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Radical ideals and coherent frames

B. Banaschewski

Abstract. It follows from Stone Duality that Hochster’s results on the relation between
spectral spaces and prime spectra of rings translate into analogous, formally stronger
results concerning coherent frames and frames of radical ideals of rings. Here, we show
that the latter can actually be obtained without Stone Duality, proving them in Zermelo-
Fraenkel set theory and thereby sharpening the original results of Hochster.

Keywords: coherent frame or locale, radical ideal, prime spectrum, spectral space, sup-
port on a ring, Boolean powers

Classification: 0F99, 13A10, 54D80, 54H99

A celebrated result of Hochster [1] says that every spectral space X is home-
omorphic to the prime spectrum SpecA of a commutative ring A with unit, and
that the correspondence X  A such that X ∼= SpecA can even be made func-
torial on certain categories of spectral spaces. From this one obtains, using the
category equivalence between coherent frames and bounded distributive lattices
together with Stone Duality for the latter, that every coherent frame L is isomor-
phic to the frame RIdA of radical ideals of a commutative ring A with unit, again
with a certain measure of functoriality for the correspondence L A.
Now, given that frames — or alternatively their formal duals, locales — have

long been recognized as more fundamental than spaces, it becomes a natural chal-
lenge to derive the latter result without recourse to Stone Duality. The purpose of
this paper is to do just that. Since Stone Duality is equivalent to the Prime Ideal
Theorem for Boolean algebras, we shall achieve this by arguing entirely within
Zermelo-Fraenkel set theory.
The paper is organized as follows: After Section 0 on background, we dis-

cuss the two basic tools employed here, supports (Section 1) and Boolean powers
(Section 2). Supports were originally introduced by Joyal to provide a pointfree
version of the prime spectrum, and hence it is not surprising that they should
become useful here. Boolean powers, on the other hand, play the rôle of rings of
functions when there is no set that may serve as their domain.
After these preparations, obtaining a ring A with prescribed RIdA proceeds

in two different stages: we first deal with the case that the given coherent frame
is finite (Section 3), and then apply the resulting construction to the finite co-
herent subframes of an arbitrary coherent frame to prove the result in general
(Section 4). In addition, we show that the process we use is functorial on the
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category of coherent frames and coherent embeddings, and that every coherent
frame homomorphism occurs in the image of the functor RId.

It should be noted that the results presented here could also be derived from
those of Hochster [1] by using appropriate properties of the functor RId together
with finite Stone Duality (which does hold in Zermelo-Fraenkel set theory), as
will be discussed in more detail in the Concluding Remarks. Nonetheless, there
seems to be some merit in giving a proof ab initio which places the argument
entirely into the algebraic context.

0. Background

For general facts concerning frames and various related ideas we refer to Johnstone
[3]. Here we recount some special results and fix some notation and terminology.

If L is any frame then KL will be the join-subsemilattice of its compact ele-
ments, that is, the c ∈ L such that, for any S ⊆ L, c ≤

∨
S implies c ≤

∨
T for

some finite T ⊆ S. Then, L is called coherent whenever KL generates L and is
a sublattice, including the unit e of L. Further, for coherent frames L and M ,
a homomorphism h : L → M is called coherent provided it maps KL into KM ,
and CohFrm will be the resulting category.

The correspondence L  KL then obviously determines a functor: K :
CohFrm→ D, where the latter is the category of bounded distributive lattices;
moreover, K is a category equivalence, with inverse given by the ideal lattice
functor I.

Every bounded distributive lattice A is a sublattice of a Boolean algebra
B(A) ⊇ A, the Boolean envelope of A, such that the identical embedding A →
B(A) is the reflection map to Boolean algebras, that is, any homomorphism from
A into a Boolean algebra lifts uniquely to B(A). It should be emphasized that
B(A) can be constructed within the congruence lattice of A, and as a result both,
its existence and its reflection property, are certainly assured in Zermelo-Fraenkel
set theory.

Regarding the category Frm of frames in general and the category Top of
topological spaces, we have the spectrum functor Σ : Frm→ Top and the functor
O : Top→ Frm, contravariant and adjoint to each other on the right. Here, ΣL is
the space of all homomorphisms ξ : L → 2, with open sets Σa = {ξ ∈ ΣL | ξ(a) =
1}, and OX the frame of open subsets of X , with the obvious effects on maps.

A spaceX is called spectral whenever the frame OX is coherent andX is sober,
that is, the adjunction map X → ΣOX is a homeomorphism. For spectral spaces
X and Y , a spectral map from X to Y is a continuous map f : X → Y such that
Of : OY → OX is coherent, meaning that f−1(U) is compact whenever U ⊆ Y
is compact open. Letting Spec ⊆ Top be the corresponding category, O induces
a functor Spec→ CohFrm by definition, and assuming the Boolean Prime Ideal
Theorem (PIT) one proves this is a dual equivalence, with inverse provided by Σ.



Radical ideals and coherent frames 351

In that situation, the composite (dual) equivalences

Spec
O
⇆

Σ
CohFrm

K
⇆

I
D

amount to Stone Duality, and this in turn trivially implies PIT.
Now, concerning rings, we let Ann be the category of commutative rings with

unit, using the term “ring” always in this sense. For any ring A, a radical ideal
in A is an ideal J such that for any x ∈ A and natural n, xn ∈ J implies x ∈ J .
In particular, for any ideal I in A,

r(I) = {x ∈ A | some xn ∈ I}

is the smallest radical ideal containing I. We put

[a1, . . . , an] = r(Aa1 + · · ·+Aan)

for any a1, . . . , an ∈ A. Further RIdA will be the set of all radical ideals of A,
partially ordered by inclusion, evidently closed under arbitrary intersections and
hence a complete lattice; more specifically, RIdA is a frame, as one easily derives
from certain properties of the above operator r. In addition, one has the following:

the compact elements of RIdA are exactly the finitely generated radical
ideals [a1, . . . , an],
for any a, b ∈ A, [a] ∧ [b] = [ab] since xn ∈ Aa and xm ∈ Ab implies
xn+m ∈ Aab,
and as a consequence
RIdA is coherent.

