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Differential equations at resonance

DoNAL O’REGAN

Abstract. New existence results are presented for the two point singular “resonant”
boundary value problem %(py’)’ +ry+Amqy = f(t,y,py’) a.e. on [0, 1] with y satisfying
Sturm Liouville or Periodic boundary conditions. Here A, is the (m + 1)t eigenvalue
of L[(pu) + rpu] + Au = 0 a.e. on [0, 1] with u satisfying Sturm Liouville or Periodic

pq
boundary data.

Keywords: boundary value problems, resonance, existence
Classification: 34B15

1. Introduction

In this paper we derive some existence results for the second order equation
1
(1.1) m(p(t)y'(t))’ +r(®)y(t) + Ama(D)y(t) = ft,y(t),p(t)y'(t)) a.e. on[0,1]

with y satisfying either
(i) (Sturm Liouville)

(SL) { —ay(O) + ﬁlimt—>0+ p(t)y/(t) = 05 @ Z 07 6 Z 07 O[2 + 62 > 0
ay(1) + blim, ;- p(t)y'(t) =0, a >0,b>0,a% +b> >0
or
(ii) (Periodic)
®) { y(0) = y(1)
limq o+ p(8)y/(6) = liny_1- p(8)y' (1)

Remarks. (1) Ay, will be described later.

i1 e Neumann condition lim, 4+ p(?)y' (¢) = lim, . 1- p(¢)y (£) = 0 is include
ii) The N dition lim;_, ! lim;_,; ! 0 is included

in (SL) with « =a = 0.

(iii) If a function u € C[0,1] N C1(0,1) with pu’ € C[0,1] satisfies boundary
condition (i) we write w € (SL). A similar remark applies for the boundary

condition (ii).

Throughout the paper p € C[0,1]NC1(0, 1) together with p > 0 on (0,1). Also

pf :[0,1] x R? = R is an L!-Carathéodory function. By this we mean:

(i) t — p(t)f(t,y,q) is measurable for all (y,q) € R?;
(i) (y,q) — p(t)f(t,y,q) is continuous for a.e. ¢ € [0,1];
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(iii) for any r > 0 there exists h, € L[0,1] such that [p(¢)f(t,y,q)| < hr(t)
for a.e. t € [0,1] and for all |y| <, |q| <.

For notational purposes let w be a weight function. By L1 [0,1] we mean the
space of functions u such that fol w(t)|u(t)|dt < oo. L2[0,1] denotes the space
of functions u such that fol w(t)|u(t)? dt < oo; also for u,v € L2]0,1] define
(u,v) = fol w(t)u(t)v(t) dt. Let AC[0,1] be the space of functions which are
absolutely continuous on [0, 1].

Before we discuss the boundary value problem (1.1) and its appropriate liter-
ature we first gather together some facts on second order differential equations
([12], [16]). Consider the linear equation

(1.2) { %(py/), + 71y =g(t) a.e. on[0,1]

y € (SL) or (P).

By a solution to (1.2) we mean a function y € C[0,1] N C1(0,1) with py’ €
AC|0,1] which satisfies the differential equation in (1.2) a.e. on [0, 1] and the
stated boundary conditions.

Theorem 1.1. Suppose

1

d

(1.3)  peC[0,1]nC*0,1) withp > 0 on (0,1) and / ITZ) < o0
0

and

(1.4) 7,9 € L}[0,1]

are satisfied. If

(1.5) { %(py')’ +7y=0 a.e. on|0,1]

y € (SL) or (P)

has only the trivial solution, then (1.2) has exactly one solution y given by

y(t) = douy (t) + dyua(t) + /t [ug (t)uy(s) — uy(t)ua(s)]

A W) g(s)ds
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where uq is the unique solution to
{ %(pu’)/ +7u=0 a.e. on|0,1]
w(0) =1, limy_, g+ p(t)u/(t) =0
and ug is the unique solution to
{ %(pu’)/ +7u=0 a.e. on|0,1]
u(0) = 0, limy_,g+ p(t)u/(t) =1

and dg and dy are uniquely determined from the boundary condition; W of course
denotes the Wronskian. In fact

1
y(t) = /0 G(t, 5)g(s) ds

with wl)yalt) o<y
B Wi(s) -
G(ts) = y1(t)y2(s)
e t<s< 1

where y1 and yo are the two “usual” linearly independent solutions i.e. choose
y1 # 0, yo # 0 so that yi,ys satisfy %(py’)’ + 7y = 0 ae. on [0,1] with y;
satisfying the first boundary condition and ys satisfying the second boundary
condition.

We now state an existence principle ([16]), which was established using fixed
point methods, for the second order nonresonant boundary value problem

{ Lpy') + 7y = f(t,y,py’) ae. on [0,1]

(1.6) y € (SL) or (P).

