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Remarks on some properties

in the geometric theory of Banach spaces

Wagdy Gomaa El-Sayed, Krzysztof Fra̧czek

Abstract. The aim of this paper is to derive some relationships between the concepts
of the property of strong (α′) introduced recently by Hong-Kun Xu and the so-called
characteristic of near convexity defined by Goebel and Sȩkowski. Particularly we provide
very simple proof of a result obtained by Hong-Kun Xu.
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1. Introduction

Recently there has appeared a lot of papers discussing the geometry of Ba-
nach spaces from the viewpoint of compactness conditions (cf. [3], [12], [13] and
references therein). Special attention has been paid to the concepts being gen-
eralizations of classical ones occurring in the geometry of Banach spaces such as
convexity and smoothness, for instance [10], [11].
The aim of this paper is to study some relationships between the concept of the

property strong (α′) introduced by Hong-Kun Xu [9], the characteristic of near
convexity defined by Goebel and Sȩkowski [8] and the modulus of near convexity
which will be introduced below.
All these concepts are investigated in the geometric theory of Banach spaces

involving compactness conditions.
In particular we are going to provide here very simple proof of a result obtained

in [9]. Moreover, we indicate some incorrect statements from this paper and we
raise a few open problems.

2. Notation, definitions and auxiliary facts

Let (E, ‖ · ‖) be an infinite dimensional Banach space with the zero element θ.
Denote by SE the unit sphere in E and by BE the closed unit ball in E.
Let E∗ stand for the dual space of E. If X is a subset of E then the symbol

Conv X denotes the closed convex hull of X . Moreover, the distance between
a point x and the set X will be denoted dist(x, X).
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Now let us recall that if X is a nonempty bonded subset of the space E then
the Kuratowski measure of noncompactness α(X) of X is defined in the following
way

α(X) = inf

{

ε > 0 :
X can be covered by a finite family of subsets of E

having diameter smaller than ε

}

.

For the properties of the function α and for other definitions of a measure of
noncompactness we refer to [4], [6], for example.
In what follows we shall consider the function ∆E : [0, 2] → [0, 1] defined by

the formula

∆E(ε) = inf {1− dist(θ, X) : X ⊂ B, X = Conv X, α(X) ≥ ε} .

This function was introduced first in [8] and is said the modulus of near convexity
of the space E.
Observe that ∆E is nondecreasing on the interval [0, 2] but up to now it is

nothing known about its continuity on the interval (0, 2].
In connection with the function ∆E we can define ([8]) the characteristic of

near convexity of E as the number

ε1(E) = sup {ε ≥ 0 : ∆E(ε) = 0} .

In the case ε1(E) = 0 the space E is said to be nearly uniformly convex (cf. [8],
[3]).
The characteristic of near convexity ε1(E) turns out to be very useful index in

the geometry of Banach spaces [8]. For example, if ε1(E) < 1 then E is reflexive
and has normal structure.

3. Main results

In the sequel of the paper we will use another modulus of near convexity of the
space E which is defined below.
First, for a given functional f ∈ SE∗ and for a number ε ∈ [0, 1], denote by

F (f, ε) the slice
F (f, ε) = {x ∈ BE : f(x) ≥ 1− ε} .

Next, let us define the function βE : [0, 1]→ [0, 2] in the following way

βE(t) = sup {α(X) : X ⊂ BE , X = Conv X, dist(θ, X) ≥ 1− t} .

The function βE turns out to be also a kind of modulus of near convexity.
Indeed, observe first that βE is nondecreasing on the interval [0, 1] so there

exists the limit
β0(E) = lim

t→0
βE(t).

Moreover, for further purposes we will use the following theorem.
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Theorem 3.1. For any t ∈ [0, 1] the following equality holds to be true

βE(t) = sup {α(F (f, t)) : f ∈ SE∗} .

In order to prove the above theorem let us observe that the inequality

sup {α(F (f, t)) : f ∈ SE∗} ≤ βE(t), t ∈ [0, 1]

is obvious. The converse inequality is a simple consequence of the separation
theorem.

Now we can prove our main result.

Theorem 3.2. The equality

β0(E) = ε1(E)

is satisfied for every Banach space E.

Proof: Assume that ε1(E) > 0. Take ε > 0 such that ε < ε1(E). Then
∆E(ε) = 0 which allows us to deduce that for any η > 0 we can find a subset X
of BE being closed, convex and such that α(X) ≥ ε and 1− dist(θ, X) ≤ η.
Hence

dist(θ, X) ≥ 1− η

and consequently

sup {α(Y ) : Y ⊂ B, Y = Conv Y, dist(θ, Y ) ≥ 1− η} ≥ ε.

