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On P -convex Musielak-Orlicz spaces

Pawe l Kolwicz, Ryszard P luciennik

Abstract. In this paper there is proved that every Musielak-Orlicz space is reflexive iff
it is P -convex. This is an essential extension of the results given by Ye Yining, He
Miaohong and Ryszard P luciennik [16].
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1. Introduction

Connections between various kinds of convexities of Banach spaces and the
reflexivity of them were developed by many authors. Perhaps the earliest result
concerning that problem was obtained by D. Milman in 1938 (see [13]). Milman
proved that every uniformly convex Banach space is reflexive. Thirty years af-
ter D. Giesy [6] and R.C. James [9] raised the question whether Banach spaces
which are uniformly non-l1n with some positive integer n ≥ 2 (such spaces are
called B-convex) are reflexive. James [9] settled the question affirmatively in
the case n = 2 and gave a partial result for the case n = 3. Afterwards, the
same author presented in [10] an example of a nonreflexive uniformly non-l13 Ba-
nach space. It was natural to ask whether reflexivity is implied by some slightly
stronger geometric condition. In 1970 C.A. Kottman [12] introduced the notion of
P -convexity. Namely,

A Banach space (X, ‖·‖) is said to be P -convex, if there exists an ǫ > 0 and
n ∈ N such that for all x1, x2, . . . , xn ∈ S(X)

min
{∥

∥xi − xj

∥

∥ : i 6= j, i, j ≤ n
}

≤ 2 − ǫ,

where S(X) denotes the unit sphere of X .

Moreover, Kottman proved that P -convex Banach space is reflexive and showed
that in Banach spaces P -convexity follows from uniform convexity or uniform
smoothness. It is natural to set an opposite question, namely when reflexivity
implies P -convexity. The partial answer for that question was given by Ye Yining,
He Miaohong and R. P luciennik [16]. They proved that for Orlicz sequence as
well as function spaces reflexivity is equivalent to P -convexity. For the Musielak-
Orlicz sequence space the same result was obtained by Ye Yining and Huang
Yafeng [17]. We extend that result to the case of Musielak-Orlicz function spaces.
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Although such a result was expected, its proof is nontrivial and different from the
proof in the case of Orlicz function spaces. Moreover, it is worth to mention that
our theorem is an extension of the results concerning the equivalence of reflexivity
and B-convexity which were given by M. Denker and R. Kombrink [5] (for Orlicz
spaces) and by H. Hudzik and A. Kamińska [7] (for Musielak-Orlicz spaces).

Moreover there are some geometric properties laying between P -convexity
and B-convexity, namely O-convexity, Q-convexity, H-convexity, C-convexity,
I-convexity, and J-convexity (for the definitions we refer to [3] and [15]). The
theorem obtained in this paper leads immediately to the conclusion that all these
geometric properties in Musielak-Orlicz spaces are equivalent to the reflexivity.

Let us agree on some terminology. Denote by N and R the sets of natural
and real numbers, respectively. Let (T, Σ, µ) be a measure space with a σ-finite,
complete and non-atomic measure µ. Define Σ0 = {A ∈ Σ : µ(A) = 0}. Denote
by L0 = L0(T ) the space of µ-equivalence classes of Σ-measurable real-valued
functions, L1 = L1(T ) the space of absolutely integrable functions with natural
norm and L1

+ = L1
+(T ) a positive cone of L1(T ), i.e.

L1
+ = {h ∈ L1 : h(t) ≥ 0 for a.e. t ∈ T }.

A function M : T ×R −→ [0,∞) is said to be an N -function if

(a) M(·, u) is measurable for each u ∈ R.
(b) M(t, u) = 0 iff u = 0 and M(t, ·) is convex, even, not identically equal

zero, µ-a.e. t ∈ T .

Define on L0 a functional IM by

IM (x) =

∫

T
M (t, x(t)) dµ

for every x ∈ L0. Then IM is a convex modular on L0. By the Musielak-Orlicz
space LM we mean

LM = {x ∈ L0 : IM (cx) < ∞ for some c > 0},

equipped with so called Luxemburg norm defined as follows

‖x‖ = inf
{

ǫ > 0 : IM

(x

ǫ

)

≤ 1
}

.

For every N -function M we define the complementary function M∗ : T ×R −→
[0,∞) by the formula

M∗ (t, v) = max
u>0

{u |v| − M (t, u)}

for every v ∈ R and t ∈ T . The complementary function M∗ is also an N -function.

We say that N -function M satisfies the ∆2-condition if there exist a constant
k > 2 and a function f ∈ L1

+ such that IM (f) < ∞ and

M (t, 2u) ≤ kM (t, u)

for µ-a.e. t ∈ T and for every u ≥ f(t).

