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On the asymmetric divisor problem

with congruence conditions

Manfred Kühleitner

Abstract. A certain generalized divisor function d∗(n) is studied which counts the num-
ber of factorizations of a natural number n into integer powers with prescribed exponents
under certain congruence restrictions. An Ω-estimate is established for the remainder
term in the asymptotic for its Dirichlet summatory function.

Keywords: multidimensional asymmetric divisor problems

Classification: 11N37, 11P21, 11N69

Introduction

For N = p + q ≥ 2 (where p and q are positive integers), and fixed natural
numbers a1, . . . , ap, ap+1 = b1, . . . , ap+q = bq, let d∗(n) denote the number of
ways to write the positive integer n as a product of different powers of N factors,
of which p satisfy certain congruence conditions,

d∗(n) = d(a1, . . . , aN ;m1, . . . mp;n) =

#{(u1, . . . , uN ) ∈ N
N : ua1

1 . . . uaN

N = n, uj ≡ lj (mod mj) (j = 1, . . . , p)},
where lj and mj are given natural numbers, with lj < mj .
For a large real variable x, we consider the remainder term E(x) in the asymp-

totic formula
D∗(x) =

∑

n≤x

d∗(n) = H(x) + E(x)

where

H(x) =
∑

s0=0,
1
b1

,... , 1
bq

Ress=s0

(

F (s)
xs

Mss

)

where M = ma1
1 . . .m

ap
p and F (s) is the generating function

F (s) =Ms
∞∑

n=1

d∗(n)n−s =

p
∏

j=1

ζ(ajs, λj)

q
∏

i=1

ζ(bis) (Re s > 1),
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λj =
lj
mj
for j = 1, . . . , p and ζ(s), ζ(s, .) denote the Riemann and Hurwitz zeta-

functions, respectively.

Upper bounds for the error termE(x) can be readily established as a trivial gen-
eralization of the corresponding results for the asymmetric divisor problem. For
a historical survey see e.g. the textbooks of Ivić [7], Krätzel [8], Titchmarsh [16].
As in Nowak [10], [11] we generalize the asymmetric divisor problem with

respect to arithmetic progressions. In the present paper, we shall be concerned
with a lower bound for this remainder term. We therefore use a classical method
of Szegö and Walfisz [14] with a more recent technique due to Hafner [5].

Remark. Throughout the paper we denote by C(λ, µ), λ, µ real numbers, the
oriented polygonal line which joins the points λ − i∞, λ − i, µ − i, µ+ i, λ+ i∞
in this order.

Statement of results

Theorem 1. For each integer m > 1
2 (N − 1), the Liouville-Riemann integral of

order m of the error term E(x) possesses an absolutely convergent series repre-
sentation

(1)

Em(x)
def
=
1

Γ(m)

∫ x

0
(x − u)m−1E(u) du =

= π
N
2
−Σ(1+m)Mm

∞∑

h=1

h−m
∑

(l1,... ,lp)

(li=0,1)

β(l1, . . . , lp;h)I
∗
l1,... ,lp;m

(
x

M
πΣh)

where Σ = a1 + . . .+ aN for short, and

(2)
β(l1, . . . , lp;h) =

=
∑

j1,... ,jp,i1,... ,iq

j1
a1 ...jp

ap i1
b1 ...iq

aq=h

1

j1 . . . jpi1 . . . iq

p
∏

k=1

(sin(2πjkλk))
lk (cos(2πjkλk))

1−lk .

The functions I∗l1,... ,lp;m(y) are defined, for every integer m ≥ 0, by

I∗l1,... ,lp;m(y) =

=
∑

k=−1,... ,−m

Ress=k

(

Gl1,... ,lp(s)
Γ(s)

Γ(s+m+ 1)
ys+m

)

+ Il1,... ,lp;m(y)

where Il1... ,lp;m(y) is given by an absolutely convergent integral representation

Il1... ,lp;m(y) =
1

2πi

∫

C(λ,µ)
Gl1,... ,lp(s)

Γ(s)

Γ(s+m+ 1)
ys+m ds.
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Here λ, µ, are real numbers satisfying

λ >
N

2Σ
, µ < −m,

and

(3) Gl1,... ,lp(s) =

q
∏

i=1

Γ(12 −
bis
2 )

Γ( bis
2 )

p
∏

k=1

(

Γ(12 −
aks
2 )

Γ(aks
2 )

)1−lk
(

Γ(1− aks
2 )

Γ(12 +
aks
2 )

)lk

.