Theorem 1.2. Let pf : [0,1] x R?2 — R be an L'-Carathéodory function and
assume (1.3) and

(1.7) 7€ L}[0,1]

hold. In addition suppose (1.5) has only the trivial solution. Now assume there
is a constant My, independent of A\, with

Iyl = maX{suf ly(®)l; o p(t)y (I} < Mo

b 07
for any solution y to

{ S(py) + 7y = Af(t,y,py) ae on0,1]
y € (SL) or (P)
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for each A € (0,1). Then (1.6) has at least one solution u € C[0,1]NC*(0,1) with
pu’ € AC[0,1].

Next we gather together some results on the Sturm Liouville eigenvalue problem

Lu = Mu a.e. on [0,1]
(1.8)

u € (SL) or (P)
where Lu = — I%(t)[(pu')’ + r(t)pu). Assume (1.3) and
(1.9) r,q € L}[0,1] with ¢ >0 a.e.on [0,1]
hold. Let

D(L) = {w € C[0,1] : w,pw’ € AC[0,1] with w € (SL) or (P)}.

Then L has a countably infinite number ([1], [12], [16]) of real eigenvalues A; with
corresponding eigenfunctions ¢; € D(L). The eigenfunctions ¢; may be chosen
so that they form a orthonormal set and we may also arrange the eigenvalues so
that

(1.10) AN <A <A<....

Remark. The A;’s may be estimated numerically ([2]) using SLEIGN.

In addition the set of eigenfunctions v; form a basis for qu[O, 1] and if h €
qu[o, 1] then h has a Fourier series representation and h satisfies Parseval’s equal-
ity i.e.

00 1 oo
h=S-Gnvor and [ palbae =Y [(h i)
=0 0 =0

We are concerned with existence results for the nonlinear second order equation

(1.11)

%(py’)’ + 7y + Amaqy = f(t,y,py’) a.e. on [0,1]
y € (SL) or (P)

where )\, is the (m + 1) eigenvalue of (1.8). In recent years several authors ([4],
[7]-19], [11], [13], [18]-[19]) have examined the boundary value problems

{ y// + n27r2y — f(t7y) a.e. on [0, 1]
y(0) =y(1) =0

and
{ y" +m?n%y = f(t,y) ae. on[0,1]

y(0) = y(1), ¥'(0) = /(1)
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where n > 1, m > 0 are integers. Most of the papers in the literature ([3], [7],
[11], [18]-[19]) concentrate on the first eigenvalue (n = 1 or m = 0). However
over the last ten years or so ([6], [10]) the case when n > 1 or m > 0 has been
discussed. This paper continues this study for the more general problem (1.11);
also it provides a new approach to studying the above resonant type problems. We
refer the reader to [6]-[9] for many of the motivating ideas in this paper. Finally
it is of interest to note that in previous studies ([6], [8], [11]) the nonlinearity f
is required to grow no more than linearly in y as |y| — oo whereas in this paper
solutions will exist provided f grows fast enough e.g. yf(t,y,z) > Aly|?T! for
some A >0 and 6 > 0.

2. Existence

Existence theory is developed for the second order boundary value problem

(2.1) { %(py')’ +ry + Amaqy = f(t,y,py’) a.e. on [0,1]
' y € (SL) or (P)

where \p, is the (m + 1) eigenvalue of

Lu=Xu a.e.on [0,1]
(22) { u € (SL) or (P)
and Lu = — Z%(t)[(pu/)/ + r(t)pul.

Two types of existence results are presented, the first examines the problem
on the “left” of the eigenvalue whereas the second discusses the problem on the
“right” of the eigenvalue.

Existence theory I.

Throughout this subsection let

lug [0, ug| <1
|u1|°‘0+1, lug] > 1.

Hy,p(u1) = {

Theorem 2.1. Let pf : [0,1] x R?> — R be an L'-Carathéodory function
with (1.3) and (1.9) satisfied. Suppose f has the decomposition f(t,u1,u2) =
g(t,u1,u) + h(t,ui,us) with pg, ph : [0,1] x R? — R L'-Carathéodory functions
and

there exist constants A > 0,0 < a9 < 1 and a function
(2.3) ¢ e L})[O, 1], ¢ > 0 a.e. on [0, 1] with u1g(t,u1,u2) > Ap(t)Hy, g(u1)
for a.e. t € [0,1]; here ag <0
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there exist ¢; € L},[O7 1], ¢ = 1,2,3 and constants 3y and
o with |h(t,uy,ug)| < é1(t) + ¢2(t)|ul|ﬁ0 + ¢3(t)|ug| for

2.4
@4) a.e. t € [0,1]; here By < ag and 0 < 0 < S and
¢3 >0 a.e. on [0,1] or ¢3 =0 on [0,1]
25) { there exist ¢; € Lll,[O7 1], ¢ = 4,5 and a constant v < ag with
' lg(t, ur, u2)| < $a(t) + ¢5(t)|ur |7 for ace. t € [0,1]
¢3a~" € L3[0,1], g~ € Ly[o, 1,
1
(g5le0 g0t pm2v) 0= ¢ o, 1),
(2.6) 1
(50 P gmloortig=200 ) ST € 14]0.1] and
1
(¢2q‘(“°+1)) 720 e Lljo,1]
and
qotly )f% LYo, 1, (050 g0 ) 0 ¢ 10,1
2 plYs LD
(2.7)

geotly- 'Y) T £3[0,1] and

(4
(¢a°+1 )C% e Li[o,1],
(
(a

1
2otlg=1yeo € L1[0,1]

holding. Then (2.1) has at least one solution y € C[0,1] N C(0,1) with py’ €
ACI0,1].