For more details we refer to [14].
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2. Auxiliary lemmas

Lemma 1. Let M be an N -function. Then for every u, v ∈ R the following

inequality

(1) M(t, u + v) ≤ M(t, u) +
1

A
M(t, u + Av)

holds for every A ≥ 1 and for µ-a.e. t ∈ T .

Proof: Let A ≥ 1. Then, by the convexity of M(t, ·) for µ-a.e. t ∈ T , we have

M(t, u + v) = M

(

t,
1

A
(u + Av) + (1 −

1

A
)u

)

≤

≤
M(t, u + Av)

A
+

A − 1

A
M(t, u) ≤ M(t, u) +

1

A
M(t, u + Av)

for µ-a.e. t ∈ T , which finishes the proof. �

Lemma 2. There is a non-decreasing sequence (Ti) such that µ(Ti) < ∞ for

every i ∈ N , µ(T \
∞
⋃

i=1
Ti) = 0 and

sup
t∈Ti

M(t, u) < ∞ and inf
t∈Ti

M(t, u) > 0

for every u > 0 and for every i ∈ N .

Proof: In [11] A. Kamińska proved that if µ is σ-finite, then there exists a non-

decreasing sequence (T ′
i ) of sets of finite measure such that µ(T \

∞
⋃

i=1
T ′

i ) = 0

and
sup
t∈T ′

i

M(t, u) < ∞

for every u > 0 and for every i ∈ N . Therefore it is enough to prove the second
inequality. To this end let (Al) be a sequence of pairwise disjoint sets such that

µ(Al) < ∞ (l = 1, 2, . . . ) and µ(T \
∞
⋃

l=1

Al) = 0.

Define

Al
n,m =

{

t ∈ Al : M

(

t,
1

n

)

≥
1

m

}

.

Obviously µ(Al \
∞
⋃

m=1
Al

n,m) = 0 and Al
n,m ⊂ Al

n,m+1 for every m ∈ N . Hence

µ(Al \ Al
n,m) → 0 as m → ∞ for every l and for every n. Take l ∈ N . Fix for

a while ǫ > 0. For every n ∈ N we find mn ∈ N such that

µ(Al \ Al
n,mn

) <
ǫ

2n .
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Hence

µ(Al \
∞
⋂

n=1

Al
n,mn

) ≤
∞
∑

n=1

µ(Al \ Al
n,mn

) < ǫ.

Denoting Bl
ǫ =

∞
⋂

n=1
Al

n,mn
, we have

inf
t∈Bl

ǫ

M

(

t,
1

n

)

≥
1

mn
> 0

for l, n ∈ N . Take a sequence (Bl
ǫj

), where (ǫj) is a sequence tending to zero. We

have

µ(Al \
∞
⋃

j=1

Bl
ǫj

) ≤ µ(Al \ Bl
ǫj

) < ǫj

for all j ∈ N . Hence

µ(Al \
∞
⋃

j=1

Bl
ǫj

) = 0 for l = 1, 2, . . . .

Finally, we define

T ′′
i =

i
⋃

l=1

i
⋃

j=1

Bl
ǫj

for i = 1, 2, . . . .

We have

µ(T \
∞
⋃

i=1

T ′′
i ) = µ(T \

∞
⋃

l=1

∞
⋃

j=1

Bl
ǫj

) =

= µ



(

∞
⋃

l=1

Al) \ (

∞
⋃

l=1

∞
⋃

j=1

Bl
ǫj

)



 =

∞
∑

l=1

µ(Al \
∞
⋃

j=1

Bl
ǫj

) = 0.

Obviously, (T ′′
i ) is a nondecreasing sequence of sets. Let u > 0. Then there exists

a natural number n such that 1
n < u and

inf
t∈T ′′

i

M(t, u) ≥ min







inf
t∈Bl

ǫj

M

(

t,
1

n

)

: 1 ≤ l ≤ i, 1 ≤ j ≤ i







> 0

for each i ∈ N . Now, defining Ti = T ′
i ∩ T ′′

i for every i ∈ N , it is easy to verify
that the sequence (Ti) has the desired properties. �
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Lemma 3. If M satisfies the ∆2-condition, then for every α ∈ (0, 1) there exists
a non-decreasing sequence (Bα

n ) of measurable sets of finite measure such that

µ

(

T \
∞
⋃

n=1

Bα
n

)

= 0

and for every n ∈ N a number kα
n > 2 can be found such that

(2) M(t, 2u) ≤ kα
n M(t, u)

for µ-a.e. t ∈ Bα
n and for every u ≥ αf(t), where f is from the ∆2-condition.

Proof: Fix α ∈ (0, 1). Denote

Aα
n =

{

t ∈ T :
1

n
≤ αf(t) ≤ f(t) ≤ n

}

(n = 1, 2, . . . ).

