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A full descriptive definition of the BV-integral

B. Bongiorno∗, L. Di Piazza†, W.F. Pfeffer‡

Abstract. We present a Cauchy test for the almost derivability of additive functions
of bounded BV sets. The test yields a full descriptive definition of a coordinate free
Riemann type integral.

Keywords: Perimeter, partition, gage, absolute continuity

Classification: Primary 26B30, 26A39; Secondary 28A75

The BV-integral, introduced in [5, Definition 5.1] under the name “variational
integral”, is a coordinate free generalization of the Lebesgue integral defined on
all bounded Caccioppoli sets. Unlike the Lebesgue integral, it integrates partial
derivatives of differentiable functions and provides the unrestricted Gauss-Green
theorem. The purpose of this note is to present a complete characterization
of those additive functions of bounded Caccioppoli sets that are indefinite BV-
integrals (Theorem 3.9).

1. Preliminaries

The ambient space of this paper is Rm, where R is the set of all real numbers
and m is a fixed positive integer. The metric in Rm is induced by the maximum
norm, and U(x, ε) denotes the open ball about x ∈ Rm of radius ε > 0. For a set
E ⊂ Rm, we denote by clE, intE, ∂E, d(E), and |E| the closure, interior, bound-
ary, diameter, and Lebesgue measure of E, respectively. The words “measure”,
“measurable”, and “negligible” as well as the expressions “almost all” and “al-
most everywhere” always refer to the Lebesgue measure in Rm. The symmetric
difference of sets A and B is the set A △ B = (A − B) ∪ (B − A).
Let E ⊂ Rm. We say an x ∈ E is, respectively, a density or dispersion point

of E according to whether

lim inf
ε→0+

|U(x, ε) ∩ E|

(2ε)m
= 1 or lim sup

ε→0+

|U(x, ε) ∩ E|

(2ε)m
= 0 .

The set of all nondispersion points of E is called the essential closure of E, denoted
by cl∗E, and the set of all density points
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- of E is called the essential interior of E, denoted by int∗E. The essential
boundary of E is the set ∂∗E = cl∗E − int∗E. Clearly, intE ⊂ int∗E ⊂ cl∗E ⊂
clE, and so ∂∗E ⊂ ∂E. If E is measurable, the sets E △ cl∗E, E △ int∗E, and
∂∗E are negligible [7, Chapter IV, Theorem 6.1]. The set E is called essentially
or doubly closed whenever E = cl∗E or E = cl∗E = clE, respectively.
The (m− 1)-dimensional Hausdorff measure in Rm is denoted by H, and a set

T ⊂ Rm of σ-finite measure H is called thin. Each thin set is negligible but not
vice versa. The perimeter (in De Giorgi’s sense) of a set A ⊂ Rm is the number
‖A‖ = H(∂∗A). A bounded set A ⊂ Rm with ‖A‖ < +∞ is called a Caccioppoli
or BV set (BV for bounded variation — cf. [2, Section 5.11, Theorem 1]). Each
BV set is measurable [6, Corollary 13.2.5], and the family BV of all BV sets is an
algebra in Rm. For E ⊂ Rm, we let BVE = {A ∈ BV : A ⊂ E}.
The regularity of a BV set A is the number

r(A) =

{

|A|
d(A)‖A‖

if d(A)‖A‖ > 0,

0 otherwise.

The isoperimetric inequality ([2, Section 5.6, Theorem 2,(i)]) shows that a se-
quence {An} of BV sets is regular in the sense of [7, Chapter IV, Section 2]
whenever infn r(An) > 0.
Let A be a BV set. The set of all x ∈ int∗A such that

lim
ε→0+

H[U(x, ε) ∩ ∂∗A]

(2ε)m−1
= 0

is called the critical interior of A, denoted by intcA. According to [8, Section 4],
we have H(int∗A − intcA) = 0; in particular, the set cl∗A − intcA is negligible.
The next lemma, proved in [4, Lemma 1.2], gives an important property of the
critical interior.

Lemma 1.1. Let A ∈ BV and x ∈ intcA. Suppose {Bn} is a sequence of BV sets
such that x ∈ cl∗Bn and r(Bn) > ε > 0 for n = 1, 2, . . . . Then x ∈ cl∗(A ∩ Bn)
for n = 1, 2, . . . , and if lim d(Bn) = 0, then r(A ∩ Bn) > εm+1 for all sufficiently

large integers n ≥ 1.