The functions Il1,... ,lp;m(y) possess an asymptotic expansion

(4)

Il1,... ,lp;m(y) =

=

L∑

j=0

Cm,jy
m+ 1

Σ
(− 1
2
+N
2
+m−j)

cos(e
K
Σ y

1
Σ +

π

4
(N − 3)− π

2
(l1 + . . .+ lp) +

π

2
j − πm)+

+O(ym+ N
2Σ

−
M+m+32

Σ )

where L is an arbitrary positive integer and the coefficients Cm,j are computable.

In particular, the leading coefficient is given by

C0,0 = π

√
π

2
Σ1−

N
2

N∏

i=1

√
ai.

Theorem 2. Let a∗ be the minimum value of the numbers a1, . . . , aN and

θ = 1
Σ (−

1
2 +

N
2 ).

For N ≥ 4, and x → ∞,

E(a1, ., aN ;m1, ., mp;x) = Ω±(x
θ(log x)a

∗θ(log log x)q−1(log log log x)−(
Σ
2
+a∗)θ).

For N ≥ 2 and x → ∞,

E(a1, ., aN ;m1, ., mp;x) = Ω(x
θ(log x)a

∗θ(log log x)q−1(log log log x)−(
Σ
2
+a∗)θ).

For the case of N = 2, this can be refined to

E(x) = Ω±((x(log x)a∗)θ(log log log x)−(
Σ
2
+a∗)θ)

if

0 <
l

m
<
1

6
or

1

2
<

l

m
<
5

6
.
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For the case of N = 3, the remainder term E(x) satisfies

E(x) = Ω±((x(log x)a
∗

)θ(log log log x)−(
Σ
2
+a∗)θ),

if we induce only on one factor a congruence condition, and this satisfies

l

m
6= 1
2
,

whereas if we induce congruence conditions on two factors, the remainder term

E(x) satisfies

E(x) = Ω±((x(log x)a
∗

)θ(log log log x)−(
Σ
2
+a∗)θ,

if

log (2 sin (π
l1
m1
))(
1

2
− l2

m2
) + log (2 sin (π

l2
m2
))(
1

2
− l1

m1
) 6= 0.

Proof of Theorem 1

A version of Perron’s formula yields

(5)

D∗
m(x)

def
=
1

Γ(m)

∫ ∞

0
(x − u)m−1D∗(u) du =

=
1

2πi

∫ 2+i∞

2−i∞

F (s)

Ms

Γ(s)

Γ(s+m+ 1)
xs+m ds

where m is an integer greater than N
2 . Now we shift the line of integration left

to zero, observing that for δ be a suitable small positive constant, then for each
ε > 0

ζ(σ + it, λ)≪ (1 + |t|) 12+ε

in |t| ≥ 1, σ ≥ −δ (this is a consequence of the Phragmén-Lindelöf principle). For
the Gamma-functions involved, we recall Stirling’s formula in the weak form

|Γ(σ + it)| ≍ |t|σ− 12 exp(−π

2
|t|)

uniformly in |t| ≥ 1, σ1 ≤ σ ≤ σ2, (σ1, σ2 arbitrary). From this it is an immediate

consequence that the integrand in (5) is ≪ |t|−m−1+N
2
+ε′ where ε′ can be made

arbitrarily small by the choice of δ. The sum of the residues at s = 0, 1
b1

, . . . , 1
bq

is obviously just the order term H(x), thus we obtain

Em(x) =
1

2πi

∫ −δ+i∞

−δ−i∞
F (s)

Γ(s)

Γ(s+m+ 1)

xm+s

Ms
ds
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for the new integral is absolutely convergent, since m > N
2 .

By the functional equations of the Riemann and the Hurwitz zeta-function (see
e.g. [1], pp. 257–259)

ζ(s) =
1

(2π)1−s
2Γ(1− s)ζ(1 − s) sin(

π

2
s),

ζ(s, λ) =
1

(2π)1−s
2Γ(1− s)

∞∑

h=1

1

h1−s
sin(2πhλ+

π

2
s) (Re s < 0),

we conclude that, for Re s < 0,

F (s) =
2Σ

(2π)Σ(1−s)

N∏

i=1

Γ(1 − ais)

q
∏

i=1

ζ(1− bis) sin(
π

2
bis)×

×
p
∏

j=1

∞∑

h=1

1

h1−ajs
sin(2πhλj +

π

2
ajs).