Remark. Typical examples where (2.3) is satisfied are say (i) g(t,u1,u2) = uy",
1

Y 1
m odd and n odd or (ii) g(t,u1,u2) = uj, uy > 0 with g(t,u1,u2) = —|u1|2,
up < 0.

PrOOF: Counsider the family of problems
(2.8) Lpy) +ry + pay = A (6,5, p9") + (1 = Am)ay] a.e. on [0,1]
o € (SL) or (P)

where 0 < A <1 and A\p—1 < pt < Amp; here A1 = —co (for notational purposes)
with ); as described in (1.10).
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Notice Ll%q[O, 1] = QEBQJ- where Q = span {¢g,%1,...,%m—1}; here ¢; are
the eigenfunctions corresponding to the eigenvalues \; (see Section 1).

Let y be any solution to (2.8)y. Then y = u + w where u € Q and w € Qt.
Multiply (2.8)) by w — u and integrate from 0 to 1 to obtain

1 1 1
/0 (w —u)(py") dt + /0 pr{w? — ] dt + ,u/o palw? — u?] dt
= A/l(w —u)pf(t,y.py’) dt + (s — M) /lpq[w2 —u?]dt.
0 e 0

Integration by parts yields

1 1 1
_ NI _ 2 2
/0<w W) (py') dt = Qo /0p<w> dt+/0 p(u!)2 dt
where

o [~ $1A0) =120] = §170) —20)] it ye (s
° 7 o if ye (P);

here y(0) = 0 means u(0) + w(0) =0 and so «(0) = w(0) = 0. Thus we have
1 1
Qo + /0 [=p(w")? + pro? + ppquw®) di + /0 [p(u')? = pru® — ppqu®) dt
1 1 9
(2.9) = /\/0 (w—w)pf(t,y,py’) dt + A(p — Am)/o pquw® dt

1
— AMp— Am)/o pqu? dt.

Now since u € Q, w € Q- and y = u + w we have

m—1 o)
u= Y cuy and w= Y cqh where ¢; = (y,1;);
=0 =m

note u = 0 if m = 0. Then since (py)’ + rpy; + Xipq; = 0 we have

1 1
Qo + /0 [—p(w')? + pru? + ppqw?] dt + /0 p(u)? — pru® — ppqu?) dt

oo 1 m—1 1
= (u- Ai)C?/ pvddt+ > (A - u)C?/ payy dt
i=m 0 i=0 0

1 1
S(M—Am)/o pqwde(/\m-l—u)/o pqu® dt.
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Put this into (2.9) to obtain

1 1
A/O (w —uw)pg(t, y, py') dt + (1 — A)(Am — u)/o pqw? dt

1 1
+ (n— /\m—1)/0 paqu dt + XA — u)/o pqu® dt

1
0

Consequently

1 1 1
/ pyg(t,y,py’) dt + (Am —u)/ pqu? dt < 2/ pug(t,y, py’) dt
(2.10) 0 0

1 1
+ /O plyllh(t, g, py)| i+ 2 /0 plulli(t, y, py')| de.

Assumption (2.3) yields

1 1
/0 pyg(t,y, py') dt > A/O poHy, o(y) dt

1
— A / ply0 1 dt + A / plly P+t — [yl +) e
0 {t:ly(®)|<1}

1 1
ZA/ poly|*o T dt—A/ podt
0 0

and put this into (2.10), and use (2.4) and (2.5), to obtain
1 1 1 1
A/ pgly|*o Tt dt"’(/\m—ﬂ)/ pqu2dtSA/ p¢dt+2/ poalul dt
0 0 0 0
1 1
+2/0 p¢>5IUIIyI"’dt+/0 po1lyldt
1 i 1
(2.11) + /0 péalylPo1 dt + /0 poslylipy’|” dt
1 1
2 /0 péululdt +2 /0 péalullyl® dt

1
+2/0 poslullpy’|” dt.

