LY ,

where λi > 0 and
∑k

i=1 λi = 1. Assume k ∈ N is a minimal number for which
the above equality is satisfied. If we show that k = n, then {ϕ1, . . . , ϕn} will be
the required regular I-set. By the Carathéodory Theorem, we may assume k ≤ n
(dimLY = n − 1). By (1.7), ϕi = ej(i) ⊗ xi, where j(i) ∈ {1, . . . , n} and xi ∈
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ext (SX∗). There is no loss of generality in assuming j(1) ≤ j(2) ≤, . . . ,≤ j(k).
First we show that j(1) = 1. Suppose on the contrary that j(1) > 1 and put

E1 = {i : j(i) = j(1)}.

Then

0 =
k

∑

i=1

λi(ej(i) ⊗ xi) | LY
=

∑

i∈E1

λi(ej(1) ⊗ xi) | LY

+
∑

i/∈E1

λi(ej(i) ⊗ xi) | LY
.

Put

(3.2) Lj(1) = f(·)y1j(1).

(y1j1 is defined by (2.1)). Note that if i /∈ E1, j(1) < j(i). Hence for each i ∈ E1

(ej(i) ⊗ xi)(Lj(1)) = f(xi)ej(i)(y
1
j(1)) = 0.

Consequently,

0 =
∑

i∈E1

λi(ej(i) ⊗ xi)(L1) =
∑

i∈E1

λif(xi),

since ej(1)(y
1
j(1)) = 1. To get a contradiction, we show that for every i ∈ E1

f(xi) > 0 or for every i ∈ E1 f(xi) < 0. By (2.5), for every i ∈ E1 f(xi) 6= 0. So
suppose that there exist i1, i2 ∈ E1 with f(xi1) < 0 and f(xi2) > 0. Hence it is
easy to show that

(ej1 ⊗ y) = ‖L0‖

for some y ∈ SY . But this contradicts the assumption λA > ‖A‖. So we have
proved j(1) = 1. To end the proof of the theorem, we check that a map i→ j(i)
is surjective. If no, there exists i0 ∈ {1, . . . , n} with j(i) 6= i0 for i = 1, . . . , k.
Since j(1) = 1, i0 > 1. Put I1 = {i ∈ {1, . . . , k} : j(i) = 1}. An easy computation
shows that

0 =

k
∑

i=1

(ej(i) ⊗ xi)(Li0) = (−fi0/f1)
∑

i∈I1

λif(xi).

Reasoning as in the first part of the proof we get f(xi) > 0 for each i ∈ I1 or
f(xi) < 0 for each i ∈ I1; a contradiction. Hence the map i → j(i) is surjective
and consequently k = n. The proof is complete. �

Reasoning as in Theorem 3.1 we can prove
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Theorem 3.2. Let L ∈ L(X) and let L0 ∈ PLY
(L) (the set of all best approx-

imants to L from LY ). Assume dist (L,LY ) > ‖L | Y ‖. Then the set E(L − L0)
contains a regular I-set.

By Theorem 1.1 we get immediately

Corollary 3.3. Let A, L0, f be such as in Theorem 3.1. Then there exists r > 0
such that for every L ∈ A

‖L‖ ≥ ‖L0‖ + r‖L− L0‖.

In particular the set A0 consists of exactly one element.

Note that the assumption λA > ‖A‖ in Theorem 3.1 and Corollary 3.3 is
essential because of

Example 3.4. Let n = 3 and let f = (1/3, 1/3, 1/3), Y = ker f . Define L ∈
L(X, Y ) as a matrix

L =





a −a 0
−a/2 a/2 0
−a/2 a/2 0



 ,

where a is a fixed positive number. Put A = L | Y . It is easy to verify that

ext (SY ) = {±(1,−1, 0),±(1, 0,−1),±(0, 1,−1)}.

Hence ‖L‖ = ‖A‖ and consequently λA = ‖A‖. Consider for δ ∈ R an operator
Lδ defined by a matrix

Lδ =





a −a 0
−a/2 + δ a/2 + δ δ
−a/2− δ a/2− δ −δ





Note that
Lδ(−1, 1, 0) = (−2a, a, a) = L(−1, 1, 0)

and
Lδ(−1, 0, 1) = (−a, a/2, a/2) = L(−1, 0, 1).

Hence Lδ | Y = L | Y = A. It is easy to verify that Lδ ∈ L(X, Y ) and ‖Lδ‖ = ‖A‖
for | δ | sufficiently small. Hence the set A0 consists of more than one element.