Further, the correspondence A  RIdA is functorial, the effect on a ring
homomorphism h : A → B being the map taking each J ∈ RIdA to the radical
ideal of B generated by h[J ].
Another, perhaps more familiar, (contravariant) functor on Ann is the prime

spectrum functor Spec : Ann → Top for which SpecA is the space of prime
ideals P ⊆ A, with basic open sets

Wa = {P ∈ SpecA | a /∈ P} (a ∈ A)

and Spec h : SpecB → SpecA takes inverse images of prime ideals, for any ring
homomorphism h : A → B. Actually, Spec may be defined in terms of RId: one
shows that the prime ideals of A are exactly the prime elements of the frame
RIdA, and this readily leads to a natural equivalence Spec ∼= ΣRId.
Now, if one assumes PIT then one can prove that SpecA is always a spectral

space and Spech always a spectral map so that one actually has a functor Spec :
Ann → Spec; moreover, in this situation OΣ ∼= Id on CohFrm, as remarked
earlier, and consequently RId ∼= O Spec. The significance of RId therefore lies in
the fact that it represents the frame of open sets of the prime spectrum without
any reference to the latter.
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1. Supports

Here, we consider a general device which, though not originally introduced for
that purpose, can be used to detect isomorphisms RIdA → L for A ∈ Ann and
L ∈ CohFrm.
We begin with an auxiliary result on coherent frames.

Lemma 1. A coherent frame homomorphism h : L → M is one-one whenever

h |KL is one-one.

Proof: Given h(a) ≤ h(b), consider any compact c ≤ a. Then h(c) ≤ h(b), and
by coherence there exist compact d ≤ b such that h(c) ≤ h(d), implying c ≤ d by
hypothesis and therefore c ≤ b. Hence, again by coherence, a ≤ b, and it then
follows that h(a) = h(b) implies a = b, as claimed. �

Below, A is any ring and L any bounded lattice.

Definition 1. A support on A, with values in L, is a map d : A → L such that

d(ab) = d(a) ∧ d(b), d(1) = e.(S1)

d(a+ b) ≤ d(a) ∨ d(b), d(0) = 0.(S2)

An obvious example of a support is given by A = C(X), the ring of continuous
real-valued functions on a space X , with

d(u) = Coz(u) = {x ∈ X |u(x) 6= 0}

in the lattice OX of open subsets of X . Somewhat analogously, one has, for any
A, the support d : A → O(SpecA) such that d(a) = Wa. Finally, and most
important for our purpose, the map A → RIdA taking each a ∈ A to its principal
radical ideal [a] is a support, as witnessed by some earlier calculations. We shall
call this the radical support on A.
The following familiar result describes the crucial property of the radical sup-

port; we include a proof for completeness’ sake.

Lemma 2. Any support d : A → L with values in a frame determines a unique
frame homomorphism d̃ : RIdA → L such that d̃([a]) = d(a).

Proof: Put d̃(J) =
∨
{d(a) | a ∈ J}. Then obviously d̃(0) = 0, d̃(A) = e, and for

any radical ideals I and J of A,

d̃(I) ∧ d̃(J) =
∨

{d(a) ∧ d(b) | a ∈ I, b ∈ J} =
∨

{d(ab) | a ∈ I, b ∈ J} ≤ h(I ∩ J),

and hence equality, the reverse inequality being trivial. Next, for any updirected
X ⊆ RIdA,

d̃(
∨

X ) = d̃(
⋃

X ) =
∨

{d(a) | a ∈
⋃

X} =
∨

{
∨

{d(a) | a ∈ J} | J ∈ X}

=
∨

d̃[X ].
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Finally, for the case of binary join, note first that a ∈ I ∨ J iff an ∈ I + J for
some natural n, but also d(an) = d(a); hence

d̃(I ∨ J) =
∨

{d(x+ y) |x ∈ I, y ∈ J} ≤
∨

{d(x) ∨ d(y) |x ∈ I, y ∈ J}

showing that d̃(I ∨ J) ≤ d̃(I) ∨ d̃(J), the non-trivial part of the desired identity.

Hence d̃ is a frame homomorphism, and obviously d̃([a]) = d(a), which implies
uniqueness since the [a] generate RIdA. �

This lemma says that the radical support on a ring A is universal among all
frame-valued supports on A. It also says that the bounded distributive lattice
of all finitely generated radical ideals is exactly the bounded distributive lattice
generated by elements d(a), a ∈ A, subject to the identities (S1) and (S2), where
the latter is sometimes taken as a definition of the universal support (Johnstone
[3, V. 3]). Further, we note in passing that the universality of the radical support
provides a particularly suggestive proof of the functoriality of RIdA: for any ring
homomorphism f : A → B, we have a commuting square

A
[·]A

−−−−→ RIdA

f

y
y([·]Bf)∼

B −−−−→
[·]B

RIdB

since [·]Bf : A → RId is evidently a support.
We are interested in conditions on a support d : A → L which ensure that

d̃ : RIdA → L is an isomorphism.

Definition 2. A support d : A → L, where L is a frame, is called

coherent if all d(a), a ∈ A, are compact,
full if each c ∈ KL is equal to some d(a1) ∨ · · · ∨ d(an),
principal if, for any a and b in A, there exist c ∈ Aa + Ab such that
d(c) = d(a) ∨ d(b),
and
faithful if, for any a, b ∈ A, d(a) ≤ d(b) implies [a] ⊆ [b]. Further, d is
called
perfect if it has all these properties.

Now, we have the desired result:

Lemma 3. For any coherent frame L and perfect support d : A → L, d̃ : RIdA →
L is an isomorphism.

Proof: Since d is coherent and full, d̃ is onto. Hence it will be enough, by
Lemma 1, to show that d̃ is one-one on compact elements, that is, on the finitely
generated radical ideals. Now, d̃([a1, . . . , an]) = d̃([b1, . . . , bm]) means that d(a1)∨
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· · ·∨d(an) = d(b1)∨· · ·∨d(bm), and using induction and the fact that d is principal
we obtain c ∈ Ab1+ · · ·+Abm such that d(b1)∨ · · · ∨d(bm) = d(c); then, for each
i, d(ai) ≤ d(c), hence [ai] ⊆ [c] since d is faithful, and therefore

[a1, . . . , an] ⊆ [c] ⊆ [b1 . . . , bm].

By symmetry, this implies the desired identity. �

Next, we consider the effect of the functor RId on homomorphisms connecting
given supports.

Lemma 4. For any commuting square

A
f

−−−−→ B

dA

y
ydB

L −−−−→
h

M

where f is a ring homomorphism, h a frame homomorphism, and dA and dB are

supports, the corresponding square of frame homomorphisms

RIdA
RIdf

−−−−→ RIdB

d̃A

y
yd̃B

L −−−−→
h

M

commutes.

Proof: In the augmented diagram

AL M

BA

h

dB

f

dA

d̃A d̃B

[·]B[·]A

RIdA
RIdf

RIdB

the outer square, the upper square, and the two triangles commute so that

(hd̃A)[·]A = (d̃BRIdf)[·]A,

and since the image of [·]A generates RIdA, this proves the claim. �

We close with a further result concerning the functor RId, also contained in
Vermeulen [4], proved here for the sake of completeness.
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Lemma 5. RId preserves updirected colimits.