Obviously, Aα
n ⊂ Aα

n+1 for every n ∈ N . Since M(t, ·) vanishes at 0, M(t, u) → ∞
as u → ∞ for µ-a.e. t ∈ T and IM (f) < ∞, we have

µ

(

T \
∞
⋃

n=1

Aα
n

)

= 0.

For every n ∈ N denote Bα
n = Aα

n ∩ Tn, where Tn are from Lemma 2. Then
Bα

n ⊂ Bα
n+1 for every n ∈ N and it is easy to see that

µ

(

T \
∞
⋃

n=1

Bα
n

)

= 0.

Denote

kα
n =

k sup
t∈Bα

n

M(t, n)

inf
t∈Bα

n

M
(

t, 1
n

) (n = 1, 2, . . . ).

By Lemma 2, k < kα
n < ∞ for n = 1, 2, . . . . Suppose that t ∈ Bα

n . Then for
αf(t) ≤ u ≤ f(t) we have

M(t, 2u) ≤ M (t, 2f(t)) ≤ kM (t, f(t))
M (t, αf(t))

M (t, αf(t))
≤

≤ kM (t, f(t))
M(t, u)

M
(

t, 1
n

) ≤ kα
nM(t, u).

For u ≥ f(t), we have

M(t, 2u) ≤ kM(t, u) ≤ kα
nM(t, u).

It finishes the proof. �
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Lemma 4. If M satisfies the ∆2-condition, then for every ǫ ∈ (0, 1) there exist
a positive measurable function fǫ : T −→ R and kǫ > 2 such that

(3) IM (fǫ) < ǫ and M(t, 2u) ≤ kǫ M(t, u)

for µ-a.e. t ∈ T , whenever u ≥ fǫ(t).

Proof: Fix ǫ ∈ (0, 1). Let f be from the ∆2-condition. If IM (f) < ǫ, then the
lemma is proved. Suppose IM (f) ≥ ǫ. Denote by (Bn) the sequence (Bα

n ) from
Lemma 3 with α = ǫ

2IM (f)
. Since IM (f) < ∞, there exists a natural number n0

such that IM (fχT\Bn0
) < ǫ

2 . Define

fǫ(t) =
ǫ

2IM (f)
f(t)χBn0

(t) + f(t)χT\Bn0
(t).

By the convexity of M , we have

IM (fǫ) ≤
ǫ

2IM (f)
IM (fχBn0

) + IM (fχT\Bn0
) < ǫ.

Taking kǫ = kα
n0 , where kα

n0 is from Lemma 3 with α = ǫ
2IM (f)

, we obtain

M(t, 2u) ≤ kǫM(t, u)

for µ-a.e. t ∈ T , whenever u ≥ fǫ(t). �

The simple consequence of Lemma 4 is the following

Corollary 1. If M∗ satisfies the ∆2-condition, then for every ǫ ∈ (0, 1) there
exist a positive measurable function gǫ : T −→ R and k∗ǫ > 2 such that

(4) IM∗(gǫ) < ǫ and M∗(t, 2u) ≤ k∗ǫ M∗(t, u)

for µ-a.e. t ∈ T , whenever u ≥ gǫ(t).

Modifying Lemma 2 from [2], we can formulate the following

Lemma 5. If M and M∗ satisfy the ∆2-condition, then there are l > 1 and
a positive measurable function f : T −→ R+ such that

(5) IM (f) < ∞ and M
(

t,
u

2

)

≤
1

2l
M(t, u)

for µ-a.e. t ∈ T , and for every u ≥ f(t).

Proof: Taking η = 1
2 and l = 1

ξ in Lemma 2 from [2], we obtain the thesis. �
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Lemma 6. Let M andM∗ satisfy the ∆2-condition and let f be from Lemma 5.

Then for every α ∈ (0, 1) there exists a non-decreasing sequence (Aα
n) of measur-

able sets such that

µ

(

T \
∞
⋃

n=1

Aα
n

)

= 0

and for every n ∈ N a number lαn > 1 can be found such that

(6) M
(

t,
u

2

)

≤
1

2lαn
M (t, u)

for µ-a.e. t ∈ Aα
n and for every u ≥ αf(t).

Proof: Let α ∈ (0, 1). Define

lα(t) = inf

{

M(t, u)

2M(t, u
2 )

: u ∈ [αf(t), f(t)]

}

,

where f is from Lemma 5. Since M is an N -function for µ-a.e. t ∈ T , by
Theorem 3.1 from [18], lα(t) > 1 for µ-a.e. t ∈ T . Denote

Aα
n =

{

t ∈ T : lα(t) ≥ 1 +
1

n

}

(n = 1, 2, . . . ).