For the remainder of the proof we assume without loss of generality that ¢ > 0
and ¢3 £ 0 on [0,1]. Let ¢ > 0 be given. Holder’s inequality together with
assumption (2.6) immediately yields the following inequalities:

1 1 3 1 0
2/ pdaluldt < 2Q1 (/ pqu’ dt) Se/ pqu? dt + =
0 0 0

)
€
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1 1 QQ
2/ p¢1|u|dt§6/ pqu? dt + =2
0 0 €

1 ! % 1 0011
2/ poslully? dt < 2Q3 (/ pqu? dt) (/ pély|Pot dt)
0 0 0

2

1 ) 1 aoti
3 0
Sng/O pqu2dlﬁ+—6 (/O p(blylo‘(’“dt) ;

20

! 3 S Qs ([! +1 RotT
2 [ poalulll® a < Qu [ panar+ B ([ poyieottar) T

1 1 41 a01+1
/0 péulyl dt < Qs (/0 polyl® dt) :

o+1
ap+1

1 1
| poulutPotan < o ( / p¢|y|a°+1dt> :
0 0

1

! e ! ap+1 aott
[ vonlolin e < ([ potuionstae)
1 1 o(ag+l) agg)rl
([ o (oo ) 5 )
1 , , 3
2/0 po3lullpy’|7 dt <2Q7 (/ pqu dt)
g
1 a(ap+1) ag+1
(/ (¢O‘°+1¢ )O‘O lpy'| @0 dt) ’

1
<eQr / pqu® dt
0 2a0

1 1 o(ag+1) m
i (/O p (¢§‘°+1¢_1) 0 |py'|” o dt)

€
for some constants @1, ..., Q7. Put these into (2.11) to obtain

1 1
A / PO dt 4+ (A — i — 2 — Q3 — €Qa — Q) / pau® dt
0 0

28

2y 0
Qs ([ ot Quq ([ ot
S Qs+~ pd)lyla(”r1 dt + ; poly|*o Tt dt

+1

1 Bo
ag+l 1 agt+l
L0 ( / p¢|y|“°+1dt) Qg ( /0 p¢>|y|“°+1dt)

jo

1 @0
worT /1 ) . o(ag+D)  \ agtT
+ (/O poly|*o T dt) (/0 p(¢§‘°+ - ) z lpy'| 2o dt)

681
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2a

0
Q7 1 L1\ = a(ag+1) ag+1
= p(¢§‘°+ ¢ 1) O lpy'| w0 dt

€

for some constant (3. We may choose € so that A\, —pp—2e—€Q3—€Q1—€Q7 >0
and we have

2y

1 1 Tt
A [ ol < s+ L ( [ polypeo

_2B0_ 1
C24 1 ag+1 1 ag+1
0wttt ) Qs ([ poly®o T dt

Bo+1

1 o
(2.12) + Qg (/ p¢|y|ao+1 dt) o+l
0
ag

1
1 ag+1L 1 L o(ag+1) ag+1
+(/ p¢|y|°‘°+1dt> ’ (/ p(cﬁ?"“cﬁ‘l)% lpy'| o dt) °
0 0

pLet

0
Q7 1 1, ai a(ag+1) ag+1
WA p(¢§‘°+ ¢ 1) O lpy| w0 dt :

€

We now consider two cases fol poly|*otldt > 1 and fol poly|*otldt < 1 sepa-
rately.

Case (i). fol poly|*otlat > 1.
1
Divide (2.12) by (fol po|y|rott dt) 20t and use fol poly|*otLdt > 1 to obtain

ap 2v—1

1 ag+1 1 agF1
A([ potuortan)™ < Qo B ([ papiortar)

2B9—1

(94 1 1 ap+1
+ = (/ poly|*0F dt)

€ 0

1 ag+1
+ Q5 + Q6 (/0 poly[*oT dt>
ag
1 1 o(ag+1) ag+1
+ </0 p (¢§‘°+1¢_1) © [py| o dt>
2a0

Q? 1 1. QL a(ag+1) ag+1
A p(¢§‘°+ ¢ 1) °|py'|” 0 dt :

Now since max{2y — 1,20 — 1, 8o} < g there exist constants Qg, Q19 and Q11
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with
_ag

@0
1 ag+1 al o(ap+1) ag+1
(/0 p¢|y|a°+1dt) < Qo+ Quo ( / G dt)

200

1 1 o(ag+1) ag+1
1,— a
+ Q11 (/0 p(¢§°+ 0 1) O py'|” @0 dt) ,

Using the inequality (a + b)¢ < 2¢(a® + b°) for a > 0, b > 0, ¢ > 0 we see that
there exist constants Q12 and Q13 with

' 1 ! 11 - o(agtl) 2
(2.13) /Opcﬁlyla(“r dt < Q12 + Q13 (/0 p(¢§‘° ¢_) °Ipy| @0 dt) .