Theorem 3.2 leads to an effective method of calculating dist (L,LY ) for given
L ∈ L(X) if dist (L,LY ) > ‖L | Y ‖. To do this, consider for given x1, . . . , xn ∈
ext (SX ) the following system of equations

(3.3)

(ei ⊗ xi)(L − f(·)(y1, . . . , yn)) = z (i = 1, . . . , n),
n

∑

i=1

fiyi = 0,
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with unknown variables y1, . . . , yn, z. Assume additionally that

(3.4) 0 ∈ conv ((e1 ⊗ x1) | LY
, . . . , (en ⊗ xn) | LY

).

Let L0 = f(·)y0 ∈ P(LY )(L). Then, in view of Theorem 3.2, if f satisfies
(2.5) and fi 6= 0 for i = 1, . . . , n, there exist x1, . . . , xn ∈ ext (SX) such that
y01, . . . , y

0
n, dist (L,LY ) are a solution of (3.3) for the above x1, . . . , xn. So to find

L0 ∈ PLY
and dist (L,LY ) it is sufficient to solve finite number of the equations

(3.3) for x1, . . . , xn satisfying (3.4). For verifying (3.4) we apply

Proposition 3.5. Assume x1, . . . , xn ∈ ext (SX ). Let f ∈ SX∗ satisfy (2.5) and
let fi 6= 0 for i = 1, . . . , n. Put Y = ker f . Then

(3.5)
0 ∈ conv ((e1 ⊗ x1) | LY

, . . . , (en ⊗ xn) | LY
) iff

sgn (f(xj)f1) = sgn (f(x1)fj) for j = 1, . . . , n.

Proof: Fix x1, . . . , xn ∈ ext (SX ) and suppose

0 =

k
∑

i=1

λi(ei ⊗ xi) | LY
.

Since fi 6= 0 for i = 1, . . . , n and f satisfies (2.5), k = n. Now take for j = 2, . . . , n
a map Lj ∈ LY defined by (3.2). Note that for j = 2, . . . , n

0 =

n
∑

i=1

λi(ei ⊗ xi)(Lj) = λ1(−fj/f1)f(x1) + λjf(xj).

Consequently
λ1/λj = f(xj)f1/f(x1)fj ,

which completes the proof. �

Proposition 3.5 shows that for calculating dist (L,LY ) and L0 ∈ PLY
(L) it

is sufficient to solve system (3.3) only for x1, . . . , xn ∈ ext (SX∗) satisfying (3.5).
This fact leads to an algorithm for computing dist (L,LY ) which will be presented
in the next section.

4

Referring to the previous theoretical results, we present some computer experi-
ments. In particular, we implemented an algorithm for computing dist (L,LY ) or
λA by solving a suitable linear system by two methods. First we present a method
based on Proposition 3.5. Next we calculate dist (L,LY ) by a mathematical pro-
gramming problem. Finally, some statistic concerning the situation λA = ‖A‖
will be presented. The experiments were done for the case n = 3 on a personal
computer Apple Macintosh.
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First form of the extremum problem.

Referring to Theorem 3.2 and Proposition 3.5 we implemented the following
program to calculate a vector y and a scalar z solving a set of linear systems.

Routines

Init
input from file : L = (L1, . . . , Ln), f
(Li denotes the i-th row of the corresponding to L matrix, f satisfies the assump-
tions of Theorem 3.1).
xi ← xoi for i = 1, . . . , n
(xo1, . . . , xon have to satisfy (3.5)).

Solve
solve the system in y and z :
∑n

i=1 fi · yi = 〈f, y〉 = 0

〈f, xi〉 · yi + z = 〈Li, x
i〉 for i = 1, . . . , n

Norma
compute the norm :
norm ← maxi∈{1,...,n}

∑n
j=1 |Lij − fj · yi |

Newsys
if z 6= norm define a new system:











x1i ← xi i = 1, . . . , n

xi
j ← sgn (Lij − fj · yi) (1 if sgn (Lij − fj · yi) = 0) i, j = 1, . . . , n

E = {i :
∑n

j=1 |Lij − fj · yi | = norm }

Case 1


















sgn (〈f, xi〉) = sgn (〈f, x1i〉) for i = 1, . . . , n or

sgn (〈f, xi〉) = − sgn (〈f, x1i〉) for i = 1, . . . , n, then

〈f, y〉 = 0

〈f, xi〉 · yi + z = 〈Li, x
i〉 i = 1, . . . , n

Case 2






























sgn (〈f, xi〉) 6= sgn (〈f, x1i〉) for some i ∈ {1, . . . , n}

sgn (〈f, xi〉) = sgn (〈f, x1i〉) for some i ∈ E, then

〈f, y〉 = 0

〈f, xi〉 · yi + z = 〈Li, x
i〉 if sgn (〈f, xi〉) = sgn (〈f, x1i〉)