Obviously Aα
n ⊂ Aα

n+1 for every natural n and µ

(

T \
∞
⋃

n=1
Aα

n

)

= 0. Let t ∈ Aα
n.

Then taking lαn = min
{

l, 1 + 1
n

}

, where l is as in Lemma 5, we obtain that the
inequality (6) holds for µ-a.e. t ∈ Aα

n and for all u ≥ αf(t). �

Lemma 7. Let M and M∗ satisfy the ∆2-condition and let f be from Lemma 5.

Then for every ǫ > 0 there are lǫ > 1 and a positive measurable function
hǫ : T −→ R+ such that

(7) IM (hǫ) < ǫ and M
(

t,
u

2

)

≤
1

2lǫ
M(t, u)

for µ-a.e. t ∈ T , whenever u ≥ hǫ(t).

Proof: Fix ǫ > 0. Then, by the convexity of IM , there exists an α ∈ (0, 1) such
that IM (αf) < ǫ

2 . Denote by (An) the sequence (Aα
n) found, by Lemma 6, for

that fixed α. Then, by Beppo-Levi theorem, there exists an integer n0 such that

IM

(

fχT\An0

)

=

∫

T\An0

M(t, f(t)) dµ <
ǫ

2
.

Define
hǫ(t) = αf(t)χAn0

(t) + f(t)χT\An0
(t).
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We have
IM (hǫ) = IM

(

αfχAn0

)

+ IM

(

fχT\An0

)

< ǫ

and

M
(

t,
u

2

)

≤
1

2lǫ
M(t, u),

for µ-a.e. t ∈ T and u ≥ hǫ(t), where lǫ = min
{

l, lαn0

}

(l, lαn0 are from Lemma 5
and Lemma 6, respectively). This finishes the proof. �

Fix ǫ = 1
6 and take

(8) f(t) = max
t∈T

{

f 1
6

(t), g 1
6

(t), h 1
6

(t)
}

,

where f 1
6

, g 1
6

, h 1
6

are from Lemma 4, Corollary 1 and Lemma 7, respectively.

Then we conclude that for µ-a.e. t ∈ T and u ≥ f(t) the inequalities (3), (4)

and (7) are satisfied with constants k, k∗ and l, respectively. Moreover IM (f) ≤ 1
2 .

Define

d(t) = sup
u≥f(t)

{

α(u, t) : M

(

t,
u

α(u, t)

)

=
1

2
M(t, u)

}

.

Since M is convex, it is easy to notice that d(t) ≤ 2 for µ-a.e. t ∈ T . �

Lemma 8. If N -functions M and M∗ satisfy the ∆2-condition, then

d = sup ess {d(t) : t ∈ T } < 2.

Proof: Let l > 1 be such that

M
(

t,
u

2

)

≤
1

2l
M(t, u)

for µ-a.e. t ∈ T and u ≥ f(t), where f is defined by the formula (8). Since
l+1
2 > 1, the ∆2-condition implies easily (see [8]) that there exists an ǫ > 0 such

that

M (t, (1 + ǫ)u) ≤
l + 1

2
M(t, u)

for u ≥ f(t) and µ-a.e. t ∈ T . Obviously, d ≤ 2. Suppose that d = 2. Then

a measurable set Tǫ of positive measure can be found such that d(t) > 2
1+ǫ for

all t ∈ Tǫ. Moreover for every t ∈ Tǫ there exist u ≥ f(t) and α(u, t) ≥ 2
1+ǫ such

that
1

2
M(t, u) = M

(

t,
u

α(u, t)

)

.

Hence

1

2
M(t, u) ≤ M

(

t,
1 + ǫ

2
u

)

≤
1

2l
M (t, (1 + ǫ)u) ≤

l + 1

2l
·
1

2
M(t, u) <

1

2
M(t, u),

which is a contradiction. Thus d < 2. �
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3. Main results

Proposition 1. Let N -functions M and M∗ satisfy the ∆2-condition. Then

there exists an ǫ > 0 such that for any u1, u2, u3 ∈ LM satisfying

|u1(t)| ≥ |u2(t)| ≥ |u3(t)|

for µ-a.e. t ∈ T and

IM (u1) + IM (u2) + IM (u3) = 3,

we have

IM

(

u1 − u2

2(1 − ǫ)

)

+ IM

(

u2 − u3

2(1 − ǫ)

)

+ IM

(

u3 − u1

2(1 − ǫ)

)

< 3.

Proof: Taking f(t) according to the formula (8), we define the following sets

T0 = {t ∈ T : |u1(t)| ≤ f(t)}

T1 = {t ∈ T \ T0 : u2(t)u3(t) ≥ 0}

T2 = {t ∈ T \ (T0 ∪ T1) : u1(t)u3(t) ≥ 0}

T3 = {t ∈ T \ (T0 ∪ T1 ∪ T2) : u1(t)u2(t) ≥ 0} .