Case (ii). fol poly|cotldt < 1.
In this case (2.13) is clearly true with Q2 = 1.
Consequently in all cases (2.13) is true. Returning to (2.8), we have

1
(214) )=\ /0 G(t, 9)[f (5,4(), D)y (5)) + (1 — Am)a(s)y(s)] ds

and
/ ! /
(2.15) p(t)y'(t) = /\/0 p)Gi(t, s)[f (s,y(s),p(s)y'(s)) + (1 — Am)a(s)y(s)] ds
where G(t, s) is the Green’s function associated with %(pv')’ +7v 4+ pgu = 0 a.e.
on [0,1], v € (SL) or (P).
Notice ([16], [17]) that supye(o 1] [P()Ge(t, s)| < Q1ap(s) for some constant
Q14. Now (2.15) together with (2.4) and (2.5) imply for ¢ € (0,1) that
1 1 1
p(&)y' ()] < le/o pé1ds + Q15/0 pealyl™ ds + Q15/0 po3lpy’|” ds
1 1 1
+ Q15 /o poads + Q15 /0 posly|? ds + Qe /o pqly| ds
for some constants Q15 and Q1. Holder’s inequality together with (2.6) implies

Py (1)) < Qur + Qs ( /0 p¢|y|a°+1dt> o

1 1 o(ag+1) ao b
1,— ag
+ Q1o (/0 P (¢§°+ ¢ 1) lpy'| <o dt)

1 ot 1 woqT
Qo ( /0 p¢|y|“°+1dt) Qo ( /0 p¢|y|“°+1dt)
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for some constants Q17,...,Q21. Thus for ¢t € (0,1) we have

o'ﬁo

o(ag+1) [e7s)

POy O] % < Qo + Qs ( /0 p¢|y|a0+1dt)

1 o(aoﬂ) g
+ Q2 (/0 p(¢§‘°+1¢ ) z /| dt)

+ Q25 (/0 poly|ot! dt)

1 a0
+ Q26 (/0 poly|ot! dt)

0
for some constants Qa2, ..., Q2s. This together with (2.13) implies

1 1 o(ag+1)
1,— «
/0 p(¢§‘°+ ¢ 1) Olpy | 0 dt

(2.16)

20

! apg+1 ,—1 aL / olegtl) a—OO
< Q27 + Qas /0 P (¢3 ¢ ) Olpy'| oo dt
1 o(ap+1) o
+ Q29 ( / (¢a°+1 )“ lpy'|” @0 dt)
207y
QL o(ap+1) “ag
+ Q30 ( / (¢a°+1 ) lpy'|” @0 dt)
a +1 = o(ag+1) i_ao
+Q31(/ ( 0 ) 0Ipyl @0 dt)

for some constants Qa7,...,Q31. Finally since max{ 2250 , 0, 25(7, g;(’;} < 1 there
exists a constant (Y32 with

1 1 5 a0+1
(2.17) /0 p (6551671) ™ oy 50 dt < Qun

and this together with (2.13) implies that there exists a constant Q33 with

1
(2.18) / poly| 0 dt < Q3.
0

Putting these inequalities into (2.16) establishes the existence of a constant Q34
with

(2.19) sup [p(t)y(t)] < Q34
te(0,1)
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Now (2.14) together ([16], [17]) with sup;c(o,1] [G(Z, s)| < @35p(s), for some con-
stant @35, and Holder’s inequality implies for ¢ € [0, 1] that

8
! ap+1 W?H
ly(t)| < Q36 + Q37 (/0 poly|*° dt>
! 41, 1\ag . s 2te0tD) S0 tT
+ Q38 (/0 p(¢§° ¢ ) lpy'| o dt)

1 wofT 1 woqT
+ Q39 (/0 poly|*o T dt) + Qa0 (/0 poly|ot! dt)

for some constants @36, ...,Q40. This together with (2.17) and (2.18) implies
that there is a constant Q41 with

(2.20) sup |y(t)] < Qa1
te[0,1]
Now (2.19), (2.20) together with Theorem 1.2 establish the result. O

Example. Theorem 2.1 (here H, g(u) = H1 1(u)) immediately guarantees that
33

{ Y +niry =y3 +[y]7 +1 ae on[0,1]
y(0) =y(1) =0, n€{1,2,...}
has a solution.

One can improve considerably the above theorem if m = 0 (at the first eigen-
value). In particular the condition 0 < ag < 1 is replaced by «g > 0 in this case;
also condition (2.5) can be improved and the condition o < % can be relaxed.
We present two existence results.

Consider

(2.21) { s(0y) +ry + dogy = f(t,y,py’) ae.on[0,1]

y € (SL) or (P)
where A is the first eigenvalue of (2.2).

