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An existence theorem of positive solutions to

a singular nonlinear boundary value problem

Gabriele Bonanno

Abstract. In this note we consider the boundary value problem y′′ = f(x, y, y′) (x ∈
[0, X];X > 0), y(0) = 0, y(X) = a > 0; where f is a real function which may be singular
at y = 0. We prove an existence theorem of positive solutions to the previous problem,
under different hypotheses of Theorem 2 of L.E. Bobisud [J. Math. Anal. Appl. 173
(1993), 69–83], that extends and improves Theorem 3.2 of D. O’Regan [J. Differential
Equations 84 (1990), 228–251].

Keywords: ordinary differential equations, singular boundary value problem, positive
solutions

Classification: 34B15

Let f be a real function defined on [0, X ]× (0,∞) × (−∞,∞); L1([0, X ]) the
space of all (equivalence classes of) measurable functions ψ : [0, X ]→ R such that

‖ψ‖L1([0,X]) =
∫ X
0 |ψ(x)| dx < ∞; W 2,1([0, X ]) the space of all u ∈ C1([0, X ])

such that u′ is absolutely continuous in [0, X ] and u′′ ∈ L1([0, X ]).
Consider the problem

(P)











y′′ = f(x, y, y′)

y(0) = 0

y(X) = a > 0 .

A function u : [0, X ] → [0,∞) is said to be a generalized solution to (P) if
u ∈ W 2,1([0, X ]), u(0) = 0, u(X) = a and, for almost every x ∈ [0, X ], one
has u′′(x) = f(x, u(x), u′(x)). When the function f is continuous in [0, X ] ×
(0,∞)× (−∞,∞), any generalized solution to problem (P) is a classical one, that
is u ∈ C1([0, X ]) ∩ C2((0, X ]) and u′′(x) = f(x, u(x), u′(x)) for every x ∈ (0, X ].
Positive solutions to singular nonlinear boundary value problems appear in

a variety of applications. Consequently, they have been studied by many authors
(see, for instance, [2], [4] and the references given there). In particular, among
the latest contributions, there are the following two theorems.

Theorem A ([2, Theorem 2]). Let X ≥ 1 be fixed. Assume the following hy-
potheses.

(H1) f ∈ C([0, X ] × (0,∞) × (−∞,∞)) and f(x, y, z) is locally Lipschitz in y
and z on [0, X ]× (0,∞)× (−∞,∞).
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(H2) zf(x, y, z) ≤ 0 on [0, X ]× (0,∞)× (−∞,∞).
(H3) There exist a nonnegative function f1 continuous on [0, 1], a nonnegative,

nonincreasing function g1 continuous on (0, a], and a function h1 positive
and continuous on (a,∞] such that
(i) f(x, y, z) ≥ −f1(x)g1(y)h1(z)z on [0, X ]× (0, a]× [a,∞),
(ii) f1(s)g1(

a
X s) ∈ L1([0, 1]),

(iii)
∫ ∞
a dv/vh1(v) >

∫ 1
0 f1(s)g1(

a
X s) ds

hold.

(H4) Put

H(z) =

∫ z

a

1

h1(v)
dv; and M1 = H

−1
(

∫ a

0
g1(u) du

)

,

there exist a constant k > M1 and a measurable function F on [0, X ]
satisfying

(i) |f(x, y, z)| ≤ F (x) for 0 ≤ x ≤ X , a
X x ≤ y ≤ k, and |z| ≤ k,

(ii)
∫ X
0 F (x) dx <∞.

Then, the problem (P) has at least one solution u ∈ C1([0, X ]) ∩
C2((0, X ]) such that u(x) > 0 for every x ∈ (0, X ].

Theorem B ([4, Theorem 3.2 and subsequent remark]). Consider the problem

(P0)











y′′ +Ψ(x)h(x, y) = 0 0 < x < 1

y(0) = 0

y(1) = a > 0 .

where h and Ψ satisfy

(K1)
(i) h is continuous on [0, 1]× (0,∞);
(ii) limy→0+ h(x, y) =∞ for each x ∈ [0, 1];
(iii) 0 < h(x, y) ≤ g(y) on [0, 1], where g is continuous and nonincreasing

on (0,∞).
(iv) In addition 1/Ψ ∈ C([0, 1]) with Ψ > 0 on (0, 1).