By the fact that IM (u1) ≥ 1 and IM (f) < 1
2 , we conclude µ(T \T0) > 0.

Obviously, sets T0, T1, T2, T3 are pairwise disjoint. Moreover, T = T0 ∪T1 ∪T2 ∪
T3, because for every t ∈ T at least one of the numbers u1(t)u2(t), u2(t)u3(t),

u1(t)u3(t) is non-negative. Fix ǫ < 1
2 . For every t ∈ T define

Fǫ(t) = M

(

t,
u1(t) − u2(t)

2(1 − ǫ)

)

+ M

(

t,
u2(t) − u3(t)

2(1 − ǫ)

)

+ M

(

t,
u3(t) − u1(t)

2(1 − ǫ)

)

−M (t, u1(t)) − M (t, u2(t)) − M (t, u3(t)) .

For the clarity of the proof, we will divide it into three parts.

(I). Applying Lemma 1 with

u =
1

2
(|u1(t)| + |u2(t)|) , v =

ǫ

2(1 − ǫ)
(|u1(t)| + |u2(t)|) and A =

1

ǫ
,

we get

M

(

t,
u1(t) − u2(t)

2(1 − ǫ)

)

≤ M

(

t,
|u1(t)| + |u2(t)|

2(1 − ǫ)

)

≤

≤ M

(

t,
|u1(t)| + |u2(t)|

2

)

+ ǫM

(

t,
|u1(t)| + |u2(t)|

2
+

|u1(t)| + |u2(t)|

2(1 − ǫ)

)

≤

≤
1

2
M (t, u1(t)) +

1

2
M (t, u2(t)) + ǫ M (t, 3u1(t))
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for µ-a.e. t ∈ T . Hence

M

(

t,
u1(t) − u2(t)

2(1 − ǫ)

)

≤
1

2
M (t, u1(t)) +

1

2
M (t, u2(t)) + ǫ M (t, 3f(t))

for every t ∈ T0. Using the same argumentation, we can get

M

(

t,
u2(t) − u3(t)

2(1 − ǫ)

)

≤
1

2
M (t, u2(t)) +

1

2
M (t, u3(t)) + ǫ M (t, 3f(t))

and

M

(

t,
u3(t) − u1(t)

2(1 − ǫ)

)

≤
1

2
M (t, u3(t)) +

1

2
M (t, u1(t)) + ǫ M (t, 3f(t))

for every t ∈ T0. Consequently,

(9)

∫

T0

Fǫ(t) dµ ≤ 3ǫ

∫

T0

M (t, 3f(t)) dµ ≤ 3ǫIM (3f).

(II). Define

T11 =

{

t ∈ T1 :

∣

∣

∣

∣

u2(t)

u1(t)

∣

∣

∣

∣

<
1

4kd
(2 − d)

}

,

where k = k 1
6

is from the condition (3) and d is defined in Lemma 8. Let

T12 = T1\T11.

Since u2(t)u3(t) ≥ 0 and ǫ < 1
2 ,

M

(

t,
u2(t) − u3(t)

2(1 − ǫ)

)

≤ M (t, u2(t))

for µ-a.e. t ∈ T1. Further, applying Lemma 1 with

u =
|u1(t)|

2(1 − ǫ)
, v =

|u2(t)|

2(1 − ǫ)
, A =

∣

∣

∣

∣

u1(t)

u2(t)

∣

∣

∣

∣

and the ∆2-condition, we have

M

(

t,
u1(t) − u2(t)

2(1 − ǫ)

)

≤ M

(

t,
|u1(t)| + |u2(t)|

2(1 − ǫ)

)

≤

≤ M

(

t,
u1(t)

2(1 − ǫ)

)

+

∣

∣

∣

∣

u2(t)

u1(t)

∣

∣

∣

∣

M

(

t,
2u1(t)

2(1 − ǫ)

)

≤

≤ M

(

t,
u1(t)

2(1 − ǫ)

)

+ k

∣

∣

∣

∣

u2(t)

u1(t)

∣

∣

∣

∣

M

(

t,
u1(t)

2(1 − ǫ)

)
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for µ-a.e. t ∈ T \T0. Similarly,

M

(

t,
u1(t) − u3(t)

2(1 − ǫ)

)

≤ M

(

t,
u1(t)

2(1 − ǫ)

)

+ k

∣

∣

∣

∣

u3(t)

u1(t)

∣

∣

∣

∣

M

(

t,
u1(t)

2(1 − ǫ)