Theorem 2.2. Let pf : [0,1] x R?> — R be an L'-Carathéodory function
with (1.3) and (1.9) satisfied. Suppose f has the decomposition f(t,u1,u2) =
g(t,u1,u) + h(t,ui,us) with pg, ph : [0,1] x R? — R L'-Carathéodory functions
and

there exist constants A > 0, g > 0 and a function ¢ € L},[O, 1],
(2.22) ¢ >0 a.e. on [0,1] with u1g(t,u1,u2) > Ap(t)Ha, o(u1)

for a.e. t € [0,1]; here ag <6
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there exist ¢; € L},[O7 1], ¢ = 1,2,3 and constants 3y and
o with |h(t,uy,ug)| < é1(t) + ¢2(t)|ul|ﬁ0 + ¢3(t)|ug| for

(2.23)
a.e. t € [0,1]; here By < ap and ¢3 > 0
a.e. on [0,1] or ¢3 =0 on [0,1]
there exist ¢; € L})[O, 1], i = 4,5,6 and constants v < «g, T > 0
(2.24) with |g(t, ur, ug)| < da(t) + &5 (t)|ur|” + d(t)|ua|
' for a.e. ¢t € [0,1];
here ¢g > 0 a.e. on [0,1] or ¢pg =0 on [0,1]
(2.25) o <min{l, 2% ag} and 7 <1
v
1 1
(#10971) 0 € L3f0.1], (¢80T 9 Po+D) =0 % e Lljo,1],
(2.26) ) 1
(¢50T o) 07 e Li0,1] and (q°0+1g71)e0 € Lho,1]
and
— L \*
with k = max{ O‘g‘gl , 2}, ((;53(;5 O‘0+1> € Lll,[O, 1]. Also need
(2.27) =

o € LY[0,1] and (¢3¢‘ +) " 00" € L1,
if g > 0 a.e. on [0,1]

holding. Then (2.21) has at least one solution y € C[0,1] N C1(0,1) with py’ €
AC[0,1].

PROOF: Let y be a solution of (2.8) with m = 0. Following the ideas of Theo-
rem 2.1 with u = 0 and y = w we obtain the analogue of (2.11), namely

1 1 1 1
A/ pély|*ot! dtSA/ pd)dt+/ p¢1|y|dt+/ péalyl”ott dt
(2.28) 0 0 0 0

1
+ /0 poslyllpy’|” dt.

Holder’s inequality implies

1 1 woTT
A / poly| T dt < No+ Ny ( / p¢|y|“°+1dt)
(2.29) 0 0

1 Botl 1
N. a0+l gp) " "o gt
+ No ; polyl + 5 po3lyllpy’|
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for some constants Ny, N1 and N3. Let k = max{2,
together with assumption (2.27) implies

1
/0 poslyllpy’|” dt

1 . worT /[l L \K ;
< (/0 poly|*ot dt) (/0 p(¢3¢ ‘*0“) Ipy'l(mdt>

whereas

ag+1 . . .
&=} Holder’s inequality

un

if k=

! / ! ap+1 ﬁ
/0 poslylloy’|” dt < < /0 poly|0 dt)
LN NE TagtD
X /Op ¢3¢ ot ) |py' |77 dt /Jp(t)dt

if kK = 2.Put this into (2.29) and essentially the same reasoning as in Theorem 2.1
establishes the existence of constants N3 and Ny with

ag+1
aQ

ap+1
1 1 _ 1 K Tkag
(2.30) /0 poly|®0Tdt < N3 + Ny </0 p <¢3¢ “0“) lpy'|7" dt)

Also (2.15) implies (as in Theorem 2.1) for ¢ € (0,1) that
Bo

1 ag+1 1
Ip(t)y'(t)] < N5 + Neg </0 poly|*ot! dt) + N7/0 poslpy’|” dt

1 GorT 1
(2:31) + Ng (/0 poly|*ot! dt> - Ng/0 poelpy'[” dt

1
1 an+1
+ Nig </ poly|t! dt) ’
0

for some constants N, ..., Nig. Again with kK = max{2, O‘gl—'gl} we have

1 , 1 1\, 5 1 ﬁ
/Op¢3|py Iadtﬁ(/o p<¢3¢ “0“) lpy Ia“dt> </O p¢dt>

. ag+1
if kK=
a@Q

1 1 1 K é 1 2 2
/p¢3lpy’|"dt§(/ p<¢3¢ ‘*0“) Ipy/l‘mdt> </ ppoFT dt>
0 0 0

if k=2

1 1 1
/Opcbalpyl dt < (/0 o6 Y| dt) (/O p(t)dt)

1
1-%
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There are two cases to consider, namely ¢g > 0 a.e. on [0, 1] or ¢g = 0 on [0, 1].

Case (i). ¢g > 0 a.e. on [0,1].
Putting the above into (2.31) and using (2.30) leads to

BoT

/1p¢g|py'|m dt < Ni1 + Ni2 (/119 <¢3¢_ “01“>H Ipy'|7" dt) e
0 DA -
+ N (/0 P (¢3¢_ ao“) Ipy'|7" dt)
(2.32) + Ny (/lp (¢3¢_ “01“>H Ipy'|7" dt) "
01 T
+N1s (/0 p¢€§lpy’|mdt>

1 _ 1 K aio
+ Nig (/ P (¢3¢ a0+1> lpy'|7" dt)
0

for some constants Niq, ..., Nig. Also Holder’s inequality implies

1 1 K
/Op(¢3¢_ m) Ipy’|7" dt
1 z 1 L\ s =
< ([ vt/ ar) (/O (030”70 ) " (0w (%) dt)

and putting this into (2.32) yields

Boo
«

1 1
/0 pogIpy' [T dt < Ni7 + Nig (/0 pogIpy ™" dt)
1 / o 1 ) a0
+ Nig (/0 poglpy' ™" dt) + Nao (/0 poglpy' | dt)