Proof: Let I be any updirected partially ordered set, and

(∗) fik : Ai → Ak (i ≤ k in I)

an I-indexed diagram in Ann with colimit maps fi : Ai → A. Then, in order
to see that the corresponding RIdfi : RIdAi → RIdA are the colimit maps in
CohFrm of the RId-image of the diagram (∗), it will be sufficient to show that
any family di : Ai → L of supports compatible with the maps in (∗) determines
a support d : A → L such that dfi = di for all i: given any coherent homomor-
phisms hi : RIdAi → L compatible with the homomorphisms

RIdfik : RIdAi → RIdAk,

apply this to di = hi[·]Ai
and use Lemma 4. Now, by a familiar property of

updirected colimits of finitary algebras,

Ker (fi) =
⋃

{Ker (fik) | k ≥ i};

hence di is constant on the corresponding cosets so that it determines a support
di : Im (fi)→ L. Here, di = dk | Im (fi) for all k ≥ i, and since A =

⋃
{Im (fi) | i ∈

I} the union of the di is a support d : A → L, obviously of the desired kind. �

2. Boolean powers

Here, we introduce certain rings, obtained as a particular case of a general
construction in Universal Algebra.
Given a Boolean algebra B and a field F , the Boolean power of F by B is the

ring Φ with elements α : F → B such that

(1) α(x) ∧ β(y) = 0 for all x 6= y in F .
(2) α(x) = 0 for all but finitely many x ∈ F .
(3)

∨
{α(x) |x ∈ F} = e.

and operations +, −, ·, zero 0, and unit 1 given by

(α ±
· β)(x) =

∨
{α(y) ∧ β(z) |x = y ±

· z}

0(0) = e, 1(1) = e.

It is a familiar fact that the Boolean powers of any finitary algebra A in the sense
of Universal Algebra satisfy all identities that hold in A, and hence Φ is indeed
a commutative ring with unit.
Note that, for the Boolean algebra BX of the open-closed subsets of a Boolean

(= zero-dimensional compact Hausdorff) space X , the Boolean power of F by
BX is isomorphic to the ring C(X, F ) of all continuous F -valued functions on X ,
F taken discrete, with the usual pointwise operations, the isomorphism taking
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u ∈ C(X, F ) to α ∈ Φ such that α(x) = u−1{x} for each x ∈ F . Of course,
using the Stone Representation Theorem, every Boolean algebra is of the form
BX , and then any Φ is represented as a C(X, F ). The crucial point here is that
even without this representation we can establish all the properties for these rings
which are needed for our purpose.
Rings of functions on a set with values in a field have a natural support, given

by the corresponding cozero sets. We shall now show that there is a perfect
analogue to this in the case of the Boolean powers Φ.
Define d : Φ→ B by

d(α) =
∨

{α(x) |x 6= 0}

for each α ∈ Φ. Also, recall that a field is called real whenever x21 + · · ·x2n = 0
implies xi = 0 for all i. Then we have

Lemma 6. d is a support, and if F is a real field, then d(α2+β2) = d(α)∨d(β)
for all α, β ∈ Φ.

Proof: For any α, β ∈ Φ,

d(αβ) =
∨

{α(y) ∧ β(z) | yz 6= 0} =
∨

{α(y) ∧ β(z) |x, y 6= 0} = d(α) ∧ d(β),

and d(1) = e as 1(1) = e. Further,

d(α+ β) =
∨

{α(y) ∧ β(z) | y + z 6= 0} ≤ d(α) ∧ d(β)

since y + z 6= 0 implies y 6= 0 or z 6= 0 and then α(y) ≤ d(α) or β(z) ≤ d(β) so
that α(y) ∧ β(z) ≤ d(α) ∨ d(β). Finally d(0) = 0 since 0(0) = e.
For the second part of the assertion, we have

d(α2 + β2) =
∨

{α(y1) ∧ α(y2) ∧ β(z1) ∧ β(z2) | y1y2 + z1z2 6= 0}

=
∨

{α(y) ∧ β(z) | y2 + z2 6= 0}

=
∨

{α(y) ∧ β(z) | y 6= 0 or z 6= 0}

= d(α) ∨ d(β),

the second step since y1 6= y2 or z1 6= z2 produce zero terms, and the third step
because F is real.
On any subring of Φ, the restriction of the above d : Φ → B will be called

the standard support. Note that, whenever the field F is real, this will always be
principal in view of the identity d(α2+β2) = d(α)∨d(β). Of course, if the Boolean
algebra is BX for some Boolean space X , then the isomorphism between Φ and
C(X, F ) makes the standard support on Φ correspond exactly to the support
C(X, F )→ BX given by taking cozero sets.
Next, we introduce a conditional division in Φ analogous to that in the case of

functions.
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Definition 3. For α, β ∈ Φ such that d(α) ≤ d(β), α#β is given by

α#β(x) =
∨

{α(y) ∧ β(z) |x = yz−1, z 6= 0} (0 6= x ∈ F )

α#β(0) = α(0).

We have to check that α#β does in fact belong to Φ.
Given any x 6= x′, consider first the case when x 6= 0 6= x′. Then

α#β(x) ∧ α#β(x′)

=
∨

{α(y) ∧ β(z) ∧ α(y′) ∧ β(z′) |xz = y, x′z′ = y′, z 6= 0 6= z′}

= 0

since y 6= y′ or z 6= z′ because x 6= x′. On the other hand, for x 6= 0 and x′ = 0
we have

α#β(x) ∧ α#β(0) =
∨

{α(y) ∧ β(z) ∧ α(0) |x = yz−1, z 6= 0}

= 0

since x 6= 0 implies y 6= 0. In all, this establishes the first condition.
Next, α#β(x) 6= 0 means that α(y) ∧ β(z) 6= 0 for some y and z 6= 0 such

that x = yz−1, and since there are only finitely many y and z at all for which
α(y), β(z) 6= 0, there can only be finitely many such x.
Finally,

∨
{α#β(x) |x ∈ F} = α(0) ∨

∨
{α(y) ∧ β(z) | y, z 6= 0}

= α(0) ∨ (d(α) ∧ d(β)) = α(0) ∨ d(α) = e,

the step next to the last because d(α) ≤ d(β). �

The following gives some of the basic properties of this operation, showing in
particular that it is indeed a form of division.