)

for µ-a.e. t ∈ T \T0. Therefore, supposing that t ∈ T11, using the definition of d

and taking into account that ǫ < ǫ11 = 1
4 (2 − d), we get

M

(

t,
u1(t) − u2(t)

2(1 − ǫ)

)

+ M

(

t,
u2(t) − u3(t)

2(1 − ǫ)

)

+ M

(

t,
u3(t) − u1(t)

2(1 − ǫ)

)

≤

≤

(

2 + k
|u2(t)| + |u3(t)|

|u1(t)|

)

M

(

t,
2u1(t)

2 + d

)

+ M (t, u2(t)) <

<

(

2 + 2k
1

4kd
(2 − d)

)

M

(

t,
2d

2 + d

u1(t)

d

)

+ M (t, u2(t)) ≤

≤

(

2 +
2 − d

2d

)

2d

2 + d
M

(

t,
u1(t)

d

)

+ M (t, u2(t)) ≤

≤
1

2

(

1 +
2d

2 + d

)

M (t, u1(t)) + M (t, u2(t)) .

Hence, integrating the function Fǫ(·) over T11, we obtain

(10)

∫

T11

Fǫ(t) dµ <
d − 2

2(2 + d)

∫

T11

M (t, u1(t)) dµ.

Now, we will estimate the integral of the function Fǫ(·) over T12. Using
Lemma 1 with

u =
u1(t) − u2(t)

2
, v =

ǫ (u1(t) − u2(t))

2(1 − ǫ)
and A =

1

ǫ
,

we have

M

(

t,
u1(t) − u2(t)

2(1 − ǫ)

)

= M

(

t,
u1(t) − u2(t)

2
+

ǫ (u1(t) − u2(t))

2(1 − ǫ)

)

≤

≤ M

(

t,
u1(t) − u2(t)

2

)

+ ǫM

(

t,
(2 − ǫ) (u1(t) − u2(t))

2(1 − ǫ)

)

<

<
1

2
M (t, u1(t)) +

1

2
M (t, u2(t)) + ǫM

(

t,
3 (u1(t) − u2(t))

2

)

<

<
1

2
M (t, u1(t)) +

1

2
M (t, u2(t)) + ǫM (t, 4u1(t))

for µ-a.e. t ∈ T . Hence, applying twice the ∆2-condition for the N -function M ,
we obtain

(11) M

(

t,
u1(t) − u2(t)

2(1 − ǫ)

)

<
1

2
M (t, u1(t)) +

1

2
M (t, u2(t)) + ǫk2M (t, u1(t))
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for µ-a.e. t ∈ T \T0. Similarly,

(12) M

(

t,
u3(t) − u1(t)

2(1 − ǫ)

)

<
1

2
M (t, u1(t)) +

1

2
M (t, u3(t)) + ǫk2M (t, u1(t))

for µ-a.e. t ∈ T \ T0. Since u2(t)u3(t) ≥ 0 for t ∈ T1 and |u2(t)| ≥ |u3(t)|,
applying again Lemma 1 with

u =
u2(t)

2
, v =

ǫ u2(t)

2(1 − ǫ)
, A =

1

ǫ
,

we get

M

(

t,
u2(t) − u3(t)

2(1 − ǫ)

)

≤ M

(

t,
u2(t)

2(1 − ǫ)

)

= M

(

t,
u2(t)

2
+

ǫ u2(t)

2(1 − ǫ)

)

≤

≤ M

(

t,
u2(t)

2

)

+ ǫM

(

t,
(2 − ǫ) u2(t)

2(1 − ǫ)

)

< M

(

t,
u2(t)

2

)

+ ǫM (t, 2u2(t))

for µ-a.e. t ∈ T1. Hence, by monotonicity of M(t, ·) for µ-a.e. t ∈ T , using the
∆2-condition for the function M we obtain

(13) M

(

t,
u2(t) − u3(t)

2(1 − ǫ)

)

< M

(

t,
u2(t)

2

)

+ ǫkM (t, u1(t))

for µ-a.e. t ∈ T1.
Now, let t ∈ T12, i.e. |u2(t)| ≥ 2−d

4kd |u1(t)|. Then |u2(t)| ≥ 2−d
4kd f(t). Decom-

pose T12 into two following sets

T121 = {t ∈ T12 : |u2(t)| ≤ f(t)}

and
T122 = T12 \ T121.