(K2) There exist p > 1, q > 1 with
1
p +

1
q = 1 together with

∫ 1
0 Ψ

p(z) dz < ∞
and

∫ 1
0 g

q(u) du <∞.
(K3) For each constant M > 0 there exists η(x) continuous and positive on

[0, 1] such that h(x, y) ≥ η(x) on [0, 1]× (0,M ].
Then, the problem (P0) has at least one solution u ∈ C([0, 1])∩C2((0, 1)) such

that u(x) > 0 for every x ∈ (0, 1].
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The purpose of this note is to establish Theorem 1 below. We remark that
our result extends and improve Theorem B (see Remark 3) and is independent of
Theorem A. In particular, contrary to (H1), we assume that f is continuous in y
and z. Moreover, the condition f(x, y, 0) ≡ 0, which is implied by (H2), does not
follow from our assumptions.

Let r > 0, X > 0 and x ∈ [0, X ]. Here and in the sequel, W (r, x) stands for
the set

{

(y, z) ∈ (0,∞)× (−∞,∞) : a
X x ≤ y ≤ a+Xr; |z| ≤ a

X + 2r
}

. Let now
f be a real function defined on [0, X ]× (0,∞)× (−∞,∞). For every x ∈ [0, X ],
we put

Mr(x) = sup
(y,z)∈W (r,x)

|f(x, y, z)| and mr(x) = sup
(y,z)∈W (r,x)

f(x, y, z).

Theorem 1. Let f be a real function defined in [0, X ] × (0,∞) × (−∞,∞).
Assume that

(a) the function (y, z)→ f(x, y, z) is continuous for almost every x ∈ [0, X ];
(b) the function x → f(x, y, z) is measurable for every (y, z) ∈ (0,∞) ×
(−∞,∞);

(c) there exists r > 0 such that the function Mr belongs to L
1([0, X ]) and

one has
‖Mr‖L1([0,X]) ≤ r;

(d) for almost every x ∈ [0, X ], one has
mr(x) < 0.

Then, the problem (P) has at least one generalized solution u ∈ W 2,1([0, X ])
such that u(x) > 0 for every x ∈ (0, X ].
Proof: Consider the set

K =
{

v ∈ L1([0, X ]) : −mr(x) ≤ v(x) ≤Mr(x) a.e. in [0, X ]
}

.

Of course, K is nonempty and convex. By the Dunford-Pettis theorem (see,
for instance, [3, Theorem 1, p. 101]), it is also weakly compact. For every v ∈
L1([0, X ]) and every x ∈ [0, X ], we put

(1)

φ1(v)(x) =
a

X
x+

X − x

X

∫ x

0
sv(s) ds+

x

X

∫ X

x
(X − s)v(s) ds;

φ2(v)(x) =
a

X
− 1
X

∫ X

0
sv(s) ds+

∫ X

x
v(s) ds;

Obviously, one has φ1(v)(0) = 0, φ1(v)(X) = a, [φ1(v)]
′ = φ2(v); [φ1(v)]

′′ =
[φ2(v)]

′ = −v; φ1(v) ∈ W 2,1([0, X ]), moreover, if v(x) > 0 for almost x ∈ [0, X ],
therefore φ1(x) > 0 for every x ∈ (0, X ]. We now put

G(v)(x) = −f(x, φ1(v)(x), φ2(v)(x))
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for every v ∈ L1([0, X ]) and for every x ∈ (0, X ].
Let us prove that G(K) ⊆ K. To this end, fix v ∈ K and observe that, by (1)

and (c), one has

a

X
x ≤ φ1(v)(x) ≤ a+

∫ x

0
Xv(s) ds+

∫ X

x
Xv(s) ds

≤ a+X ‖Mr‖L1([0,X]) ≤ a+Xr;

|φ2(v)(x)| ≤
a

X
+
1

X

∫ X

0
Xv(s) ds+

∫ X

0
v(s) ds

≤ a

X
+ 2 ‖Mr‖L1([0,X]) ≤

a

X
+ 2r.

Therefore, (φ1(v)(x), φ2(v)(x)) ∈ W (r, x) for every x ∈ (0, X ]. Hence, for almost
every x ∈ [0, X ], one has:

−mr(x) ≤ −f(x, φ1(v)(x), φ2(v)(x)) ≤Mr(x).