Inserting the Dirichlet series for all of the factors ζ(1− ais) gives,

F (s) =
2Σs

πΣ(1−s)

N∏

i=1

Γ(1− ais)

∞∑

h=1

hs
∑

(l1,... ,lp)

(li=0,1)

β(l1, . . . , lp;h)×

×
q
∏

i=1

sin(
π

2
bis)

p
∏

k=1

(cos(
π

2
aks))lk(sin(

π

2
aks))1−lk

︸ ︷︷ ︸

Gl1,... ,lp(s)

,

with β(l1, . . . , lp;h) defined in (2).
By well known properties of the Gamma function,

Γ(1− us) sin(
π

2
us) =

√
π2−usΓ(

1
2 − us

2 )

Γ(us
2 )

Γ(1 − us)(cos(
π

2
us))l(sin(

π

2
us))1−l =







√
π2−us Γ(

1
2
−us
2
)

Γ(us
2
)

, for l = 0

√
π2−us Γ(1−

us
2
)

Γ( 1
2
+us
2
)
, for l = 1

we obtain

Em(x) = π
N
2
−Σ(1+m)Mm

∞∑

h=1

h−m
∑

(l1,... ,lp)

(li=0,1)

β(l1, . . . , lp;h)I
∗∗
l1,... ,lp;m

(
x

M
πΣh)
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with

I∗∗l1,... ,lp
(y) =

1

2πi

∫ −δ+i∞

−δ−i∞
Gl1,... ,lp(s)

Γ(s)

Γ(s+m+ 1)
ys+m ds.

It is evident from the functional equation that all the singularities ofGl1,... ,lp(s)
are on the positive real axis. Observing this, we can deform the line of integration
such that I∗∗l1,... ,lp;m

(y) = I∗l1,... ,lp;m(y), provided that λ ≥ 0 and µ < −m. In

order to get absolutely convergent integrals Il1,... ,lp;m(y) for m ≥ 0 we choose λ

greater than N
2Σ . Therefore

(6)
d

dy
(I∗l1,... ,lp;m(y)) = I∗l1,... ,lp;m(y).

(Notice that this is also valid for Il1,... ,lp;m(y) for this differs from I∗l1,... ,lp(y) only

by a finite sum of differentiable functions.)

To complete the proof of Theorem 1, it remains to establish the asymptotic ex-
pansion of

(7) Gl1,...,lp(s)
Γ(s)

Γ(s+m+ 1)
.

In what follows we write Rk(s) for expressions of the form

Rk(s) =

L+1∑

j=1

ck,js
−j

where ck,j are any complex coefficients. We use Stirling’s formula in the form

log Γ(s+ c) = (s+ c − 1
2
) log s − s+

1

2
log 2π +R1(s) +O(|s|−L−2)

with c ∈ C arbitrary, which holds uniformly for | arg(s + c)| ≤ β0 < π. (The
coefficients c1,j and the O-constant may depend on c.) Employing this we com-
pute an asymptotic expansion for the logarithm of (7) and compare it with the
asymptotic expansion of the logarithm of

(8)
Γ(−a′s+ b′)

Γ(12 − a′

2 + c′)Γ(12 +
a′

2 s − c′)
eKs+c.

This yields that the logarithm of (7)

F0(s) = C∗
me

KsΓ(−Σs+
N

2
− m − 1

2
) cosπ(

Σs

2
+ 1 +m − N

2
+
1

2
(l1 + . . .+ lp))
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has the same asymptotic expansion as the logarithm of (8), where

K =
Σ

2
log (
Σ

2
)− Σ
2
+

N∑

i=1

ai(1 − log (
ai

2
)),

C∗
m = exp

(

1

2
log (2π) + log π + (1 +m − N

2
) log (

Σ

2
) +

N∑

i=1

1

2
log (

ai

2
)

)

.

Thus, on any set avoiding the poles of the terms involved,

Gl1,...,lp(s)
Γ(s)

Γ(s+m+ 1)
= F0(s)(1 +R2(s) +O(|s|−L−2)) =

= F0(s)(1 +

L+1∑

j=1

c∗j

j
∏

i=1

(−Σs+
N

2
− m − 1

2
− i) +O((1 + |s|−L−2)) =

= F0(s) +

L+1∑

j=1

c∗jFj(s) + ∆(s)

with

Fj(s) = C∗
me

KsΓ(−Σs+
N

2
−m−1

2
−j) cosπ(

Σs

2
+ 1 +m − N

2
+
1

2
(l1 + . . .+ lp))

by the functional equation for the Γ-function, and

∆(s)≪ |t|−L−2|F0(s)| ≪ |t|−L−m−3+N
2
−Σσ

uniformly in |t| ≥ 1, σ1 ≤ σ ≤ σ2 (σ1, σ2 arbitrary). We can therefore bound the
contribution of ∆(s) to the integral Il1,... ,lp;m(y),