Taking α = 1
4kd(2− d), define Cn = B

α/2
n ∩Aα

n for every n ∈ N , where B
α/2
n and

Aα
n are from Lemma 3 and Lemma 6, respectively. Obviously, Cn ⊂ Cn+1 for

each n ∈ N and µ

(

T \
∞
⋃

n=1
Cn

)

= 0. By Lemma 3, for every n ∈ N , a number

kn > 2 can be found such that the inequality (2) is satisfied for µ-a.e. t ∈ Cn

and u ≥ 2−d
8kd f(t). Similarly, by Lemma 6, there exists ln > 1 such that the

inequality (6) holds for µ-a.e. t ∈ Cn and u ≥ 2−d
4kd f(t). Let n1 be a natural

number such that

(14)

∫

T\Cn1

M

(

t,
4kd

2 − d
f(t)

)

dµ <
1

4
.
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Denote Tα = T121 \ Cn1 . Since |u1(t)| ≤ 4kd
2−d f(t) for all t ∈ Tα, repeating the

same argumentation as in part (I), we get

(15)

∫

Tα

Fǫ(t) dµ ≤ 3ǫ

∫

Tα

M

(

t,
12kd

2 − d
f(t)

)

dµ ≤ 3ǫIM

(

4kd

2 − d
f

)

.

By Lemma 6

(16) M

(

t,
u2(t)

2

)

<
1

2ln1
M (t, u2(t))

for µ-a.e. t ∈ T121 \ Tα. Moreover, by Lemma 5, there exists l > 1 such that

M

(

t,
u2(t)

2

)

<
1

2l
M (t, u2(t))

for a.e. t ∈ T122. Since ln1 ≤ l (see the proof of Lemma 6), we can assume that
the inequality (16) is satisfied for µ-a.e. t ∈ T12 \Tα. Hence, the inequalities (11),
(12), (13) and (16) lead to the following

(17)

∫

T12\Tα

Fǫ(t) dµ <

<

(

1 − ln1
2ln1

)∫

T12\Tα

M (t, u2(t)) dµ + 3ǫk2
∫

T12\Tα

M (t, u1(t)) dµ.

Let N be a natural number such that

2 − d

8kd
< 2−N ≤

2 − d

4kd
.

Since

|u2(t)| ≥
2 − d

4kd
|u1(t)| ≥ 2−N |u1(t)| ≥ 2−Nf(t) >

2 − d

8kd
f(t)

for µ-a.e. t ∈ T12, applying N -times Lemma 3, we conclude

M (t, u2(t)) ≥ M
(

t, 2−Nu1(t)
)

≥ k−N
n1 M (t, u1(t))

for µ-a.e. t ∈ T12 \ Tα. Hence, by (17), we obtain

∫

T12\Tα

Fǫ(t) dµ <

<

(

1 − ln1
2ln1k

N
n1

)

∫

T12\Tα

M (t, u1(t)) dµ + 3ǫk2
∫

T12\Tα

M (t, u1(t)) dµ.
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Taking

ǫ < ǫ12 =
ln1 − 1

12k2ln1k
N
n1

we obtain

(18)

∫

T12\Tα

Fǫ(t) dµ <

(

1 − ln1
4ln1k

N
n1

)

∫

T12\Tα

M (t, u1(t)) dµ.

Denote

R1 = min

{

2 − d

2(2 + d)
,

ln1 − 1

4ln1k
N
n1

}

.

In view of Lemma 6 and Lemma 8, R1 > 0. Therefore, by (10) and (18), we
conclude

(19)

∫

T1\Tα

Fǫ(t) dµ =

∫

T11

Fǫ(t) dµ +

∫

T12\Tα

Fǫ(t) dµ <

< −R1

∫

T1\Tα

M (t, u1(t)) dµ,

whenever ǫ < ǫ1 = min {ǫ11, ǫ12}.

(III). Repeating similar argumentation as in the case (II), some positive num-
bers R2, R3, ǫ2, and ǫ3 can be found such that

(20)

∫

T2

Fǫ(t) dµ < −R2

∫

T2

M (t, u1(t)) dµ

provided ǫ < ǫ2 and

(21)

∫

T3

Fǫ(t) dµ < −R3

∫

T3

M (t, u1(t)) dµ

whenever ǫ < ǫ3. The inequalities (20) and (21) hold true without excluding
from T1 and T2 any “small” set. This follows from the fact that using the same
argumentation as in the proof of the inequality (13) we get

M

(

t,
u1(t) − u3(t)

2(1 − ǫ)

)

< M

(

t,
u1(t)

2

)

+ ǫkM (t, u1(t))

for µ-a.e. t ∈ T2 and

M

(

t,
u1(t) − u2(t)

2(1 − ǫ)

)

< M

(

t,
u1(t)

2

)

+ ǫkM (t, u1(t))
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for µ-a.e. t ∈ T3. Since u1(t) ≥ f(t) for all t ∈ T \ T0, we can apply Lemma 5
immediately. Therefore, defining R = min {R1, R2, R3}, by (19), (20) and (21),
we conclude

(22)