〈f, x1i〉 · yi + z = 〈Li, x
1i〉 if sgn (〈f, xi〉) 6= sgn (〈f, x1i〉)

Case 3
{

sgn (〈f, xi〉) 6= sgn (〈f, x1i〉) for every i ∈ E

sgn (〈f, xi〉) = sgn (〈f, xi
1〉) for some i /∈ E
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Case 3A






























sgn (〈f, xi〉) = sgn (〈f, x1i〉), xi 6= x1i for some i /∈ E

〈f, y〉 = 0

〈f, x1i〉 · yi + z = 〈Li, x
1i〉 if i ∈ E or

sgn (〈f, xi〉) 6= sgn (〈f, x1i〉)

〈f, xi〉 · yi + z = 〈Li, x
i〉 otherwise

Case 3B

xi = x1i for every x /∈ E with

sgn (〈f, xi〉) = sgn (〈f, x1i〉)

Stop

Main Init
repeat Solve ;
Norma ;
if z 6= norm , then Newsys ;
until z = norm or Case 3B.

Remark 4.1. The algorithm fails if dist (L,LY ) = ‖L | Y ‖ or Case 3B holds
true. If dist (L,LY ) > ‖L | Y ‖ and Case 3B holds true, it is necessary to find
(x1, . . . , xn) satisfying (3.5) different from the previous ones and continue the
procedure described above. (Here the classical Remez algorithm can be applied.)
By Theorems 3.1, 3.2 and Proposition 3.5 we find a solution after a finite number
of steps. Note that after every step the value z strictly increases. The proof of
this fact is a simple consequence of (3.4) and the choice of new data-system. It is
clear that after every step the value z estimates from below dist (L,L | Y ).

Now we describe one particular situation in which Case 3B does not hold.

Remark 4.2. Let f be such as in Theorem 3.1. Let z, y0 = (y01, . . . , y
0
n) be

a solution of (3.3) with a data-system L, f, x1, . . . , xn satisfying (3.4). If z ≥
‖L | Y ‖, then for every i ∈ E sgn (〈f, xi〉) = sgn (〈f, x1i〉).

Proof: Suppose that there is i ∈ E with sgn (〈f, xi〉) = − sgn (〈f, x1i〉). Hence,
there is α ∈ (0, 1) such that y = αx1i + (1 − α)xi ∈ Y . Put L0 = f(·)y0. Then

‖L | Y ‖ ≥ ei(L − L0)y = αei(L− L0)x
1i

+(1− α)ei(L− L0)x
i = αz + (1− α)‖L− L0‖

> α‖L | Y ‖+ (1− α)‖L | Y ‖ = ‖L | Y ‖;

a contradiction. �

Now we describe one class of such operators.
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Example 4.3. Suppose that we have a matrix L = [Lij ]i,j=1,...,n and x1, . . . , xn

satisfying (3.4) such that ‖ei ◦ L‖ = ei(Lxi) for i = 1, . . . , n. Put δ1 = 1,
δi = f(x1)fi/f(xi)f1 for i = 2, . . . , n. Let λi = δi/

∑n
j=1 δj for i = 1, . . . , n. If

n
∑

i=1

λi‖ei ◦ L‖ ≥ ‖L | Y ‖,

then the solution z, y0 for a data-system L, f, x1, . . . , xn satisfies z ≥ ‖L | Y ‖.

Proof: Let L0 = f(·) · y0. Note that, by (3.5),

z =

n
∑

i=1

λiei(L− L0)x
i =

n
∑

i=1

λiei(Lxi)

=

n
∑

i=1

λi‖ei ◦ L‖ ≥ ‖L | Y ‖,

as required. �

Second form of the extremum problem.

We reformulate the problem of calculating a vector y and a scalar z as a math-
ematical programming problem:

(4.1)

min z such that
n

∑

j=1

|Lij − fj · yi | = z for i = 1, . . . , n,

n
∑

j=1

fj · yj = 0.