∫

C(Λ,µ)
∆(s)ys+m ds ≪ yµ+m + yΛ+m ≪ ym−

L+m+32
Σ

+N
2

by the choice of Λ = −L+m+ 3
2

Σ + N
2 (notice that µ is only restricted by µ ≤ −m

and may therefore be assumed to be less than Λ). Consequently,

Il1,... ,lp;m(y) = Jl1,... ,lp;0(y) +

L+1∑

j=1

c∗jJl1,... ,lp;j(y) +O(ym+ N
2Σ

−
L+m+32
Σ )

where, for j = 0, 1, . . . , L+ 1,

Jl1,... ,lp;j(y) =
1

2πi

∫

C(λ,µ)
Fj(s)y

s+m ds.
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To evaluate the remaining integrals, we use the following identity (valid for

λ1 > 1
2 , µ1 < 0, z ∈ R

+),

1

2πi

∫

C(λ1,µ1)
Γ(−s1) cos (

π

2
s1 + γ)zs1 ds1 = cos (z − γ)

(see e.g. [12]). Recalling the definition of Fj(s), we substitute

s1 = Σ∗s−N

2
+m+

1

2
+j, γ =

π

2
∗(3
2
+m−N−j+(l1+. . .+lp)), z = (eK ∗y)

1
Σ

in this last identity. After a few simple calculations the assertion of Theorem 1
follows, at least for m ≥ 1

2Np. But since
∑∞

h=1 β(l1, . . . , lp;h)h
−ε < ∞ for each

ε > 0, it is evident from (4) that the series in (1) converges absolutely for every

m > 1
2 (Np − 1). Appealing to (6), we complete the proof for this slightly larger

range of m.

Proof of Theorem 2

We employ a classic method of Szegö and Walfisz [14] involving the Borel mean-
value with more recent technique due to Hafner [5]. For a large real parameter t,
we put

(9) X = X(t) = K1(log t)−a∗

(log log log t)
Σ
2
+a∗

and

(10) k = k(t) = K2(ζ + tX− 1
Σ )2,

with positive constants K1, K2 and real ζ to be specified later. We consider

B(t) =
1

Γ(k + 1)

∫ ∞

0
e−uukE(u

Σ
2 X) du.

We substitute v = u
Σ
2 and put h(v) = 2

Σ exp (−v
2
Σ )v

2(k+1)
Σ

−1.

We choose m = [12N ] + 1 and observe that h(v) and its first m derivatives
vanish at v = 0 and at v = ∞ if t and thus k is sufficiently large. Therefore, an
iterated integration by parts gives

B(t) =
1

Γ(k + 1)

∫ ∞

0
h(v)E(Xv) dv =

(−1)mX−m

Γ(k + 1)

∫ ∞

0
h(m)(v)Em(Xv) dv.

We insert the series representation (1), interchange the order of summation
and integration and apply iterated integration by parts one more time, keeping
(6) in mind. This leads to

B(t) = π
N
2
−Σ

∞∑

h=1

∑

(l1,... ,lp)

(li=0,1)

β(l1, . . . , lp;h)
1

Γ(k + 1)
×

×
∫ ∞

0
e−uukI∗l1,... ,lp;0(u

Σ
2

X

M
πΣh) du.
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Now we insert the asymptotic expansion (4) for the integrals I∗l1,... ,lp;0(y) =

Il1,... ,lp;0(y) and remark that β(l1, . . . , lp;h) ≪ hε for each ε > 0. We choose

L so that the exponent of n in the error term of (4) be less than −1. This is
achieved for

L = [
1

2
(N − 3) + Σ] + 1.

The contribution of the O-term to the asymptotic expansion of B(t) is then
bounded by

≪ kε

Γ(k + 1)

∫ ∞

0
e−uuk+N

4
− 1
2
(L+ 3

2
) du ≪

≪ kε+N
4
− 1
2
(L+ 3

2
) ≪ kε− 1

2
Σ ≪ k−

1
2 ,

in view of Stirling’s formula.
To deal with the main terms of (4), we make use of a result from classic analysis

going back to Szegö [14], and Szegö and Walfisz [15].

Lemma 1. Let α, c, c′, be real constants. Then for k → ∞,

J(k, T ) =
1

Γ(k + 1)

∫ ∞

0
e−uuk+α exp (iT

√
u) du =

=

{

kα exp (−18T 2) exp (iT
√

k) + O(kα− 1
2
+ε) if ck−ε ≤ T ≤ ckε

≪ T−C for every real constant C, if T ≥ c′kε

Proof: This is an immediate consequence of a result of Szegö [14, pp. 100–102],
and Szegö-Walfisz [15]. Applying this Lemma to the integrals which arise if we
insert the significant terms of (4), we conclude that the main term, with j = 0 is
of the form

c∗
(hX)θ

Γ(k + 1)