2. The integral

Unless specified otherwise, by a function we always mean a real-valued function.
An additive function in a BV set A is a function F defined on BVA such that

F (B ∪ C) = F (B) + F (C)

for each pair of disjoint sets B, C ∈ BVA. Such an F is called continuous if given
ε > 0, we can find an η > 0 so that |F (B)| < ε for each B ∈ BVA with ‖B‖ < 1/ε
and |B| < η.
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A partition is a collection P = {(A1, x1), . . . , (Ap, xp)} where A1, . . . , Ap are

disjoint BV sets and xi ∈ cl
∗Ai for i = 1, . . . , p. When E ⊂ Rm and

⋃p
i=1Ai ⊂ E

or {x1, . . . , xp} ⊂ E, we say P is a partition in E or a partition anchored in E,
respectively. Clearly, each partition in E is anchored in cl∗E. Given an ε > 0 and
a nonnegative function δ on E, the partition P is called

(i) ε-regular if r(Ai) > ε for i = 1, . . . , p;
(ii) δ-fine if P is anchored in E and d(Ai) < δ(xi) for i = 1, . . . , p.

It is convenient to denote
⋃p

i=1Ai by
⋃

P .
A gage in a set E ⊂ Rm is a nonnegative function δ defined on cl∗E whose

null set Nδ = {x ∈ cl∗E : δ(x) = 0} is thin.

Definition 2.1. Let A be a BV set and let f be a function defined on cl∗A.
We say f is BV-integrable in A if there is a continuous additive function F in A
satisfying the following condition: given ε > 0, we can find a gage δ in A so that

p
∑

i=1

∣

∣

∣

∣

f(xi)|Ai| − F (Ai)

∣

∣

∣

∣

< ε

for each ε-regular δ-fine partition {(A1, x1), . . . , (Ap, xp)} in A.

In view of [5, Propositions 7.7 and 7.8], BV-integrability coincides with vari-
ational integrability introduced in [5, Definition 5.1]. The function F , uniquely
determined by f , is called the indefinite BV-integral of f in A. If f is Lebesgue
integrable in A, it is BV-integrable in A, and the two indefinite integrals coincide
[5, Proposition 5.8].
Let A be a BV set and let f be a function defined on A ∪ cl∗A. Since the

BV-integral extends the Lebesgue integral, neither the BV-integrability nor the
BV-integral of f is affected by the values f takes on negligible subsets of cl∗A;
in particular, they are not affected by the values of f on A △ cl∗A. Thus, in the
obvious way, we can and will define the BV-integrability and BV-integral for the
extended real-valued functions defined almost everywhere in A.
For additional properties of the BV-integral, including the Gauss-Green theo-

rem, we refer to [5].

3. BV-ACG∗ functions

Let E ⊂ Rm, let F be a function defined on BVE , and let x ∈ cl∗E. Set

F (x) = inf
α>0
sup
δ>0

[

inf
F (B)

|B|

]

where the infimum in the brackets is taken over all sets B ∈ BVE with x ∈ cl∗B,
d(B) < δ, and r(B) > α; furthermore, letˇF (x) = −(−F )(x). The extended

real-valued functions x 7→ F (x) and x 7→ F (x) defined on cl∗E are denoted by F
and F , respectively. When F (x) = F (x) is a real number, we denote it by F ′(x)
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and say F is BV-derivable at x. By F ′ we denote the function x 7→ F ′(x) defined
on the set of all x ∈ cl∗E at which F is BV-derivable.
The following lemma, proved in [4, Lemma 2,3], facilitates applications of Vi-

tali’s covering theorem.

Lemma 3.1. Let F be an additive continuous function in a BV set A. If x ∈
intcA, then

F (x) = inf
α>0
sup
δ>0

[

inf
F (A ∩ C)

|A ∩ C|

]

where the infimum in the brackets is taken over all doubly closed BV sets C with
x ∈ C, d(C) < δ, and r(C) > α. In particular, F (x) ≤ F (x) for each x ∈ intcA.