Lemma 7. (1) d(α#β) = d(α).
(2) (α#β)β = α whenever d(α) ≤ d(β).
(3) (βγ)#β = γ whenever d(γ) ≤ d(β).

Proof: (1) By definition, α#β(0) = α(0), and for any γ ∈ Φ, d(γ) is obviously
the complement of γ(0).

(2) For any x 6= 0 in F ,

(α#β)β(x) =
∨

{α#β(y) ∧ β(z) |x = yz}

=
∨

{α(u) ∧ β(v) ∧ β(z) |x = uv−1z, v 6= 0}

=
∨

{α(x) ∧ β(z) | z 6= 0}

= α(x) ∧ d(β) = α(x),
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the third step since β(v) ∧ β(z) = 0 whenever v 6= z, and the final step because
α(x) ≤ d(α) ≤ d(β). Further,

(α#β)β(0) =
∨

{α(0) ∧ β(z) | z ∈ F} ∨
∨

{α#β(y) ∧ β(0) | y ∈ F}

= α(0) ∨ β(0) = α(0),

the last step since d(α) ≤ d(β) implies β(0) ≤ α(0).

(3) For any x 6= 0 in F

(βγ)#β(x) =
∨

{βγ(y) ∧ β(z) |x = yz−1, z 6= 0}

=
∨

{β(u) ∧ γ(v) ∧ β(z) |x = uvz−1, z 6= 0}

=
∨

{γ(x) ∧ β(z) | z 6= 0}

= γ(x) ∧ d(β) = γ(x),

the last step since γ(z) ≤ d(γ) ≤ d(β). Further

(βγ)#β(0) = βγ(0) =
∨

{β(y) ∧ γ(z) | 0 = yz}

= β(0) ∨ γ(0) = γ(0),

again because d(γ) ≤ d(β). �

We close this section with the remark that, for any homomorphism h : C → B
between Boolean algebras, one has a homomorphism Φ → Ψ from the Boolean
power Φ of F by C to the Boolean power Ψ of F by B, taking any α ∈ Φ to
the composite hα: clearly, hα ∈ Ψ and the correspondence α  hα obviously
preserves all the operations.

3. Finite distributive lattices

In this section, we construct, for any given finite distributive lattice M , a ring
whose lattice of radical ideals is isomorphic to M . We begin with some lattice
theoretical preparations.
Let H be the set of all lattice homomorphisms ξ : M → 2, with pointwise

partial order, and B ⊇ M the Boolean envelope of M . Then the properties of
the latter ensure that each ξ ∈ H uniquely extends to a homomorphism B → 2,
again denoted by ξ. The following provides a characterization of M within B in
terms of the action of the ξ ∈ H .

Lemma 8. For any c ∈ B, c ∈ M iff ξ(c) ≤ ζ(c) for all ξ ≤ ζ in H .

Proof: For each a ∈ M , let Ha = {ξ ∈ H | ξ(a) = 1}. Then, for any ξ ∈ H ,

↑ ξ = {ζ ∈ H | ξ ≤ ζ} = Hs,
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where s =
∧
{t ∈ M | ξ(t) = 1} : ξ(s) = 1 since M is finite, hence ↑ ξ ⊆ Hs while

ζ(s) = 1 implies that ζ(t) = 1 whenever ξ(t) = 1, for all t ∈ M , but this means
ξ ≤ ζ, showing that Hs ⊆↑ ξ.
Next, for c ∈ B as in the lemma, put

U = {ξ ∈ H | ξ(c) = 1}.

Then ξ ∈ U implies ζ ∈ U for all ζ ≥ ξ by hypothesis, and therefore

U =
⋃

{↑ ξ | ξ ∈ U}.

Now, the map a  Ha is a lattice homomorphism from M into the power set
of H , and hence U = Ha for some a ∈ M , again by finiteness. This says that
ξ(c) = 1 iff ξ(a) = 1, for all ξ ∈ H , and since the ξ ∈ H separate the elements of
B we conclude that c = a and thus c ∈ M .
Now, let F = Q(za | a ∈ M) be the field of rational functions over Q in

indeterminates za such that a  za is one-one, and Φ the Boolean power of F
by B. Note that F is a real field so that the standard support is principal on each
subring of Φ.
Any α ∈ Φ gives rise to an F -valued function α̂ on H such that

α̂(ξ) = x iff ξ(α(x)) = 1,

for all ξ ∈ H and x ∈ F , and the correspondence α  α̂ is an isomorphism
Φ→ FH , essentially the finite case of the isomorphism C(X, F )→ Φ mentioned
earlier. Where convenient, we shall also use α(ξ) instead of α̂(ξ), par abus de
langage. We note some simple facts: For any α, β ∈ Φ and ξ, ζ ∈ H :

(i) ξ(d(α)) = 1 iff α(ξ) 6= 0.
(ii) If d(α) ∈ M and α(ξ) 6= 0, then also α(ζ) 6= 0 for all ζ ≥ ξ.
(iii) If d(α) ≤ d(β), then

α#β(ξ) =

{
α(ξ)/β(ξ) (β(ξ) 6= 0)

0 (β(ξ) = 0)

where the top part results from the identity (α#β)β = α, and the bottom
part from the fact that β(0) ≤ α(0) = α#β(0) and β(ξ) = 0 means
ξ(β(0)) = 1.

The desired ring A for which RIdA ∼=M will be constructed as a subring of Φ
such that the standard support on A maps A into M and is perfect. Since M is
finite and d is principal on any subring of Φ, this just means that d must map A
onto M and be faithful.
An obvious subring of Φ which is mapped onto M by the standard support is

given as follows: For each a ∈ M , let σa ∈ Φ be defined by

σa(za) = a and αa(0) =∼ a,
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and put P = Q[σa | a ∈ M ] where Q ⊆ Φ is understood as the ring of constants
mapping λ to e, for every rational number λ. Note that σa1σa2 . . . σan

= 0 iff
a1 ∧ a2 ∧ · · · ∧ an = 0. Further, for any ξ ∈ H ,

σ̂a(ξ) =

{
za (ξ(a) = 1)

0 (ξ(a) = 0),

that is, σ̂a is the F -valued function on H with value za on Ha and value 0 on its
complement, a kind of characteristic function of Ha with its own distinctive label.