∫ ∞

0
e−uuk+Σ

2
θ cos (c1(hX)

1
Σ
√

u+
π

4
(N − 3)− π

2
(l1 + ..+ lp)) du =

= c∗(hX)θk
N−1
4 e−c2(hX)

2
Σ cos (c1(hX)

1
Σ

√
k +

π

4
(N − 3) + π

2
(l1 + ..+ lp))+

+

{

O((hX)θk
N−3
4
+ε), for ck−ε ≤ c1(hX)

1
Σ ≤ c′kε

≪ (hX)−C , for every real constant C, if c1(hX)
1
Σ > c′kε

where c∗ = c0,0(M
−1πΣ)θ and c1 = (e

KπΣM−1)
1
Σ .

The contribution of the other terms is

≪ (hX)θ−
1
2 k

Σ
2
(θ− 1

2
)e−c2(hX)

2
Σ ≪ (hX)θk

N−2
4 ,
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for c1k
−ε ≤ c1(hX)

1
Σ ≤ c′kε and j = 1, . . . , L.

We estimate the contribution of the error term to the asymptotic expansion of

B(t). The terms corresponding to h which satisfy c1(hX)
1
Σ ≤ c′kε, contribute

≪
∑

h≤c3X−1kεΣ

∑

(l1,... ,lp)

(li=0,1)

β(l1, . . . , lp;h)(hX)θk
N−2
4 ≪

≪ Xθk
N−2
2 (X−1kεΣ)1+ε+θ ≪ k

N−2
4
+ε′ ≪ k

N
4
− 3
8 ,

whereas the terms corresponding to h which satisfy c1(hX)
1
Σ ≥ c′kε, contribute

only

≪
∑

h≥c3X−1kεΣ

∑

(l1,... ,lp)

(li=0,1)

β(l1, . . . , lp;h)(hX)−C ≪ X−C(X−1kεΣ)−1 = o(1)

as t → ∞ by the choice of C = 1 + θ + 2.
Altogether, we deduce that

B(t) = C∗∗Xθk
N−1
4

∑

h≤c3X−1kεΣ

∑

(l1,... ,lp)

(li=0,1)

β(l1, . . . , lp;h)×

×hθe−c2(hX)
2
Σ cos (c1(hX)

1
Σ

√
k +

π

4
(N − 3)− π

2
(l1 + ..+ lp)) +O(k

N
4
− 3
8 )

where

C∗∗ = π
N
2
+Σ(θ−1)+1M−θ

√
π

2
Σ1−

N
2

N∏

i=1

√
ai.

In order to extend the range of summation in this series to 1 ≤ h < ∞, it suffices
to observe that

Xθk
N−1
4

∑

h>c3X−1kεΣ

∑

(l1,... ,lp)

(li=0,1)

β(l1, . . . , lp;h)h
θ exp (−c2(hX)

2
Σ )≪

≪ k
N−1
4

∑

h>c3X−1kεΣ

exp (−c4(hX)
2
Σ )≪

≪ k
N−1
4

(

exp (−c5k
2ε) +

∫ ∞

c3X−1kεΣ
exp (−c4(uX)

2
Σ ) du

)

≪

≪ exp (−c6k
2ε)≪ k−1
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Consequently,

(11)

B(t) = C∗∗Xθk
N−1
4

∞∑

h=1

∑

(l1,... ,lp)

(li=0,1)

β(l1, . . . , lp;h)h
θ exp (−c2(hX)

2
Σ )×

×(cos (c1(hX)
1
Σ

√
k +

π

4
(N − 3)− π

2
(l1 + . . .+ lp))) +O(k

N
4
− 3
8 ).

We recall the definition of β(l1, . . . , lp;h), keep h = ja1
1 . . . j

ap
p ib11 . . . i

bq
q fixed for

the moment and compute (with Z = c1(hX)
1
Σ
√

k + π
4 (N − 3) for short)

∑

(l1,... ,lp)

(li=0,1)

β(l, . . . , lp;h) cos (Z − π

4
(l1 + . . .+ lp)) =

=
∑

(j1,... ,jp,i1,... ,iq)

j
a1
1

...j
ap
p i

b1
1

...i
bq
q =h

1

j1 . . . jpi1 . . . iq
×

×
∑

(l1,... ,lp)

(li=0,1)

p
∏

k=1

(sin (2πjkλk))
lk(cos (2πjkλk))

1−lk cos (Z − π

2
(l1 + . . .+ lp)) =

=
∑

(j1,... ,jp,i1,... ,iq)

j
a1
1

...j
ap
p i

a1
1

...i
aq
q =h

1

j1 . . . jpi1 . . . iq
cos (Z − 2π

p
∑

j=1

hjλj)

by the general addition theorems for the cosine and sine functions.
We conclude that