∫

T\(T0∪Tα)
Fǫ(t) dµ < −R

∫

T\(T0∪Tα)
M (t, u1(t)) dµ,

whenever ǫ < min {ǫ1, ǫ2, ǫ3}. By assumptions of the proposition, it is obvious
that IM (u1) ≥ 1. Hence, by (22) and (14), we obtain

∫

T\(T0∪Tα)
Fǫ(t) dµ < −R

(

1 −

∫

T0∪Tα

M (t, u1(t)) dµ

)

≤

≤ −R

(

1 −

∫

T
M (t, f(t)) dµ −

∫

Tα

M

(

t,
4kd

2 − d
f(t)

)

dµ

)

≤ −
1

4
R

for ǫ < min {ǫ1, ǫ2, ǫ3}. Taking

ǫ < ǫ0 = min







ǫ1, ǫ2, ǫ3,
R

24IM

(

4kd
2−d f

)







,

by (9) and (15), we obtain

∫

T
Fǫ(t) dµ < −

1

4
R + 3ǫIM (3f) + 3ǫIM

(

4kd

2 − d
f

)

<

< −
1

4
R + 6ǫIM

(

4kd

2 − d
f

)

< 0.

Thus

IM

(

u1 − u2

2(1 − ǫ)

)

+ IM

(

u2 − u3

2(1 − ǫ)

)

+ IM

(

u3 − u1

2(1 − ǫ)

)

=

=

∫

T
Fǫ(t) dµ + IM (u1) + IM (u2) + IM (u3) < 3

whenever ǫ < ǫ0. This finishes the proof. �

Theorem 1. The Musielak-Orlicz space LM is P -convex if and only if it is

reflexive.

Proof: By Theorem 3.2 from [12], the proof of the necessity is obvious.
Suppose that LM is reflexive (i.e. M and M∗ satisfy the ∆2-condition) but it

is not P -convex. Then for any ǫ > 0 there exist functions v1, v2, v3 ∈ S(LM ) such
that

∥

∥vi − vj

∥

∥ > 2(1 − ǫ) for i 6= j, i, j = 1, 2, 3
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(cf. [12]). Let ǫ be so small that the thesis of Proposition 1 is satisfied. By the
definition of the Luxemburg norm, we have

IM (v1) + IM (v2) + IM (v3) = 3,

and

(23) IM

(

v1 − v2

2(1 − ǫ)

)

+ IM

(

v2 − v3

2(1 − ǫ)

)

+ IM

(

v3 − v1

2(1 − ǫ)

)

> 3.

Now, we define

u1(t) = {vi(t) : |vi(t)| = max {|v1(t)| , |v2(t)| , |v3(t)|}}

u3(t) =
{

vj(t) :
∣

∣vj(t)
∣

∣ = min {|v1(t)| , |v2(t)| , |v3(t)|}
}

u2(t) =
{

vk(t) : k 6= i, j, where vi(t) = u1(t) and vj(t) = u3(t)
}

for every t ∈ T . We have

|u1(t)| ≥ |u2(t)| ≥ |u3(t)|

for every t ∈ T and

IM (u1) + IM (u2) + IM (u3) = IM (v1) + IM (v2) + IM (v3) = 3.

Hence, by Proposition 1, we get

IM

(

v1 − v2

2(1 − ǫ)

)

+ IM

(

v2 − v3

2(1 − ǫ)

)

+ IM

(

v3 − v1

2(1 − ǫ)

)

=

IM

(

u1 − u2

2(1 − ǫ)

)

+ IM

(

u2 − u3

2(1 − ǫ)

)

+ IM

(

u3 − u1

2(1 − ǫ)

)

< 3,

i.e. a contradiction with (23). Thus LM is P -convex. �

Theorem 1 and some results from [3] lead to the following conclusion

Corollary 2. The following conditions are equivalent:

(a) LM is reflexive;

(b) LM is P -convex;

(c) LM is O-convex;

(d) LM is Q-convex;

(e) LM is H-convex;

(f) LM is C-convex;

(g) LM is I-convex;

(h) LM is J-convex;

(i) LM is B-convex;
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(For the definition we refer to [3].)

Proof: For any Banach spaces the following implication are valid (cf. [3])

(b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) ⇒ (g) ⇒ (i)

and
(d) ⇒ (h) ⇒ (i).

Further, H. Hudzik and A. Kamińska [7] proved that for Musielak-Orlicz space
(i) ⇔ (a). Hence, by Theorem 1, we obtain the thesis. �

Remark. Corollary 2 gives in the case of Musielak-Orlicz spaces an affirmative
answer for the problems (1) and (4) raised by D. Amir and C. Franchetti [3].

Acknowledgement. We wish to thank an anonymous referee for his suggestions
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