For any τ ∈ P , τ = Σλσk1
a1 · · ·σ

kn
an
with non-zero distinct monomials σk1

a1 · · ·σ
kn
an

and non-zero coefficients λ ∈ Q. The individual λσk1
a1 · · ·σ

kn
an
occurring here are

uniquely determined by τ if the corresponding sequences (a1, k1), . . . , (an, kn)

are taken distinct and all exponents ki > 0: if Σλσk1
a1 · · ·σ

kn
an
= 0, focus on one

particular term, say µσℓ1
b1

· · ·σℓm

bm
, and take any ξ ∈ H such that ξ(b1∧· · ·∧bm) = 1;

then
Σλξ(a1 ∧ · · · ∧ an)z

k1
a1 · · · z

kn

an
= 0

where no cancellations are possible since the monomials zk1
a1 · · · z

kn
an
are all distinct,

and as µzk1
b1

· · · zkn

bm
occurs here, we have µ = 0. We call the elements λσk1

a1 · · ·σ
kn
an

the summands of τ and the corresponding expression for τ its reduced represen-
tation.
To determine the values of the standard support on P , note that trivially

d(σa) = a and hence d(σk1
a1 · · ·σ

kn
an
) = a1 ∧ · · · ∧ an. In general one has

(#) d(τ) =
∨

{a1 ∧ · · · ∧ an | all summands λσk1
a1 · · ·σ

kn

an
of τ}.

Here, ≤ is obvious by the general properties of supports, and ≥ follows by con-

sidering τ(x) for x = Σλzk1
a1 · · · z

kn
an
corresponding to the reduced representation

of τ : d(τ) ≥ τ(x) since x 6= 0, and τ(x) is clearly above the join in (#).
The ring P is obviously the most natural starting point for constructing a ringA

for which RIdA ∼= M , but unfortunately P itself is not good enough: Whenever
M 6= 2 d is not faithful on P . If 0 < a < b in M , then d(σa) ≤ d(σb) but if
σa ∈ [σb], that is, σ

n
a = τσb for some natural n and τ ∈ P , then zn

a = τ̂ (ξ)zb for any
ξ ∈ H with ξ(a) = 1, and this cannot hold in the polynomial ring Q[za | a ∈ M ].
On the other hand, it is not possible to mend this defect just by iteratively
adjoining all α#β for α, β, with d(α) ≤ d(β): already at the first step, the crucial
property that the standard support takes only values in M is lost. For instance,
if γ = σa#σa then γ(1) = a and γ(0) =∼ a so that d(1− γ) =∼ a, and unless M
is Boolean there are a ∈ M for which ∼ a /∈ M . Of course, removing an instance
of violated faithfulness does not require adjoining α#β, for d(α) ≤ d(β) — any
other αn#β would do equally well; on the other hand, whenever d(α) ≤ d(β) and
αn = τβ for some n and τ , then necessarily τ = αn#β, and hence adjoining some
suitable αn#β is in fact the only way to proceed here. The obvious problem, then,
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is how to make the right choice of n, and we now describe a method, essentially
due to Hochster [1], to deal with this.
Recall that, on any field, an additive (discrete) valuation is a map v into

Z ∪ {∞} such that

v(xy) = v(x) + v(y),

v(x + y) = min{v(x), v(y)},

v(x) =∞ iff x = 0,

where ∞ ≥ m for all m ∈ Z, and the obvious rules for + hold with respect to ∞.
In the present context, we consider the valuation vξ on F , for each ξ ∈ H , given
by the condition

vξ(za) = 1− ξ(a)

so that
vξ(z

k1
a1 · · · z

kn

an
) = Σki(1− ξ(ai))

and for any
u = Σλzk1

a1 · · · z
kn

an

with distinct monomials and non-zero λ,

vξ(u) = min{Σki(1− ξ(ai)) | all monomials of u}.

The notions that will provide a way of dealing with the problem indicated above
are now given by

Definition 4. (1) α ∈ Φ is called admissible if d(α) ∈ M and, for all ξ ≤ ζ in
H , vξ(α(ζ)) ≥ 0, equality holding iff α(ξ) 6= 0.
(2) α, β ∈ Φ are compatible if d(α) ≤ d(β) and α#β is admissible.
(3) A subring A of Φ is called admissible if all α ∈ A are admissible.

The two separate conditions in (1) will be referred to as the support condition
and the valuation condition.

As a first result in this context we now have

Lemma 9. P is admissible.

Proof: Since the support condition has already been verified we only have to
deal with the valuation condition, which in fact is very easily done: for any

τ = Σλσk1
a1 · · ·σ

kn
an
in its reduced representation and any ξ ≤ ζ in H ,

vξ(τ(ζ)) = vξ

(
Σλζ(a1 ∧ · · · ∧ an)z

k1
a1 · · · z

kn

an

)

= min{Σki(1− ξ(ai)) | ζ(a1 ∧ · · · ∧ an) = 1}

is always non-negative; further, it is zero iff ξ(a1∧· · ·∧an) = 1 for some summand
of τ (using ξ ≤ ζ for “if”), which in turn holds iff τ(ξ) 6= 0. �

Next, we establish the crucial result that the notions of admissibility and com-
patibility provide the desired check on the adjunction of conditional quotients.
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Lemma 10. For any admissible subring A of Φ, if α, β ∈ A are compatible, then
A[α#β] is again admissible.

Proof: Consider any τ = α0 + α1(α#β) + · · ·+ αm(α#β)m in A[α#β]. Using
Lemma 8 to prove d(τ) ∈ M , it has to be shown that, for all ξ ≤ ζ in H ,
ξ(d(τ)) ≤ ζ(d(τ)), or equivalently, ξ(d(τ)) = 0 whenever ζ(d(τ)) = 0, which
in turn means τ(ξ) = 0 whenever τ(ζ) = 0. Now, put γ = τβm = αoβ

m +
α1αβm−1+· · ·+αmαm. Then τ(ζ) = 0 implies γ(ζ) = 0, hence also γ(ξ) = 0 since
γ ∈ A so that γ is admissible, and therefore τ(ξ) = 0 or β(ξ) = 0. Suppose, then,
τ(ξ) 6= 0 and consequently β(ξ) = 0. It follows that α(ξ) = 0 since d(α) ≤ d(β),
therefore α#β(ξ) = 0, and hence τ(ξ) = α0(ξ), showing that α0(ξ) 6= 0. Next,
γ(ζ) = 0 implies

−α0(ζ)β(ζ)
m = α1αβm−1(ζ) + · · ·+ αmαm(ζ),

and since α0(ξ) 6= 0 we have vξ(α0(ζ)) = 0 by admissibility, which leads to

mvξ(β(ζ)) ≥ min{vξ(αi(ζ)) + ivξ(α(ζ)) + (m − i)vξ(β(ζ)) | i = 1, . . . , m}

≥ kvξ(α(ζ)) + (m − k)vξ(β(ζ))

for some k 6= 0, the second step since all vξ(αi(ζ)) ≥ 0 by admissibility. With the
obvious cancellations we then obtain vξ(β(ζ)) ≥ vξ(α(ζ)) and therefore equality
because α#β is admissible. For the same reason, we further have α#β(ξ) 6= 0,
hence α(ξ) 6= 0, therefore also β(ξ) 6= 0, and consequently τ(ξ) = 0. In all, this
shows that τ(ξ) = 0, as desired, proving the support condition for τ . �

To verify the valuation condition for τ , given as above, note that the inequality

(§) vξ(τ(ζ)) ≥ min{vξ(αk(α#β)k(ζ)) | k = 0, 1, . . . , n}

shows trivially that vξ(τ(ζ)) ≥ 0 since all αk and α#β are admissible. For
equality, we consider two cases:

Case β(ξ) 6= 0. Then vξ(β(ζ)) = 0 since β is admissible, therefore vξ(τ(ζ)) =
vξ(γ(ζ)) since γ = τβm, and hence vξ(τ(ζ)) = 0 iff vξ(γ(ζ)) = 0 iff γ(ξ) 6= 0 since
γ is admissible, and this holds iff τ(ξ) 6= 0 since β(ξ) 6= 0.

Case β(ξ) = 0. Here, α#β(ξ) = 0 and hence τ(ξ) = α0(ξ). Now, if τ(ξ) = 0,
then all terms on the right hand side of (§) are positive and hence vξ(τ(ζ)) > 0.
On the other hand, if τ(ξ) 6= 0, then α0(ξ) 6= 0 and therefore vξ(α0(ζ)) = 0,
while all other terms involved are positive; by a general property of valuations,
this implies vξ(τ(ζ)) = 0.

This lemma provides only one part of what is needed to enforce faithfulness of
the standard support by appropriate adjunction; the other part is given by
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Lemma 11. For any admissible α, β ∈ Φ such that d(α) ≤ d(β), there exists
a natural number m for which αm, β are compatible.

Proof: First, take a natural number k such that vξ(β(ζ)) ≤ k for all ξ ≤ ζ
such that β(ζ) 6= 0, and then a natural number m such that k < mvξ(α(ζ)) for
all ξ ≤ ζ such that vξ(α(ζ)) > 0. We claim that αm, β, are compatible. The
support condition is trivial since d(αm#β) = d(αm) = d(α) and α is admissible.
Concerning the valuation condition, take any ξ ≤ ζ in H . If αm#β(ξ) = 0,
then α(ξ) = 0 so that vξ(α(ζ)) > 0 by admissibility. Now, if β(ζ) 6= 0, then
vξ(β(ζ)) ≤ k < mvξ(α(ζ)) by the choice of k and m and hence

vξ(α
m#β(ζ)) = mvξ(α(ζ)) − vξ(β(ζ)) > 0.

On the other hand, if β(ζ) = 0, then αm#β(ζ) = 0 and vξ(α
m#β(ζ)) = ∞ >

0. Further, if αm#β(ξ) 6= 0, then α(ξ) 6= 0 and β(ξ) 6= 0, hence vξ(α(ζ)) =
vξ(β(ζ)) = 0 by admissibility, and therefore vξ(α

m#β(ζ)) = 0. �

Definition 5. A subring A of Φ is called completely admissible whenever A is
admissible, P ⊆ A, and α#β ∈ A for any compatible α, β ∈ A.

That this is the type of ring we are looking for is given by

Lemma 12. For any completely admissible subring A of Φ, the standard support
induces an isomorphism RIdA → M .

Proof: Since P ⊆ A, d maps A onto M . On the other hand, Lemma 11 ensures
that, for any α, β ∈ A such that d(α) ≤ d(β), αm#β ∈ A for some m, and
therefore [α] ⊆ [β]. As noted earlier, this makes d : A → M a perfect support and
hence the result, by Lemma 3. �

Finally, it is now obvious how to obtain a completely admissible subring of Φ.
For any admissible subring A of Φ let A′ be the extension obtained by adjoining
all α#β for compatible α, β ∈ A. Then A′ is the union of the extensions of A by
any finite set of these α#β, and since each of these is admissible by Lemma 10,
A′ is again admissible. Further if we define

A0 = A, An+1 = A′
n, A# =

⋃
An,

then A# is admissible and obviously closed under forming α#β for any compatible
α, β ∈ A#. In particular, Q = P# is completely admissible, and we arrive at

Proposition 1. The standard support induces an isomorphism RIdQ → M .

Remark. There is a variant of the construction of the above Q for a given finite
distributive lattice M which does not start with M itself but with a homomor-
phism h : N → M onto M from some other finite distributive lattice. This
proceeds as follows: Let C ⊇ N and B ⊇ M be the Boolean envelopes, regarding
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h also as the corresponding homomorphism C → B, take F , Φ, P , and Q as
defined above, but now for the lattice N , and consider the Boolean power Ψ of F
by B. Further, we let H(N) and H(M) be the sets of homomorphism into 2 from
N and M respectively. Obviously, each α ∈ Ψ determines an F -valued function
α̂ on H(M) where, as before,

α̂(ξ) = x iff ξ(α(x)) = 1,

for each ξ ∈ H(M) we have a discrete valuation wξ on F determined by

wξ(za) = 1− ξ(h(a)) (a ∈ N).

The latter can then be used to define α ∈ Ψ admissible, α, β ∈ Ψ compatible,
and subrings A ⊆ Ψ admissible in exact analogy with Definition 4. Further, we

have the subring P (h) of Ψ generated by the elements σ
(h)
a ∈ Ψ defined by

σ
(h)
a (za) = h(a), σ

(h)
a (0) =∼ h(a) (a ∈ N)

and it is easily seen that the counterparts of Lemmas 9–12 all hold in the present
setting. As a result, an iterative adjunction of the appropriate conditional quo-

tients, starting from P (h), leads to a subring Q(h) of Ψ on which the standard
support is M -valued perfect.
Now, as observed in Section 2, there is a ring homomorphism Φ→ Ψ taking α

to ᾱ = hα, and since σ̄a = σ
(h)
a , this maps P into P (h). Furthermore, interpreting

the elements of Φ and Ψ as F−valued functions, we have ᾱ(ξ) = α(ξh), for any
α ∈ Φ and ξ ∈ H(M), and hence also

wξ(ᾱ(ζ)) = vξh(α(ζh)),

for any ξ ≤ ζ in H(M). This immediately implies that the homomorphism Φ→ Ψ
takes admissible elements in Φ to admissible elements in Ψ, and compatible pairs
to compatible pairs (the latter since ᾱ#β̄ = α#β), so that it induces a homomor-

phism Q → Q(h). As a result, we have a commuting square

Q −−−−→ Q(h)

d

y
yd

N −−−−→
h

M

for the standard supports on Q and Q(h), and by Lemma 4 this leads to the
commuting square

RIdQ −−−−→ RIdQ(h)

d̃

y
yd̃

N −−−−→
h

M
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of frame homomorphisms where both d̃ are isomorphisms.
We note in addition that the properties of h as a lattice homomorphism only

come into play here when the ring homomorphism Φ → Ψ, with the resulting

Q → Q(h) is considered. Hence for any set map ϕ : E → M onto M , there is

a corresponding ring Q(ϕ), subring of the Boolean power of the rational function
field Q(zs |x ∈ E) in indeterminants zs, s ∈ E, by the Boolean envelope of M ,

for which the standard support determines an isomorphism RIdQ(ϕ) → M .