1 T 1 a0
+ Noy (/0 poglpy [T dt) + Nao (/0 poglpy [T dt)

for some constants Ni7,..., Noo. Now since max{a—ﬁ0 0,2 7,2} < 1 then

ag ' ag’ 'Y ag
there exists a constant No3 with

1
/0 pog|py’ T dt < Nag

and essentially the same reasoning as in Theorem 2.1 establishes the result.
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Case (ii). ¢¢ =0 on [0,1].
We may assume without loss of generality that o > 0 and ¢3 > 0 a.e. on [0, 1];
otherwise the result is easy. Then (2.31) for t € (0,1) becomes

Bo
1 ot
Ip(t)y' (t)] < Noz + Nog </0 poly|o+] dt)

1
1 1 K P
+ Nos </ P <¢3¢ “0“> py'|7" dt)
0
1 prs 1 w01
+ Nog (/ pely|*ot! dt) + Noz (/ pely|*ot! dt)
0 0
for some constants Noas, ..., No7. This together with (2.30) leads to
1 _ 1 "
/ P <¢3¢ ‘*0“) lpy'|7" dt
0

1 1 K ﬁaLo
< Nag + Nag (/0 p (¢3¢_ ‘*0“) lpy'|7" dt)
1
(o (
0
1 _ 1 \*® e
+ N3y (/0 p (¢3¢ ‘*0“) lpy'|7" dt>

_ 1 \F 7
¢3¢ a0+1) |py/|0'li dt)

o

1 _ 1 K %
+ N3z / p| 39 ‘*0“) lpy'|7" dt>
0
for some constants Nag, ..., N3o. Thus there exists a constant N33 with
1 1 \"F
/ p (¢3¢ “0“> lpy'|7% dt < N33
0

and the result follows as in Theorem 2.1. O

The next theorem establishes the existence of a nonnegative solution to
{ E(y') + dogy = () f(t,y,py’), 0 <t <1
y € (SL) or (P)
where Ag is the first eigenvalue of (2.2) with » = 0 and ¢, v satisfies
(2.34) g, ¥ € L[0,1] with ¢, > 0 on (0,1).

Let
. u?"'l, 0<wu; <1
H ng(ul) =

¢ u'f‘°+1, 1 <wup < oo.

(2.33)
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Theorem 2.3. Let f:[0,1] x R?> — R be continuous with (1.3), (2.34) and
(2.35) f(t,0,0) <0

holding. Suppose v f has the decomposition ¥(t)f(t,u1,u2) = g(t,uy,uz) +
h(t,u1,ug) with pg,ph : [0,1] x R? — R L!-Carathéodory functions and

there exist constants A > 0, ag > 0 and a function ¢ € Lll,[O7 1],
(2.36) ¢ >0 on (0,1) with u1g(t,ur,uz) > Ap(t)HY o(u1)

fort € (0,1),u; > 0 and ug € R; here ag < 6

there exist ¢; € L},[O, 1], ¢ = 1,2,3 and constants 3y and
o with |h(t, u1, uz)| < ¢1(t) + da(t)u® + b3 () us|” for
t €(0,1),u; > 0 and ug € R; here By < g

and ¢3 >0 on (0,1) or ¢3=0

(2.37)

and

there exist ¢; € L},[O, 1], ¢ = 4,5,6 and constants v < ag, T > 0
(2.38) { with |g(t,u1, u2)| < da(t) + ds(t)u] + do(B)ua|™ for t € (0,1),u1 > 0
and ug € R and ¢g >0 on (0,1) or ¢g =0
hold. Finally suppose (2.25) and (2.26) are satisfied. Then (2.33) has at least one
nonnegative solution y € C[0,1] N C1(0,1) with py’ € AC|0,1].

ProOOF: Consider the family of problems

(2.39) { %(py/)/ +pqy = Aty py'), 0<t<1

y € (SL) or (P)
where 0 < A < 1 and

0 if y € (SL) and o2 + a2 > 0
M:{—l ifye (P) orye (SL) witha=a=0.
Also
() f(t,ur,uz) + (1 — Ao)qui, ur >0
(@) f(t,0,u2) + (1 + 1)qui, ur <O0.
Notice pf* : [0,1] x R? — R is an L!-Carathéodory function.