B(t) = C∗∗k
N−1
4
{
Xθ

∞∑

h=1

hθ exp (−c2(hX)
2
Σ )×

×(ah cos (c1(hX)
1
Σ

√
k +

π

4
(N − 3)) + bh sin (c1(hX)

1
Σ

√
k +

π

4
(N − 3)))+

+O(k−
1
8 )
}

where

ah =
∑

j1,... ,jp,i1,... ,ip

j
a1
1

...j
ap
p i

b1
1

...i
bq
q =h

cos (2π
∑p

k=1 jkλk)

j1 . . . jpi1 . . . iq
,

bh =
∑

j1,... ,jp,i1,... ,ip

j
a1
1

...j
ap
p i

b1
1

...i
bq
q =h

sin (2π
∑p

k=1 jkλk)

j1 . . . jpi1 . . . iq
.
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The next step is to approximate a finite partial sum of the infinite series in
(11) by an expression of the form

f(X, ζ) =
∑

h≤B0

(ahg1(X, h, ζ) + bhg2(X, h, ζ)),

where, for short,

g1(X, u, ζ) = exp (−c2(Xu)
2
Σ )uθ cos (ζ(Xu)

1
N +

π

4
(N − 3)),

g2(X, u, ζ) = exp (−c2(Xu)
2
Σ )uθ sin (ζ(Xu)

1
N +

π

4
(N − 3)).

Let a∗ be the minimum value of a1, . . . , ap, b1, . . . , bq, then it is clear that if
either of ah, bh is 6= 0, then h must be a∗-full. It is known that the number of a∗-

full numbers h ≤ B1 is ≤ c8B
1

a∗

1 (see e.g. Krätzel [8]). We now apply Dirichlet’s
approximation principle (see e.g. [8]): Let B1 be a large positive integer and

q = [(logB1)
N ]. Then there exists a value of t in the interval

(12) B1 ≤ t ≤ B1q
c8B

1
a∗

1

such that ‖ 1
2π h

1
Σ t ‖≤ 1

q for the a∗-full h ≤ B1, where ‖ . ‖ denotes the distance
from the nearest integer. It is an easy consequence of (12) that

B1 ≫ (log t)a
∗

(log q)−a∗

.

Let us define

B0 = c8(log t)a
∗

(log q)−a∗

with c8 so small that B0 ≤ B1 for q ≥ 2 and sufficiently large t.

Choosing in (10) K2 = c−21 , we thus may conclude that

| cos (c1(hX)
1
Σ

√
k +

π

4
(N − 3))− cos (ζ(hX)

1
Σ +

π

4
(N − 3))| ≤

≤‖ 1
2π

h
1
Σ t ‖≤ 1

q
,

for all h ∈ N with h ≤ B0 and β(l1, . . . , lp;h) 6= 0.
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We consider the contribution from those h with h ≤ B0. This is bounded by

Xθ|
∑

h≤B0

hθ exp (−c2(hX)
2
Σ )× ((ah cos (c1(hX)

1
Σ

√
k +

π

4
(N − 3)))+

+bh sin (c1(hX)
1
Σ

√
k +

π

4
(N − 3)))− f(X, ζ)| ≪

≪ 1

q
Xθ

∑

h≤B0

hθ exp (−c2(hX)
2
Σ )

∑

h1,... ,hN

h
a1
1

...h
aN
N
=h

1

h1 . . . hN
≪

≪ 1

q
Xθ

∫ B0

1−
exp (−c2(hX)

2
Σ ) dS(u)≪

≪ 1

q
XθBθ

0(logB0)
N−1

where
S(u) =

∑

h≤u

hθ
∑

h1,... ,hN

h
a1
1

...h
aN
N
=h

1

h1 . . . hN
≍ uθ(log u)N−1.

Those h with h ≥ B0 contribute,

≪ Xθ
∑

h≥B0

hθ exp (−c2(hX)
2
Σ )

∑

h1,... ,hN

h
a1
1

...h
aN
N
=h

1

h1 . . . hN
≪

≪ Xθ

{

Bθ
0(logB0)

N−1e(−c2(B0X)
2
Σ ) +

∫ ∞

B0

e(−c2(uX)
2
Σ )(uX)

2
Σ
−1XS(u) du

}

.

We split up the last integral in
∫B20
B0
+
∫∞
B20
. The first integral contributes,

≪ (logB0)
N−1

∫ B20

B0

exp (−c2(uX)
2
Σ )(uX)

2
Σuθ−1 du ≪

≪ Bθ
0(logB0)

N−1 exp (−c2(B0X)
2
Σ ).

