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On a problem of Gulevich on nonexpansive

maps in uniformly convex Banach spaces

Sehie Park

Abstract. Let X be a uniformly convex Banach space, D ⊂ X, f : D → X a nonexpan-
sive map, and K a closed bounded subset such that coK ⊂ D. If (1) f |K is weakly
inward and K is star-shaped or (2) f |K satisfies the Leray-Schauder boundary condition,
then f has a fixed point in coK. This is closely related to a problem of Gulevich [Gu].
Some of our main results are generalizations of theorems due to Kirk and Ray [KR] and
others.

Keywords: uniformly convex, Banach space, Hilbert space, contraction, nonexpansive
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The well-known theorem of Browder-Göhde-Kirk assures existence of a fixed
point for nonexpansive maps f : K → K where K is a bounded closed convex
subset of a uniformly convex Banach space X . In [KR], Kirk and Ray showed
that f can be replaced by a weakly inward nonexpansive map f : K → X while
the boundedness of K can be replaced by that of the geometric estimator

G(x, fx) = {z ∈ K : ‖z − x‖ ≥ ‖z − fx‖}

for some x ∈ K or more general sets. Note that any fixed point of f is contained
in G(x, fx).
On the other hand, Gulevich [Gu] considered the situation as follows: H is a

Hilbert space, K is a nonempty bounded closed (not necessarily convex) subset
of H , and f : D ⊂ H → H is a nonexpansive map, where coK ⊂ D. Gulevich’s
basic theorem [Gu, Theorem 1] states that f has a fixed point in coK if f satisfies
the Rothe condition f(BdK) ⊂ K. He also raised as a problem whether H can
be replaced by a uniformly convex Banach space.
In the present paper, we obtain some fixed point theorems on nonexpansive

maps defined on closed (not necessarily bounded or convex) subsets of a Banach
space. Our results are closely related to Gulevich’s theorem and extend some
known results of Kirk and Ray [KR], Goebel and Kuczumow [Go], and Browder
[B1], [B2]. Moreover, we adopt more general boundary conditions on those non-
expansive maps. In fact, the weakly inwardness or the so-called Leray-Schauder
condition is used in our results instead of the Rothe condition used in [Gu].
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Recall that f : K → X is a contraction if there exists a k ∈ [0, 1) such that

‖fx − fy‖ ≤ k‖x − y‖ for all x, y ∈ K;

and a nonexpansive map if

‖fx − fy‖ ≤ ‖x − y‖ for all x, y ∈ K.

We say that f is weakly inward if fx ∈ IK(x) for any x ∈ BdK (equivalently, for
any x ∈ K), where , Bd, and Int denote the closure, boundary, and interior,
respectively, and

IK(x) = {x+ c(y − x) : y ∈ K, c ≥ 1}.

Note that any map satisfying the Rothe condition is weakly inward.
We begin with the following:

Theorem 0. Let K be a closed subset of a Banach space X and f : K → X a

contraction satisfying one of the following:

(i) f(BdK) ⊂ K.

(ii) f is weakly inward.

(iii) 0 ∈ IntK and fx 6= mx for all x ∈ BdK and m > 1.

Then f has a unique fixed point.

Note that Theorem 0(i) is a particular case of Assad and Kirk [AK, Theorem 1],
Theorem 0(ii) is due to Martinez-Yanez [M, Theorem] or, in a more general form,
to Zhang [Z, Theorem 3.3], and Theorem 0(iii) to Gatica and Kirk [GK, Theo-
rem 2.1]. There are more general results than Theorem 0. However, Theorem 0
is sufficient for our purpose. Note also that (iii) can be replaced by the following:

(iii)′ there exists a w ∈ IntK such that

fx − w 6= m(x − w) for all x ∈ BdK and m > 1.