Definition 3.2. Let F be an additive continuous function in a BV set A. We
say F is BV-AC∗ on a set E ⊂ cl∗A if given ε > 0, there is an η > 0 and a gage
δ in A such that

∣

∣

∣

∣

F

(

⋃

P

)

− F

(

⋃

Q

)∣

∣

∣

∣

< ε

for all ε-regular δ-fine partitions P and Q in A anchored in E for which

∣

∣

∣

∣

(

⋃

P

)

△

(

⋃

Q

)
∣

∣

∣

∣

< η .

If cl∗A =
⋃∞

n=1En and F is BV-AC∗ on each En, we say that F is BV-ACG∗.

In a more general setting BV-ACG∗ functions were introduced in [1]. Our
results below parallel some of those obtained in [3], where a concept closely related
to the BV-ACG∗ functions has been applied to Perron type integrals.

Following [4, Definition 2.5], we say an additive continuous function F in a BV
set A is BV-absolutely continuous if given a negligible set N ⊂ cl∗A and an ε > 0,
there is a gage δ in A such that |F (

⋃

P )| < ε for each ε-regular δ-fine partition
P in A anchored in N .

Proposition 3.3. Each BV-ACG∗ function in a BV set A is BV-absolutely con-
tinuous.

Proof: Let F be a BV-ACG∗ function in A. With no loss of generality, we may
assume that there are disjoint sets E1, E2, . . . such that cl

∗A =
⋃∞

n=1En and F
is BV-AC∗ on each En. Choose a negligible set N ⊂ cl∗A and ε > 0, and fix an
integer n ≥ 1. Letting Q = ∅ in Definition 3.2, find a gage δn in A and ηn > 0
so that |F (

⋃

P )| < ε2−n for each ε-regular δn-fine partition P in A anchored in
En with |

⋃

P | < ηn. There is an open set Un containing N ∩En with |Un| < ηn.
Making δn smaller, we may assume that each δn-fine partition P anchored in
N ∩ En is a partition in Un; in particular, |

⋃

P | < ηn. Define a gage δ in A by
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setting δ(x) = δn(x) if x ∈ En for n = 1, 2, . . . . If P = {(A1, x1), . . . , (Ap, xp)} is
an ε-regular δ-fine partition in E anchored in N , we obtain

∣

∣

∣

∣

F

(

⋃

P

)
∣

∣

∣

∣

≤
∞
∑

n=1

∣

∣

∣

∣

∣

∣

∑

xi∈En

F (Ai)

∣

∣

∣

∣

∣

∣

<

∞
∑

n=1

ε2−n = ε ,

which establishes the BV-absolute continuity of F . �

The following characterizations are called, respectively, the partial and full
descriptive definitions of the BV-integral:

1. Among all continuous additive functions that are derivable almost every-
where in a BV set A, characterize those which are indefinite BV-integrals
in A.

2. Among all continuous additive functions in a BV set A (derivable or not),
characterize those which are indefinite BV-integrals in A.

A partial descriptive definition was given in [4, Theorem 2.6] employing the
concept of BV-absolutely continuous functions. Using the stronger concept of
BV-ACG∗ functions we shall present a full descriptive definition in Theorem 3.7
below.

Lemma 3.4. Let F be a continuous additive function in a BV set A, and let

E = {x ∈ cl∗A : F (x) < r < s < F (x)} .

If F is BV-AC∗ on E, then E is negligible.

Proof: With no loss of generality we may assume E ⊂ intcA. Choose positive
numbers ε and η, and let ε′ = εm+1. If F is BV-AC∗ on E, we can find a positive
number η′ ≤ η and a gage δ in A so that

∣

∣

∣

∣

F

(

⋃

P

)

− F

(

⋃

Q

)∣

∣

∣

∣

< ε

for all ε′-regular δ-fine partitions P and Q in A anchored in E for which
∣

∣

∣

∣

(

⋃

P

)

△

(

⋃

Q

)∣

∣

∣

∣

< 4η′ .

Select an open set U containing E with |U | < |E| + η′, and let R and S be
the families of all doubly closed sets C ⊂ U such that d(C) < δ(xC ) for an
xC ∈ E ∩ C, r(C) > ε, and respectively,

F (A ∩ C) < r|A ∩ C| and F (A ∩ C) > s|A ∩ C| .