This implies βE(η) ≥ ε and yields the following inequality

lim
η→0

βE(η) = β0(E) ≥ ε1(E)

since ε was chosen arbitrarily to be smaller than ε1(E).
Now let us suppose that β0(E) > ε1(E). Take δ such that ε1(E) < δ < β0(E).

Then βE(t) > δ for t ∈ (0, 1]. Hence we infer that for every t ∈ (0, 1] there
exists a subset X of BE being closed, convex and such that dist(θ, X) ≥ 1 − t
and α(X) ≥ δ. This implies that ∆E(δ) ≤ t for every t ∈ (0, 1]. Consequently
∆E(δ) = 0 which contradicts the inequality ε1(E) < δ. Thus we showed that
ε1(E) = β0(E) whenever ε1(E) > 0.
Observe that the proof of the equality desired in the case ε1(E) = 0 may be

obtained in similar way as above.
This completes the proof. �

Now let us provide a few remarks.

Remark 3.1. Notice that in the light of the above theorem a Banach space E
is nearly uniformly convex if and only if β0(E) = 0. This confirms the above
assertion that the function βE is a kind of the modulus of near convexity.
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Remark 3.2. In the paper [2] it was obtained a similar result as that contained
in Theorem 3.2 in the case when instead of the Kuratowski measure α we use the
so-called Hausdorff measure of noncompactness χ.

In what follows let us recall the definition of the property strong (α′) given in
the paper [9].

Definition 3.1. A Banach space E is said to have the property strong (α′) if
there exists ε ∈ (0, 1) such that

sup {α(F (f, ε)) : f ∈ SE∗} < 1.

Observe that in the light of Theorem 3.1 this property can be defined equivalently
in the following way:

A Banach space E is said to have the property strong (α′) whenever β0(E) < 1.

On the other hand the above assertion implies that a space E has the prop-
erty strong (α′) if and only if ε1(E) < 1. Indeed, it is a simple consequence of
Theorem 3.2.
Let us mention that the above statement is one of the main results established

in [9].
Thus, in virtue of the results from [8] mentioned above we have the following

theorem.

Theorem 3.3. If a Banach space E has the property strong (α′) then it is
reflexive and has normal structure.

Finally let us mention that the condition ε1(E) < 1 is equivalent to the condi-
tion ∆E(1−) = limt→1−∆E(t) 6= 0.

4. Final remarks

In this section we would like to pay attention to some unclear (and even incor-
rect) statements established in the paper [9]. Moreover, we shall raise some open
problems in connection with those statements.
In the paper [7] the authors introduced the concept of the property strong (α′).

We will not quote the definition of this concept given in [7] but we only recall its
equivalent formulation (cf. also [7]).

Definition 4.1. A Banach space is said to have property strong (α′) if and only
if ∆E(1) 6= 0.

Thus, if a Banach space E has the property strong (α′) then it has also the
property (α′). It is not known if the reverse relation is true. In fact, this depends
on the continuity of the function ∆E at the point t = 1 (cf. [7]).
Now, let us recall the definition of the property (α) given in [13].
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Definition 4.2. We say that a Banach space E has the property (α) (equiva-
lently, E has the so-called drop property [5], [12], [13]) if for every f ∈ SE∗ we
have that

lim
ε→0

α(F (f, ε)) = 0.

The authors of [7] asked the question if there is any relationship between the
properties (α) and (α′).
In the paper [9] the following example given below is discussed in connection

with this question.
Consider the space H = l2(l2, l3, l4, . . . ) consisting of all sequences x =

(x1, x2, . . . ) such that xn ∈ ln, (n = 2, 3, . . . ) and

‖x‖H = ‖(x1, x2, . . . )‖H =

(

∞
∑

n=2

‖xn‖
2
ln

)1/2

< ∞.

The space H has the property (α) which was established in the paper [12].
On the other hand we know that

∆lp(ε) = 1−
(

1− (ε/2)
)1/p

, ε ∈ [0, 2],

for every p ∈ (1,∞) [8].
Thus we have

∆H (ε) ≤ ∆ln(ε)

for any n = 2, 3, . . . and for any ε ∈ [0, 2].
The last inequality implies that

∆H(ε) = 0

for ε < 2 but it does not imply that ∆H(2) = 0, as stated in [9]. Thus we cannot
infer (as in [9]) that the space H = l2(l2, l3, l4, . . . ) does not have the property
(α′).
Observe that keeping in mind that the space H is nearly strictly convex [1] we

can expect that ∆H (2) 6= 0.
Finally, let us raise the following open questions.

1. Calculate the exact value of ∆H(2) or at least show that ∆H (2) 6= 0, where
H = l2(l2, l3, l4, . . . ).

2. Is it true that a Banach space E is nearly strictly convex [1] if and only if
∆E(2) 6= 0 ?

3. Prove (or disprove) that the space H = l2(l2, l3, l4, . . . ) has the property (α′).
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