Moreover, (i) ⇒ (ii) and, whenever K is convex and 0 ∈ IntK, we have (ii) ⇒
(iii).
A subset K of a vector space is said to be star-shaped if there exists a given

point x0 ∈ K such that tx0 + (1 − t)x ∈ K for any t ∈ (0, 1) and x ∈ K, where
x0 is called a center of K.
For the K and f in Theorem 0, we say that K is (KR)-bounded or bounded in

the sense of Kirk-Ray [KR] if, for some bounded set A ⊂ K, the set

G(A) =
⋂

u∈A

G(u, fu)

is either empty or bounded.
The following is a generalization of the almost fixed point property of bounded

closed subsets of a Banach space for nonexpansive maps.
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Theorem 1. Let X be a Banach space, K a closed subset of X , and f : K → X

a nonexpansive map such that K is (KR)-bounded and one of the following holds:

(i) K is star-shaped and f(BdK) ⊂ K.

(ii) K is star-shaped and f is weakly inward.

(iii) 0 ∈ IntK and fx 6= mx for all x ∈ BdK and m > 1.

Then there exists a bounded sequence {xn} in K such that ‖xn − fxn‖ → 0 as
n → ∞.

Proof: For cases (i) and (ii) we may without loss of generality assume that 0 is
the center. For α ∈ (0, 1), define fα : K → X by fαx = αfx for x ∈ K. Then
clearly fα is a contraction. We show that one of (i)–(iii) in Theorem 0 holds for
fα:

(i) Since K is star-shaped at center 0, we have αK ⊂ K. Since f(BdK) ⊂ K,
for x ∈ BdK, we have fαx = αfx ∈ αK ⊂ K. Therefore, fα(BdK) ⊂ K.

(ii) From fx ∈ IK(x), we have fαx = αfx ∈ αIK(x) ⊂ IK(x) since IK(x) is a
star-shaped set with center 0. See Zhang [Z, Theorem 1.2]. Note that (i) ⇒ (ii).

(iii) Suppose that fαx = mx for some x ∈ BdK and m > 1, then fx =
α−1fαx = (α−1m)x and α−1m > 1, which contradicts our assumption.

Therefore, by Theorem 0, fα has a fixed point xα ∈ K. Suppose that the set
{xα : α ∈ (0, 1)} is not bounded. Then it is possible to choose α ∈ (0, 1) so that

sup
u∈A

‖fu‖ ≤ inf
u∈A

‖xα − u‖

and in addition, if G(A) 6= ∅, then α may also be chosen so that

‖xα‖ > sup{‖x‖ : x ∈ G(A)}.

Therefore, for each u ∈ A,

‖xα − fu‖ = ‖αfxα − fu‖ ≤ α‖fxα − fu‖+ (1 − α)‖fu‖

≤ α‖xα − u‖+ (1− α)‖xα − u‖ = ‖xα − u‖.

This implies xα ∈ G(A), which is a contradiction. Thus M = sup{‖xα‖ : α ∈
(0, 1)} < ∞ and we have

‖xα − fxα‖ = (α
−1 − 1)‖xα‖ ≤ (α−1 − 1)M,

yielding ‖xα − fxα‖ → 0 as α → 1. This completes our proof. �

Note that Kirk and Ray [KR, Theorem 2.3] obtained Theorem 1(ii) for the case
K is convex. In the second half of the proof of Theorem 1, we followed that of
[KR, Theorem 2.3]. Note that Theorem 1(i) generalizes Dotson [D, Theorem 1].
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A Banach space X is said to satisfy Opial’s condition if, whenever a sequence
{xn} converges weakly to x0 ∈ X , then

lim infn→∞‖xn − x‖ > lim infn→∞‖xn − x0‖

for all x ∈ X , x 6= x0. Opial [O] showed that if C is a weakly compact subset of
a Banach space X satisfying this condition and f : C → X is nonexpansive, then
I − f is demi-closed ([B2], [Gö]); that is, if {xn} ⊂ C satisfies xn → x weakly
while (I − f)xn → y strongly, then (I − f)x = y, where I is the identity map
on C.
Examples of spaces satisfying Opial’s condition are Hilbert spaces, lp (1 ≤ p <

∞), and uniformly convex Banach spaces with weakly continuous duality maps.
From Theorem 1, we have the following:

Theorem 2. Let X be a Banach space, K a weakly compact subset of X , and

f : K → X a nonexpansive map satisfying one of (i)–(iii) in Theorem 1.

(a) If I − f is demi-closed on K, then f has a fixed point.