This problem is nonlinear by the absolute values in constraints in (4.1); to elimi-
nate them the problem may be rewritten as a problem of calculating two matrices
A+, A−, two vectors y+, y− and a scalar z by the following mathematical pro-
gramming problem:

min z such that
n

∑

j=1

A+ij +A−
ij = z for i=1, . . . ,n(4.2)

A+ij −A−
ij = Lij − fj · yi for i, j = 1, . . . , n(4.3)

n
∑

j=1

fj · yj = 0(4.4)

y+i − y−i = yi for i = 1, . . . , n.(4.5)
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The constraints (4.3), (4.4) are equivalent to the constraints in (4.1) under suitable
conditions:

A+ij +A−
ij = |Lij − fj · yi |

if

(4.6) A+ij −A−
ij = 0.

This condition is also a nonlinear one; on the other side the complementary condi-
tion (4.6) may be considered in the solution of (4.2)–(4.5) by the simplex method
(Dantzing, Hadley) adding the condition that at least one of the couple of vari-

ables (A+ij , A
−
ij) is not in the basis and consequently is equal to 0. If we denote by

z∗ the minimum of the problem (4.1), by z0 the minimum of the problem (4.2)–
(4.5) and by ẑ the minimum of the problem (4.2)–(4.5) with the complementary
condition (4.6), then the following relation holds:

(4.7) ẑ ≥ z∗ ≥ z0.

The first step of this algorithm is to solve by the simplex method the problem
(4.2)–(4.5) with the complementary condition (4.6) for obtaining ẑ; the second
step is to solve by a simplex method the problem (4.2)–(4.5) for obtaining z0. If
ẑ = z0, then ẑ = z∗ = z0 and we have solved the problem (4.1). If ẑ 6= z0 we

compute for i = 1, . . . , n
∑n

j=1A+ij +A−
ij ; if they all are equal to z0, then z∗ = z0,

otherwise, because of (4.7) we have an approximation of z∗.

Routines

Init random input (between -3, 3) : L, f

Simplex simplex algorithm modified in order to check
the complementary condition;
print of current solution;

Main Init ;
constraints, matrix :

Simplex (with the complementary condition);
if Sa 6= ∅ then

Simplex (with the complementary condition);
print of the optimal solution and test;

Simplex (without the complementary condition);
print of the optimal solution and test.

At the end of this section we present a statistic experiment concerning a prob-
lem how often λA = ‖A‖. We choose n = 3 and f = (1, 1, 1). Then

Y = ker(f) = {(x, y, z) : x+ y + z = 0}.
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Let L ∈ L(R3, Y ) be represented by a matrix [Lij ]i,j=1,...,n and let A = L | Y .
Note that F = {(−1, 1, 0), (−1, 0, 1)} is a basis of Y . It is easily seen that A has
a following matrix representation with respect to F :

(4.8) A =

(

L22 − L21 L23 − L21
L32 − L31 L33 − L31

)

.

Note that

(4.9) ‖L‖ = sup{‖Lx‖ : ‖x‖ = 1} = max
i=1,2,3

3
∑

j=1

|Lij |

and

‖A‖ = sup{‖Ay‖ : y ∈ SY } = max{‖A(1, 0)‖, ‖A(0, 1)‖, ‖A(−1, 1)‖}.

Routines

nxy compute the norm of the projected vector (x, y);

nxy(x, y) =

{

|x | + | y | if x · y ≥ 0

max( |x | , | y | ) if x · y < 0

inrandom pseudorandom input with the following rules:
f ← [1, 1, 1]
Lij random numbers (between -10 e 10), except that
for j = n in order to have L | Y : Y → Y
compute the norm of L according to (4.9);
compute the projected matrix A according to (4.8);

Main

inrandom

‖A‖ = max{nxy(A11, A22), nxy(A12, A22), nxy(A12 −A11, A22 −A21)}
‖P1‖ = max{nxy(A12 +A11, A22 +A21), ‖A‖}
‖P2‖ = max{nxy(A12 − 2A11, A22 − 2A21), nxy(A12, A22)}
‖P3‖ = max{nxy(A11 − 2A12, A21 − 2A22), nxy(A11, A21)};
print the percentage of ‖A‖ = ‖P1‖ or ‖A‖ = ‖P2‖ or ‖A‖ = ‖P3‖.

The situation ‖A‖ = ‖P1‖ or ‖A‖ = ‖P2‖ or ‖A‖ = ‖P3‖ had a frequency of
about 77%; in particular we had the following results:

N0 of tests At least one ‖Pi‖ = ‖A‖ %
100 79 79.0
500 385 77.0
1000 784 78.4
2000 1572 78.6
3000 2328 77.6
5000 3845 76.9

This means that the assumption dist (L,L | Y ) > ‖L | Y ‖ necessary in the first
algorithm is satisfied in about 23% of problems.
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