In view of Lemma 1.1, making δ smaller, we may assume r(A∩C) > ε′ for each C ∈
R∪S. Clearly, R and S are Vitali covers of E−Nδ . Since Nδ is a negligible set (in
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fact, a thin set), applying Vitali’s covering theorem [7, Chapter IV, Theorem 3.1],
we obtain collections {A1, . . . , Ap} ⊂ R and {B1, . . . , Bq} ⊂ S, each consisting of
disjoint sets and such that

min







∣

∣

∣

∣

p
⋃

i=1

(E ∩ Ai)

∣

∣

∣

∣

,

∣

∣

∣

∣

q
⋃

j=1

(E ∩ Bj)

∣

∣

∣

∣







> |E| − η′ .

From the definitions of R and S, we see that

P = {(A ∩ A1, xA1), . . . , (A ∩ Ap, xAp
)} ,

Q = {(A ∩ B1, xB1), . . . , (A ∩ Bq, xBq
)}

are ε′-regular δ-fine partitions in A anchored in E. Since
⋃

P ⊂ U and |E∩
⋃

P | >
|E| − η′, we have |E △

⋃

P | < 2η′; by symmetry, also |E △
⋃

Q| < 2η′. Thus
|(
⋃

P )△ (
⋃

Q)| < 4η′, and we obtain

ε >

∣

∣

∣

∣

F

(

⋃

P

)

− F

(

⋃

Q

)
∣

∣

∣

∣

≥

q
∑

j=1

F (A ∩ Bj)−

p
∑

i=1

F (A ∩ Ai)

> s

∣

∣

∣

∣

⋃

Q

∣

∣

∣

∣

− r

∣

∣

∣

∣

⋃

P

∣

∣

∣

∣

> s(|E| − η′)− r(|E| + η′)

= (s − r)|E| − (s+ r)η′ ≥ (s − r)|E| − |s+ r|η .

The negligibility of E follows from the arbitrariness of ε and η. �

Lemma 3.5. Let F be a continuous additive function in a BV set A, and let

E = {x ∈ cl∗A : F (x) = +∞} .

If F is BV-AC∗ on E, then E is negligible.

Proof: We may assume E ⊂ intcA. Proceeding towards a contradiction, suppose
|E| > 0. If 0 < ε < 1/(2m) and F is BV-AC∗ on E, we can find a gage δ in A
and a positive η < |E|/2 so that

∣

∣

∣

∣

F

(

⋃

P

)

− F

(

⋃

Q

)∣

∣

∣

∣

< 1

for all ε-regular δ-fine partitions P and Q in A anchored in E for which

∣

∣

∣

∣

(

⋃

P

)

△

(

⋃

Q

)∣

∣

∣

∣

< 4η .
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Let U be an open set containing E with |U | < |E| + η. Using [5, Lemma 3.4]
and Vitali’s covering theorem, find disjoint closed cubes C1, . . . , Cp contained in
U such that |E −

⋃p
i=1Ci| < η while r(A ∩ Ci) > ε and d(Ci) < δ(xi) for an

xi ∈ E ∩ Ci and i = 1, . . . , p. Thus P = {(A ∩ C1, x1), . . . , (A ∩ Cp, xp)} is an
ε-regular δ-fine partition in A anchored in E, and |E △ (

⋃

P )| < 2η.
In view of [5, Lemma 3.4] and Lemma 3.1, the family B of all closed cubes

B ⊂ U such that r(A ∩ B) > ε, d(B) < δ(yB) for a yB ∈ E ∩ B, and

F (A ∩ B)

|A ∩ B|
>
2

|E|

∣

∣

∣

∣

F

(

⋃

P

)

+ 1

∣

∣

∣

∣

,

is a Vitali cover of E. Using Vitali’s covering theorem again, find a disjoint
collection {B1, . . . , Bq} ⊂ B so that |E −

⋃q
j=1Bj | < η. Then Q = {(A ∩

B1, yB1), . . . , (A ∩ Bq, yBq
)} is an ε-regular δ-fine partition in A anchored in E,

and |E △
⋃

Q| < 2η. Observing that
∑q

j=1 |A ∩ Bj | ≥ |E|/2, we obtain

F

(

⋃

Q

)

=

q
∑

j=1

F (A ∩ Bj)

>
2

|E|

∣

∣

∣

∣

F

(

⋃

P

)

+ 1

∣

∣

∣

∣

·

q
∑

j=1

|A ∩ Bj |

≥ F

(

⋃

P

)

+ 1 .