Let y be a solution to (2.39)y for some 0 < A < 1. We claim that y > 0 on
[0,1]. If not then y would have a negative absolute minimum somewhere on [0, 1],

fr(t g, ug) = {
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say at to. If tg € (0,1) then y/(tgp) = 0 and this together with the differential
equation and (2.35) yields
1

(p(to)y/ (t0))’

y" (to) = o)
¥(to) f(t0,0,0) + q(to)y(to)) + (A — 1)ua(to)y(to) < 0,

A/\

a contradiction. Next suppose the negative absolute minimum were to occur at
to = 0. Consider first the Sturm Liouville boundary condition. Of course we need
only consider 8 # 0. If a # 0 as well then

y(0) lm p(t)y(t) = =3*(0) > 0,

!

t—0+ 6
which implies y?2 (t) is an increasing function near 0, a contradiction. So it re-
mains to consider the case « = 0 and # # 0. The boundary condition is
lim, o+ p(t)y’'(t) = 0. Now f(0,0,0) < 0 and this together with the differential
equation and (2.34) implies there exists § > 0 with (p(t)y'(t)) < 0 for t € (0,6).
Thus the boundary condition implies p(t)y’(t) < 0 for t € (0,4), a contradic-
tion. Consequently tg # 0. A similar argument shows tg # 1. Thus our claim is
established for Sturm Liouville boundary data.

Consider now Periodic boundary data. If the absolute minimum of y occurs at
to = 0 then, since y(0) = y(1), it must also occur at 1. Thus lim, o+ p(t)y'(t) > 0
and lim, ;- p(t)y'(t) < 0. Consequently

lim p(t )y (1) = Jim pt)y'(t) =0

because of the second boundary condition. As above there exists § > 0 with
(p(t)y'(t)) < 0 for t € (0,6) and so p(t)y'(t) < 0 for t € (0,6), a contradiction.
Thus y > 0 on [0, 1] for any solution y to (2.39),. Consequently y satisfies

%(py’)’ +pqy =X (@) f(ty,py) + (1 —Xo)qy), 0 <t <1

Essentially the same reasoning as in Theorem 2.2 (in this case we look at
fol poyotl dt) guarantees the existence of a solution y to (2.39);. Of course
y is automatically a solution of (2.33) since y > 0 on [0, 1]. O
Existence theory II.

In this subsection we examine the resonant problem (2.1) on the “right” of the

eigenvalue.

Theorem 2.4. Let pf : [0,1] x R?> — R be an L'-Carathéodory function
with (1.3) and (1.9) holding. Suppose f has the decomposition f(t,uy,us) =

691
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g(t,u1,uz) + h(t,u1,ug) with pg,ph : [0,1] x R? — R L'-Carathéodory func-
tions and assume
there exist constants A > 0,0 < ag < 1 and a function

(2.40) ¢ € L}[0,1], ¢ > 0 a.e. on [0,1] with
u19(t,ur,ug) < —Ad(t)Hy, g(u1) for a.e. t € [0,1]; here ag < 0

holds. In addition assume (2.4), (2.5), (2.6) and (2.7) are satisfied. Then (2.1)
has at least one solution y € C[0,1] N C1(0,1) with py’ € AC|0,1].
PRrROOF: Consider the family of problems
(2.41) Lwy) +ry + pay = A (6,5, p9") + (1t = Am)ay] a.e. on [0,1]

: A

y € (SL) or (P)

where 0 < A < 1and Ay, < gt < Appg1-

Notice qu[O, 1] =T @I+ where T' = span {9, ¥1, . ..,%m}. Multiply (2.41)y

by w — u and integrate from 0 to 1 to obtain as in Theorem 2.1 (Qq is as in
Theorem 2.1)

1 1
Qo+ /O [—p(w')? + prw? + upqu?] dt + /0 [p(u)? — pru® — pupqu®) dt

1 1
(2.42) = A/ (w—w)pf(t,y,py’) dt + Xp — Am)/ pqw? dt
0 0

1
—AMp — )\m)/(; pqu® dt.

Now since v € I', w € I't and y = u 4+ w we have

m o
U= Zc“/), and w = Z cith; where ¢; = (y, ;).
=0 i=m+1

Also as before

1 1
Qo + /O [—p(w')? + prw® + upqw?] dt + /0 p(u)? — pru® — pupqu?) dt

1 1
<(n- Am+1)/0 pqw® dt + (Am — u)/o pqu® dt

so putting this into (2.42) yields
1 1
A/O (w —wpg(t,y,py) dt + (1 = X) (1 — /\m)/o pqu? dt
1

1
+ (Am+1 — u)/o paw? dt + A(p — /\m)/o pquw? dt

1
< -2 / (w — u)ph(t, y, py') dt.
0
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Now w —u = —y + 2w and —yg(t,y.py’) > Ad(t)Hy, o(y) for a.e. t € [0,1] so
with the above we have

1 1 1
A/O PoHug 0(y) dt+(u—/\m)/0 pquw? dt < —2/0 pwg(t,y,py’) dt
! !
+/0 plyllh(t, y, py’)| dt

1
+2/0 plwl|h(t,y,py")| dt.

Essentially the same reasoning as in Theorem 2.1 (the only difference is that we

use fol pqw? dt in place of fol pqu? dt) establishes the result. ([

(1]
(2]
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