This implies that G(v) ∈ K.
Now, let us prove that the operator G is weakly sequentially continuous. Let

v ∈ K and let {vn} be a sequence in K weakly converging to v in L1([0, X ]).
From (1) it follows that, for every x ∈ [0, X ], limn→∞ φ1(vn)(x) = φ1(v)(x);
limn→∞ φ2(vn)(x) = φ2(v)(x). Therefore, by (a), the sequence {G(vn)} converges
almost everywhere in [0, X ] to G(v). Bearing in mind that for almost every
x ∈ [0, X ] and every n ∈ N one has

|G(vn)(x)| ≤Mr(x),

the Lebesgue Dominated Convergence theorem yields limn→∞G(vn) = G(v) in
L1([0, X ]). So, {G(vn)} converges weakly to G(v) in L1([0, X ]).
We now have proved that the function G : K → K verifies all that assumptions

of Theorem 1 of [1]. Then, there is v ∈ K such that v = G(v). The function
u(x) = φ1(v)(x), x ∈ [0, X ], satisfies our conclusion. �

Remark 1. This theorem ensures the existence of positive solutions even if
f(x, y, z) is not locally Lipschitz in y and z. For example, the problem

(P1)











y′′ = −(sen y)1/3|y′|1/3 − xy−1/2|y′|1/2 − x3

y(0) = 0

y(1) = a > 0 ,

owing to Theorem 1, has at least one positive solution u ∈ C1([0, X ])∩C2((0, X ]).
Indeed, taking into account that

∫ X

0
sup

(y,z)∈W (r,x)
|f(x, y, z)| dx ≤

( a

X
+ 2r

)1/3
X +

2

3

X2√
a

( a

X
+ 2r

)1/2
+
X4

4
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and

lim
r→∞

r − X4

4
(

a
X + 2r

)1/3
X + 23

X2√
a

(

a
X + 2r

)1/2
=∞,

there exists r > 0 such that ‖Mr‖L1([0,X]) < r. Hence, it is easily seen that all

the assumptions of Theorem 1 hold.
We cannot apply Theorem A to the problem (P1), even because f(x, y, 0) =

x3 6≡ 0.
We also observe that assumption (H3) and (H4) of Theorem A and assumption

(c) of Theorem 1 are mutually independent.

Remark 2. We explicitly observe that in Theorem 1 f may be singular at some
set Ω ⊆ [0, X ], with |Ω| = 0 (|Ω| denotes the Lebesgue measure of Ω). Particularly,
if f ∈ C((0, X)×(0,∞)×(−∞,∞)) and the assumptions (c) and (d) of Theorem 1
hold, then there exists at least one function u ∈ C1([0, X ]) ∩ C2((0, X)) such
that u(0) = 0, u(X)=a and, for every x ∈ (0, X), u′′(x) = f(x, u(x), u′(x)) and
u(x) > 0.

Remark 3. Theorem 1 extends and improves Theorem B. Indeed, the assump-
tions of Theorem B, even without the condition limy→0+ h(x, y) =∞, imply the
ones of Theorem 1. Let us prove this. Of course, from (i) and (iv) of (K1), (a) and

(b) follow; (c) is verified by choosing r = ‖Ψ‖Lp([0,1])

(

1
a

)1/q ‖g‖Lq([0,a]), since, by

(iii) of (K1), (K2) and Hölder inequality, one has

∫ 1

0
sup

a
X

x≤y≤a+Xr
|Ψ(x)h(x, y)| dx ≤

≤
∫ 1

0
Ψ(x)g

( a

X
x
)

dx ≤ ‖Ψ‖Lp([0,1])

(

1

a

)1/q

‖g‖Lq([0,a]);

(d) follows from (iv) of (K1) and (K3), since in (0, a+Xr] one has Ψ(x)h(x, y) ≥
Ψ(x)η(x) > 0, therefore

−mr(x) = inf
a
X

x≤y≤a+Xr
Ψ(x)h(x, y) ≥ Ψ(x)η(x) > 0

for every x ∈ (0, 1). Hence, our claim is proved.
Now, consider the problem

(P2)















y′′ + x

[

∣

∣

∣
sen 1y

∣

∣

∣

1/2
+ y1/2 + x

]

= 0

y(0) = 0

y(1) = a > 0 .
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Owing to Theorem 1, the problem (P2) has at least one positive solution u ∈
C1([0, X ]) ∩ C2((0, X ]). Indeed, taking into account that

∫ X

0
sup

a
X

x≤y≤a+Xr
|f(x, y)| dx ≤ X2

2
+
X2

2
(a+Xr)1/2 +

X3

3

and

lim
r→∞

r −
(

X2

2 +
X3

3

)

X2
2 (a+Xr)

1/2
=∞,

there exists r > 0 such that ‖Mr‖L1([0,X]) < r. Hence, it is easily seen that all

hypotheses of Theorem 1 hold and our claim is proved.

In the previous example the condition limy→0+ h(x, y) =∞ is not satisfied and
moreover there is no function g(y), nonincreasing in (0,∞), such that h(x, y) ≤
g(y), as it is required by Theorem B.
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