This is a contradiction, since |(
⋃

P )△ (
⋃

Q)| < 4η. �

Proposition 3.6. A continuous additive function F in a BV set A that is
BV-ACG∗ is derivable almost everywhere in cl

∗A.

Proof: Let cl∗A =
⋃∞

n=1En, and let F be BV-AC∗ on each En. The set of all
x ∈ cl∗A at which F is not derivable is the union of the sets

En,+∞ = {x ∈ En : F (x) = +∞} , En,−∞ = {x ∈ En : F (x) = −∞} ,

and
En,r,s = {x ∈ En : F (x) < r < s < F (x)}

where r and s are rational numbers. Lemma 3.5 applied to F and −F shows that
the sets En,±∞ are negligible, and the sets En,r,s are negligible by Lemma 3.4.
Since we have only countably many of these sets, the proposition follows.

Corollary 3.7. Let F be a continuous additive function in a BV set A. If F is
BV-ACG∗, then F ′ is BV-integrable in A and F is its indefinite BV-integral.

Proof: According to Proposition 3.6, the derivate F ′ is defined almost every-
where in cl∗A, and by Proposition 3.3, the function F is BV-absolutely continuous.
An application of [4, Theorem 2.6] completes the proof. �



468 B.Bongiorno, L.Di Piazza, W.F. Pfeffer

Proposition 3.8. Let f be a BV-integrable function in a BV set A. If F is the
indefinite BV-integral of f in A, then F is BV-ACG∗.

Proof: We may assume that f is a real-valued function defined on the whole
of cl∗A, and let En = {x ∈ cl∗A : |f(x)| ≤ n} for n = 1, 2, . . . . Since cl∗A =
⋃∞

n=1En, it suffices to show that F is BV-AC∗ on each En. To this end, fix
a positive integer n and let E = En. It follows from [5, Corollary 5.12] that E
is measurable and f is Lebesgue integrable in E. Hence, if χ is the characteristic
function of E restricted to cl∗A, then fχ is Lebesgue integrable in A. By [5,
Proposition 5.8], the function fχ is also BV-integrable in A, and we denote by G
its indefinite BV-integral in A.
Choose an ε > 0. Using the absolute continuity of the indefinite Lebesgue

integral, find an η > 0 so that |G(Z)| < ε for each BV set Z ⊂ A with |Z| < η.
There is a gage δ in A such that

r
∑

i=1

∣

∣

∣

∣

f(zi)|Ci| − F (Ci)

∣

∣

∣

∣

< ε and

r
∑

i=1

∣

∣

∣

∣

f(zi)χ(zi)|Ci| − G(Ci)

∣

∣

∣

∣

< ε

for each ε-regular δ-fine partition R = {(C1, z1), . . . , (Cr, zr)} in A. If such a par-
tition R is anchored in E, then χ(zi) = 1 for i = 1, . . . , r, and we have

∣

∣

∣

∣

F

(

⋃

R

)

− G

(

⋃

R

)∣

∣

∣

∣

≤
r

∑

i=1

|F (Ci)− G(Ci)| < 2ε .

Now choose ε-regular δ-fine partitions P = {(A1, x1), . . . , (Ap, xp)} and Q =
{(B1, y1), . . . , (Bq , yq)} in A anchored in E for which |(

⋃

P )△(
⋃

Q)| < η. Letting
X =

⋃

P and Y =
⋃

Q, observe that

|G(X)− G(Y )| = |G(X − Y )− G(Y − X)|

≤ |G(X − Y )|+ |G(Y − X)| < 2ε ;

for max{|X − Y |, |Y − X |} ≤ |X △ Y | < η. Thus

|F (X)− F (Y )| ≤ |F (X)− G(X)|+ |F (Y )− G(Y )|+ |G(X)− G(Y )| < 6ε ,

which establishes F is BV-AC∗ on E. �

Combining Corollary 3.7 and Proposition 3.8, we obtain the following full de-
scriptive definition of the BV-integral.

Theorem 3.9. A continuous additive function F in a BV set A is BV-ACG∗ if

and only if F ′ exists almost everywhere in A and F is its indefinite BV-integral.
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