In a similar way one verifies that the contribution of the second integral is o(1)
(as t → ∞). In exactly the same way the infinite “tail” of the series in (11) can
be estimated.
Combining this, we arrive at

B(t) = C∗∗k
N−1
4 {Xθ

∞∑

h=1

hθ exp (−c2(hX)
2
Σ )×

×(ah cos (ζ(hX)
1
Σ +

π

4
(N − 3)) + bh sin (ζ(hX)

1
Σ +

π

4
(N − 3)))+

+O(
1

q
XθBθ

0(logB0)
N−1) +O(XθBθ

0(logB0)
N−1 exp (−c2(B0X)

2
Σ )) + o(1)}.
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We conclude that

B(t) = C∗∗k
N−1
4 {Xθ

∞∑

h=1

hθ exp (−c2(hX)
2
Σ )×

×(ah cos (ζ(hX)
1
Σ +

π

4
(N − 3)) + bh sin (ζ(hX)

1
Σ +

π

4
(N − 3))) + o(1)}.

Our next step is an asymptotic formula for this last series, as X → 0+, ζ some
real constant, in the spirit of Berndt [2]. To this end, we need an asymptotic

formula for S1(u) =
∑

h≤u hθah, S2(u) =
∑

h≤u hθbh. This can be done in one
step.
For Re s > 1, consider the generating function of ah + ibh,

Z(s)
def
=

∞∑

h=1

ah + ibh

hs
=

q
∏

i=1

ζ(bis+ 1− biθ)

p
∏

k=1

∞∑

n=1

exp (2πinλk)

naks+1−akθ
, Re s > 0.

By standard techniques it follows that

S1(u) + iS2(u) = Ress=θ(Z(S)
us

s
) + o(uρ) = Bqu

θ(log u)q−1 +O(uθ(log u)q−2)

where ρ < 1 and

Bq = C(q)

p
∏

k=1

∞∑

n=1

exp (2πinλk)

n
= C(q)

p
∏

k=1

(− log(2 sin (πλk) + i(
π

2
− πλk)).

Let Bq = |Bq|e2πiβ with 0 ≤ β ≤ 1, then

(13)
S1(u) + iS2(u) = (|Bq| cos (2πβ) + i|Bq| sin (2πβ))uθ(log u)q−1+

+O(uθ(log u)q−2).

�

Lemma 2. For X → 0+,

F (X, ζ)
def
=

∞∑

h=1

hθ exp (−c2(hX)
2
Σ )×

×((ah cos (ζ(hX)
1
Σ +

π

4
(N − 3))) + (bh sin (ζ(hX)

1
Σ +

π

4
(N − 3)))) =

= c6|Bq|X−θ| logX |q−1(G(ζ) + o(1)),

where

G(ζ) =

∫ ∞

0
e−v2v−

N−3
4 cos (c

− 1
2
2 ζv − π

4
(N − 3)− 2πβ) dv.
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Proof: With our previous notation, put S(u) = S1(u)+iS2(u) and writeH1(u)+
iH2(u) for the main term on the right hand side of the assertion of Lemma 2.
Using Stieltjes integral notation

F (X, ζ) =

∫ ∞

0
exp (−c2(uX)

2
Σ ) cos (ζ(uX)

1
Σ +

π

4
(N − 3)) dS1(u)+

+

∫ ∞

0
exp (−c2(uX)

2
Σ ) sin (ζ(uX)

1
Σ +

π

4
(N − 3)) dS2(u).

Integration by parts and inserting the asymptotic expansion given in (1), we
estimate the contribution of the error to be less than

≪ exp (−c2(uX)
2
Σ )uθ(1 + log u)q−1|∞u=0 +

+

∫ ∞

0
exp (−c2(uX)

2
Σ )((uX)

2
Σ
−1X + (uX)

1
Σ
−1X)uθ(1 + log u)q−1 ≪

≪ X−θ| logX |q−2
∫ ∞

0
(v
2
Σ + v

1
Σ )vθ−1| log v|q−2 dv ≪ X−θ| logX |q−2.

We obtain the order term by a quite similar reasoning and a change of variable

v =
√

c2(nX)
1
Σ .

Using this Lemma, we arrive at our desired asymptotic expansion,

B(t) = c10k
N−1
4 | logX |q−1(G(ζ) + o(1)) + o(k

N−1
4 ))

with a positive constant c10. �

We now make use of a deep result due to Steinig [13] which provides necessary
and sufficient conditions for functions like our G(ζ) to have a change of sign.