4. The general case

We now turn to an arbitrary coherent frame L, letting B ⊇ K be the Boolean
envelope of the lattice K = KL of its compact elements, F the rational function
field Q(za | a ∈ K) in indeterminants za corresponding to the elements of K, and
Φ the Boolean power of F by B. The basic idea here is to view the construction
carried out in the previous section, for each finite sublattice of K, as taking place
within the one ring Φ, and then to obtain the ring desired here for L as the union
of these subrings. In this vein, we introduce the following for any finite sublattice
M ⊆ K:

its Boolean envelope B(M) ⊆ B;

the subfield FM of F generated by the za, a ∈ M ;

the subring ΦM of Φ consisting of all α ∈ Φ such that α(x) ∈ B(M) for
each x ∈ F and α(x) = 0 whenever x /∈ FM ; and

the subring PM of ΦM generated by the elements σa, a ∈ M , defined in
Φ by the same condition as before.

Note that ΦM is essentially the Boolean power of FM by B(M), and that the
standard support on Φ induces the standard support on ΦM .
We shall refer to the notions introduced in the previous section for M by

a corresponding index or prefix as follows:

For any ξ ∈ H(M), we have the discrete valuation vM
ξ on FM , and we call

α ∈ ΦM M -admissible if d(α) ∈ M and, for all ξ ≤ ζ inH(M), vM
ξ (α(ζ)) ≥

0, equality holding iff α(ξ) 6= 0;

α, β ∈ ΦM M -compatible if d(α) ≤ d(β) and α#β is M -admissible;

a subring A ⊆ ΦM M -admissible if all α ∈ A are M -admissible.

It is then obvious that, for any finite sublattices M and N of K such that
M ⊆ N , we have

FM ⊆ FN , ΦM ⊆ ΦN , PM ⊆ PN .

Note that, by the middle inclusion, each α ∈ ΦM determines functions α̂M and
α̂N on H(M) and H(N), respectively. Further, we have the map H(N)→ H(M)
by restriction. Next, we show that the relation between the M -concepts and the
N -concepts in this situation is as expected.
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Lemma 13. (1) For any ξ ∈ H(N), vM
ξ |M = vN

ξ |FM .

(2) For any α ∈ ΦM and ξ ∈ H(N), α̂N (ξ) = α̂M (ξ |M).

Proof: (1) Obvious.

(2) By definition, α̂N (ξ) = x iff ξ(α(x)) = 1 while α̂M (ξ |M) = x iff
(ξ |M)(α(x)) = 1, and for α ∈ ΦM these are the same conditions.

Corollary. (1) Any M -admissible α ∈ ΦM is also N -admissible.
(2) Any M -compatible α, β ∈ ΦM are also N -compatible.

Proof: (1) For such α, d(α) ∈ M and, for any ξ ≤ ζ in H(M), vξ(α̂M (ζ)) ≥ 0,
equality holding iff α̂M (ξ) 6= 0. Then also d(α) ∈ N since M ⊆ N , and for any
ξ ≤ ζ in H(N), ξ |M ≤ ζ |M in H(M) so that

vN
ξ (α̂N (ζ)) = vM

ξ |M (α̂M (ζ |M)) ≥ 0,

equality holding iff α̂M (ξ |M) 6= 0 and hence, equivalently, iff α̂N (ξ) 6= 0. Thus,
α is N -admissible.

(2) Obvious, by (1). �

As an immediate consequence of the above we have, with the same notation
regarding the adjunction of conditional quotients as in the previous section: For
anyM -admissible subring A ⊆ ΦM , andN -admissible subring B ⊆ ΦN , if A ⊆ B,
then A′ ⊆ B′, and consequently also A# ⊆ B#. In particular, PM ⊆ PN implies

QM ⊆ QN for QM = P#M and QN = P#N , and since any two finite sublattices of
K generate a finite sublattice, the QM form an updirected set of subrings of Φ
so that their union Q is a subring of Φ. Now, by the properties of the standard
supports of the QM , it is obvious that, on Q, the standard support is a perfect
support Q → L, and hence we have the desired general result:

Proposition 2. The standard support induces an isomorphism RIdQ → L.

We close this section with a couple of results concerning the functor RId which
correspond to certain results of Hochster [1].

For any coherent frame L, let now QL be the ring constructed above and
dL : QL → L the standard support. Then we have

Proposition 3. For coherent embeddings, the correspondence L QL is func-

torial such that the isomorphisms d̃L : RIdQL → L are natural in L.

Proof: For any coherent frame L, let FL be the field of rational functions over
Q in indeterminates za, a ∈ KL, and ΦL the Boolean power of FL by B(KL).
Then any coherent embedding h : L → M induces the following:

a lattice embedding KL → KM , and hence also a lattice embedding
B(KL)→ B(KM);

a field embedding FL → FM taking each indeterminate za ∈ FL to zh(a) ∈
FM ;
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a ring embedding ΦL → ΦM resulting from (1) and (2), taking α ∈ ΦL to
ᾱ : FM → B(KM) which has value 0 outside the image of FL and sends
each y in that image, coming from x ∈ FL, to the image of α(x) by the
embedding B(KL)→ B(KM).

Now, QL is defined as the union of certain subrings of ΦL which, in turn, are
determined by the finite sublattices of KL, and it is clear that the embedding
ΦL → ΦM takes each of these to a subring of ΦM that occurs in the definition of
QM and hence provides an embedding Qh : QL → QM . Obviously, the resulting
correspondence h Qh preserves composites and identity maps so that we have
the desired functor. The remaining claim results from Lemma 4 and the fact that
the diagram

QL
Qh

−−−−→ QM

dL

y
ydM

L −−−−→
h

M

commutes:

hdL(α) = h
(∨

{α(x) | 0 6= x ∈ FL}
)
=

∨
{h(α(x)) | 0 6= x ∈ FL}

=
∨

{ᾱ(y) | 0 6= y ∈ FM} = dMQh(α).