(b) If X satisfies Opial’s condition, then f has a fixed point.

Proof: Since K is closed and bounded, f satisfies all the requirements of The-
orem 1. Hence, there exists a sequence {xn} in K such that ‖xn − fxn‖ → 0
as n → ∞. Since K is weakly compact, we may assume that xn → x weakly to
some x ∈ K. Since xn − fxn → 0 strongly, xn − fxn = (I − f)xn, and I − f is
demi-closed, we conclude that (I − f)x = 0 and hence x = fx. This completes
our proof. �

Note that Zhang [Z, Theorem 3.8 and Corollaries 3.10, 3.11] obtained the
multi-valued version of Theorem 2(ii), with different proof, and that Theorem 2(i)
generalizes Dotson [D, Theorem 2]. Note also that if K is compact, then f has a
fixed point in Theorem 2 without assuming the demi-closedness of I − f .
From Theorem 1, we also have the following:

Theorem 3. Let X be a uniformly convex Banach space, D a subset of X , and

f : D → X a nonexpansive map. Let K be a closed (KR)-bounded subset of X

such that coK ⊂ D and one of (i)–(iii) of Theorem 1 holds for f |K . Then f has

a fixed point in coK.

Proof: Since f |K satisfies all the requirements of Theorem 1, there exists a
bounded sequence {xn} in K such that ‖xn − fxn‖ → 0. Since {xn} is contained
in a bounded closed convex subset L ⊂ coK and L is weakly compact, we may
assume xn → x0 weakly to some x0 ∈ L. Since I − f is demi-closed on L ([B2],
[Gö]) and (I − f)xn → 0 strongly, we conclude that (I − f)x = 0, and hence
x = fx. This completes our proof. �

If we can eliminate the star-shapedness in (i), then Theorem 3(i) will be the
required affirmative answer to Gulevich’s problem. Moreover, Gulevich [Gu] noted
that, for case (i) of Theorem 3 in a Hilbert space H , f has a fixed point in K.
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In case 0 ∈ IntK, Theorem 3(iii) generalizes [Gu, Theorem 1].
Note that the set A ⊂ K for the (KR)-boundedness can be chosen so that

A ⊂ D and f(A) ⊂ K. See the proof of Theorem 1. Therefore, Theorem 3
generalizes Ray [R, Lemma 1].

For D = K = coK, Theorem 3 reduces to the following:

Theorem 4. Let X be a uniformly convex Banach space, K a closed convex

subset, and f : K → X a nonexpansive map such that K is (KR)-bounded and
one of (i)–(iii) in Theorem 0 holds. Then f has a fixed point.

Note that Theorem 4(i) and (ii) are due to Kirk and Ray [KR, Theorem 2.3],
which extends Goebel and Kuczumow [Go, Theorem 6]. Also note that Theo-
rem 4(iii) extends Browder [B2, Theorem 1] for nonexpansive maps. For a Hilbert
space X and a closed ball in X , Theorem 4(i) is due to Browder [B1, Theorem 2],
which was used to show existence of periodic solutions for nonlinear equations of
evolution.
Recently Canetti, Marino, and Pietramala [CMP] obtained multi-valued ver-

sions of Theorem 4(ii) and, under the stronger assumption of convexity, some
other results similar to Theorems 1–3 for case (ii).
Finally, we note that the so-called Rothe condition (i) was first adopted by

Knaster, Kuratowski, and Mazurkiewicz [KKM]. Also, the origin of the so-called
Leray-Schauder condition (iii) seems to be Schaefer [S], and the following are
well-known examples of that condition:

(A) ‖fx − x‖2 ≥ ‖fx‖2 − ‖x‖2 for x ∈ BdK.
(K) Re 〈fx, x〉 = ‖x‖2 for x ∈ BdK, x 6= 0, in a Hilbert space H .

Or more generally,

(P) (fx, Jx) ≤ (x, Jx) for x ∈ BdK, 0 ∈ IntK, where J is any duality map

of X into 2X
∗

.

Condition (A) is due to Altman [A], (K) to Krasnosel’skii [K] and Shinbrot [Sh],
and (P) to Petryshyn [P].
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