Lemma 3. For ζ, B, γ ∈ R, γ > −1, let

Gγ,B(ζ)
def
=

∫ ∞

0
e−u2uγ cos (au+Bγ) du.

Then Gγ,B(ζ) as a function of ζ has a sign change if and only if

(14) γ > −2|B − [B + 1
2
]|.

Otherwise, Gγ,B(ζ) 6= 0 for all real values of ζ.
For N ≥ 4, (14) is satisfied for any choice of the λj . Thus there exist real

numbers ζ1 and ζ2 and a positive constant c11 such that G(ζ1) ≤ −c11, G(ζ2) ≥
c11. We take once ζ = ζ1, then ζ = ζ2 in the definition (9), i.e. we put

ki = ki(t) = K2(ζi + tX(t)−
1
Σ )2 (i = 1, 2),
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define Bi(t) like B(t) before, with k replaced by ki, and infer from the above
argument that there exists an unbounded sequence of reals t with

B1(t) ≤ −c12k
N−1
4
1 (log log t)q−1

B2(t) ≤ −c12k
N−1
4
2 (log log t)q−1.

To complete the proof, let us suppose that, for some small positive constant K3,

±E(x) ≤ K3(x(log x)a
∗

)θ(log log x)q−1(log log log x)−(
Σ
2
+a∗)θ

for all sufficiently large x. By the definition of Bi(t), this would imply that, for
every large real t,

(−1)iBi(t) ≤
K3

Γ(ki(t) + 1)

∫ ∞

0
e−uuki(t)(X(t)u

Σ
2 )θL(X(t)u

Σ
2 ) du

where L(w) = (logw)a
∗θ(log logw)q−1(log log logw)−(

Σ
2
+a∗)θ for w ≥ 10 and

L(w) = L(10) else. Estimating this integral by Hafner’s Lemma 2.3.6 in [5, p. 51],
we obtain

(−1)iBi(t) ≤ c13(ki(t))
N−1
4 (log log t)q−1.

Together this yields a positive lower bound for K3 (for both i = 1, 2) and thus
completes the proof of Theorem 2. �

It remains to deal with the case that N = 2, 3.

Case N = 2. We have to check under which conditions (14) is satisfied. Compar-
ing our asymptotic expansion with the Lemma of Steinig we have

γ =
1

2
(N − 3), B =

1

4
(N − 3)− 2β.

Here γ = 12 , B = −14 − 2β. Hence (14) becomes

1

4
< |1
4
+ 2β + [

1

4
− 2β]|,

which is easily seen to be satisfied if and only if

0 < β <
1

4
or

1

2
< β <

3

4
.

Now β depends on λ = l
mby the equation

B1 = C1(− log (2 sin (πλ)) + i(
π

2
− πλ)) (β ∈ R, 0 ≤ β ≤ 1).
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This implies for the values λ,

0 < λ <
1

6
or

1

2
< λ <

5

6
,

which completes the proof of Theorem 2.

Case N = 3. Here we have γ = 0 and B = −2β, hence (14) is true if and only if
B /∈ Z or equivalently β /∈ {0, 12 , 1}. Now there are two possibilities. In the case
where p = 1, q = 2 the above arguments holds, and we simply get λ 6= 12 . In the
second case, where p = 2, q = 1, we have that β /∈ {0, 12 , 1} is equivalent that

B2 = C2
∏

j=1,2

(− log (2 sin (πλj)) + i(
π

2
− πλj)).

We simplify this equation by writing u, v for l1
m1

, l2
m2
, which yields

(15) log (2 sin(πu))(v − 1
2
) + log (2 sin(πv))(u − 1

2
) = 0.

Writing
w = 1− v ,

this equation simplifies to

(∗) Φ(u) = Φ(w) ,

with

Φ(t) =
log(2 sin(πt))

t − 12
.

Now Φ(t) decreases monotonically from +∞ to −∞ on each of the subintervals
]0, 12 [ and ]

1
2 , 1[. It follows that (∗) possesses two solutions for w: the trivial one

w = u and a second function w = φ(u) which is smooth on ]0, 12 [ and on ]
1
2 , 1[.

Consequently, (15) is satisfied for u + v = 1 and for v = 1 − φ(u). Both curves
are shown in the picture below. Note that the second one contains the rational
points (16 ,

1
6 ) and (

5
6 ,
5
6 ).

A 1
2

1
2

1
2

1
2

( 16 , 1
6 )

( 56 , 5
6 )

u+v=1

v=1−ϕ(u)

v=1−ϕ(u)
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[14] Szegö P., Walfisz A., Über das Piltzsche Teilerproblem in algebraischen Zahlkörpern (Erste
Abhandlung), Math. Z. 26 (1927), 138–156.
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