Note that an immediate consequence of Proposition 3 is that up to isomor-
phism, any coherent embedding lies in the image of the functor RId. In actual
fact, though, we have

Proposition 4. Every coherent homomorphism occurs in the image of RId, up
to isomorphism.

Proof: Given any coherent h : L → M , we use the factorization

L
h̄
−→ L × M

p
−→ M,

a (a, h(a)), (a, b) B,

noting that both, h̄ and p are coherent since K(L × M) = KL × KM . Here, the
embedding h̄ is realized by the corresponding Qh̄ : QL → QL×M in the proof of
Proposition 3, and the result will follow if we can produce a ring homomorphism
f : QL×M → A which fits into a commuting square

QL×M
f

−−−−→ A

d

y
yd̄

L × M −−−−→
p

M
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where d̄ is a perfect support. This can be done as follows: More generally, for
any coherent onto homomorphism h : N → M , the finite sublattices M0 of KM
are exactly the images by h of the finite sublattices N0 of KN , and to each such
situation N0 → M0 the argument in the Remark following Proposition 1 applies.
Combined with the procedure in the proof of Proposition 2, this determines a sub-

ring Q
(h)
M of the Boolean power of the field FN by B(KM) such that the standard

support d : Q
(h)
M → M is perfect, and the ring homomorphism induced by h be-

tween the two Boolean powers involved maps QN into Q
(h)
M . It follows that the

commuting square

QN −−−−→ Q
(h)
M

d

y
yd

N −−−−→
h

M

is of the desired kind.

Concluding remarks

As mentioned already in the introduction, it is entirely possible to derive the
results presented here from the results of Hochster [1] without recourse to PIT,
and we now give an outline of the arguments involved.
The following categories enter into this:

Specon – spectral spaces and onto spectral maps,

FSpecon – the full subcategory of this given by the finite spectral spaces
(which are just the finite T0 spaces),

FSpec – finite spectral spaces and all continuous maps,

FD – finite distributive lattices and their homomorphisms,

FDmon – the subcategory of this given by the monomorphisms.

Then, the usual functors Σ and O induce a dual equivalence

FD
Σ
⇆

O
FSpec,

the finite part of Stone Duality, which is valid without any choice principles. This,
in turn, restricts to a dual equivalence between FDmon and FSpecon.
Now, it is shown in [1] that the construction of a ring RX with a given spectrum

X can be made (contravariantly) functorial on Specon such that the resulting
homeomorphisms SpecRX → X are natural in X . In particular, this leads to the
composite functor

S : FDmon
Σ
−→ FSpecon

R
−→ Ann.

At this place, it is obviously crucial to know that the arguments in [1] required
here are independent of PIT. Now, it is true that [1] makes no distinction between
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the radical ideal generated by some finite subset B of a ring and the intersection of
all prime ideals containing B — which precisely amounts to PIT — but a careful
reading shows that using the former notion in the relevant places will work for all
the steps needed here.
Next, for any coherent frame L, let FL be the partially ordered set of all finite

sublattices of KL, viewed as a diagram in FDmon, and put A = lim→ S(FL)
(the existence of which poses no problem). Since this is an updirected colimit, it
follows from Lemma 5 that

RIdA = lim
→

RIdS(FL)

in CohFrm. On the other hand, the diagram RIdS(FL) in FDmon is equivalent
to the original diagram FL in view of the natural isomorphisms

ΣRIdX → SpecRX → X

in FSpecon and the fact that OΣ ∼= Id on FDmon. Finally, by the equivalence
between D and CohFrm, we also have L = lim→FL in CohFrm, showing that
RIdA = L, as desired.
We note that the additional results on functoriality can be obtained along

similar lines.
All this obviously amounts to a formidably circuitous route, and it therefore

seemed worthwhile to present an argument which is straightforward and selfcon-
tained. Of course,as already mentioned parenthetically, the present results are
stronger than the original ones: the natural isomorphisms SpecA ∼= ΣRIdA on
Ann and ΣOX ∼= X on Spec applied to the former immediately yield the latter.
An alternative, rather different way to obtain Proposition 2 is to circumvent

the question of spatiality of the given L by transforming the necessary parts of
Hochster’s original argument into the topos E of sheaves on the patch frame of
L, that is, the frame of ideals of the Boolean envelope B(KL) which we used in
Section 3. One point about this is that the ring Φ we employ here is actually the
ring of global sections of a ring in the topos E, and instead of the subrings of Φ
used here in the construction of the ultimately desired ring one can first consider
the corresponding rings in E which somehow widens the scope. An outline of this
approach is presented in Vermeulen [4].
Actually, the version of Hochster’s Theorem dealt with there, which aims at

constructive validity in the sense of topos theory, has a slightly more elaborate
formulation: it says that, for any coherent frame L, there exists an algebra A over
the rationals such that RIdA ∼= L whenever KL can be indexed by a decidable
set E, that is, there exists an onto map E → KL, where E is decidable. It may
be that the approach presented here yields the same result, but that crucially
depends on the question whether Lemma 8 is constructively valid. We did not
pursue this point.
As a final observation of a very different nature, we note that Proposition 2

offers an alternative proof for the result of Hodges [2] that the Axiom of Choice
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follows from the Maximal Ideal Theorem for rings: by that proposition, the latter
implies its counterpart for bounded distributive lattices, and that, in turn, is well-
known to imply the Axiom of Choice. Of course this does not detract from the
merits of the direct proof in [2], but it places the result into an illuminating wider
context.

Acknowledgements. An earlier version of this paper was written, and presented
in seminar talks, during a visit to the Categorical Topology Research Group at
the University of Cape Town, September–November 1992. Financial assistance
from that group is gratefully acknowledged. Also, thanks are due to the Natural
Sciences and Engineering Research Council of Canada for continuing support in
the form of a Research Grant.

References

[1] Hochster M., Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142
(1969), 43–60.

[2] Hodges W., Krull implies Zorn, J. London Math. Soc. 19 (1979), 285–287.
[3] Johnstone P.T., Stone Spaces, Cambridge University Press, Cambridge, 1982.
[4] Vermeulen J.J.C., A localic proof of Hochster’s Theorem, unpublished draft, University of
Cape Town, 1992.

McMaster University, Department of Math. Sciences, Hamilton, Ont. L8S 4K1,

Canada

(Received March 27, 1995)


		webmaster@dml.cz
	2012-04-30T16:23:32+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




