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A sufficient condition of full normality

Tomáš Kaiser

Abstract. We present a direct constructive proof of full normality for a class of spaces
(locales) that includes, among others, all metrizable ones.

Keywords: paracompactness (full normality), uniform locales, metrizability

Classification: 54D20, 54E15, 06D10

Paracompactness of a topological space is equivalent to a range of other proper-
ties. Among them is full normality, introduced by Tukey in [11]. The equivalence
was proved by A.H. Stone in [9]. In this paper, we investigate full normality in
pointfree setting.
All metrizable locales are known to be fully normal. Our investigation was

motivated originally by the aim to show as directly as possible how the existence of
a countable admissible system of covers (the metrizability) provides an arbitrary
cover with a star-refinement (the full normality). It turned out that the point
is in the existence of a (downwards) well-ordered admissible system of covers,
countability being a special case. If a well-ordered admissible system exists then
we can present an explicit formula for a star-refinement of a given cover. The
proof is constructive in the sense that it uses neither the axiom of choice nor the
law of excluded middle.

1. Preliminaries

A locale is a complete lattice satisfying the distributivity law

∨

i∈J

(xi ∧ y) = (
∨

i∈J

xi) ∧ y.

An example is the lattice ΩX of all open sets of a topological space X . Another
example is a complete Boolean algebra. For more detail on locales, the reader can
consult [2].
Let L be a locale. A cover of L is a subset C of L such that

∨
C equals the

unit 1. In the rest of this section, C, D will denote covers of L. We say that C
refines D, and write C ≤ D, if for each c ∈ C there exists d ∈ D such that c ≤ d.
For arbitrary covers C, D we put C ∧ D = {c ∧ d | c ∈ C, d ∈ D}. This is a cover
by virtue of the distributivity law; it refines both C and D.
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Let x ∈ L. Put
C · x =

∨
{c ∈ C | c ∧ x 6= 0}.

(Cf. [5].) This element is called the star of x under C. One usually writes Cx
instead of C · x.
Further, define

x/C =
∨

{y ∈ C | Cy ≤ x}.

Sometimes we will omit parentheses in expressions like

(. . . (x/C1)/C2 . . . )/Cn.

For instance, x/C/D = (x/C)/D.
We list some properties of these operations. They follow immediately from the

definitions.

Fact 1.1. (1) x ≤ Cx and x/C ≤ x,
(2) if x ≤ y then Cx ≤ Cy and x/C ≤ y/C,
(3) Cx ≤ y iff x ≤ y/C,
(4) x ≥ C(x/C) and x ≤ (Cx)/C,
(5) C(

∨
i∈J xi) =

∨
i∈J (Cxi),

(6) if C ≤ D then Cx ≤ Dx and x/C ≥ x/D.

Define C ·D = {Cd | d ∈ D} (cf. [4]). By (1) of Fact 1.1, we obtain a cover as∨
d∈D Cd ≥

∨
d∈D d = 1.

Observation 1.2. If C ≤ C′ and D ≤ D′ then C · D ≤ C′ · D′.

As an operation on covers, · is neither associative nor commutative. We have
the following fact, though.

Proposition 1.3. C(Dx) ≤ (CD)x = C(D(Cx)).

Proof: Since x ≤ Cx, it suffices to use (2) of Fact 1.1 twice to get C(Dx) ≤
C(D(Cx)). We now wish to prove (CD)x = C(D(Cx)).

(CD)x =
∨

d∈D

{Cd | Cd ∧ x 6= 0}

=
∨

d∈D

{Cd | ∃ c ∈ C such that c ∧ x 6= 0 and c ∧ d 6= 0}

=
∨

d∈D

{Cd | Cx ∧ d 6= 0}

= C(
∨

d∈D

{d | Cx ∧ d 6= 0}) (by (5) of Fact 1.1)

= C(D(Cx)).
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�

We say that C is a star-refinement of D (written C ≤∗ D) if C · C ≤ D. A
locale whose every cover has a star-refinement is called fully normal.
Let T be a system of covers. We write x ⊳T y if there exists S ∈ T such

that Sx ≤ y. T is said to be admissible on a locale L (cf. [5]) if for all y ∈ L,

y =
∨
{x ∈ L | x ⊳T y}. We say that T is a uniformity basis if for each S ∈ T

there exists T ∈ T such that T ≤∗ S. A uniform locale is a couple (L, T ), where
L is a locale and T an admissible uniformity basis.
One easily checks the following fact.

Fact 1.4. T is admissible iff for all y ∈ L, y =
∨

S∈T y/S.

We recall several definitions of basic properties a locale L may have. For
x, y ∈ L we write x ⊳ y if there is z ∈ L such that z ∧ x = 0 and z ∨ y = 1. L is
regular if for all y ∈ L, y =

∨
{x ∈ L | x ⊳ y}.

L is compact if for each cover C ⊆ L there is a finite cover D ⊆ C.
L is metrizable if it has a countable admissible uniformity basis. (This is

essentially the original extension of the notion of metrizability due to Isbell [1].
Later it has been shown ([6],[7]) that it is indeed equivalent to the existence
of a metric structure on L. It is also equivalent to just possessing a countable
admissible system of covers.)
A subset T of L is locally finite if there is a cover W with the property that

the set {t ∈ T | w ∧ t 6= 0} is finite for each w ∈ W . L is paracompact if every
cover of L has a locally finite refinement. On paracompactness, consult [3] for the
point-set view and, e.g., [8] or [10] for the pointfree one.

2. Powers of admissible systems

Let C, D denote covers. Define a cover Cn for n ≥ 1 inductively by putting

C1 = C and Cn+1 = C · Cn.

Lemma 2. For any n ≥ 1, C ≤ D implies Cn ≤ Dn.

Proof: By induction, using 1.2. �

For x ∈ L and n ≥ 1, define C(n)(x) as follows:

C(1)(x) = Cx; C(n+1)(x) = C · (C(n)(x)).

Similarly, define x/(n)C as

x/(1)C = x/C; x/(n+1)C = (x/(n)C)/C.

Observation 2.2. (1) C(n+1)(x) = C(n)(Cx),

(2) x/(n+1)C = (x/C)/(n)C.

Fact 2.3. C(n)(x) ≤ y iff x ≤ y/(n)C.
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Proof: For n = 1, this is (3) of Fact 1.1. Assume validity for a given n. Then

C(n+1)(x) = C(C(n)(x)) ≤ y

⇐⇒ C(n)(x) ≤ y/C

⇐⇒ x ≤ (y/C)/(n)C

⇐⇒ x ≤ y/(n+1)C by the preceding Observation.

�

The operations Cn ·x and C(n)(x), as well as their adjoints, are closely related.

Fact 2.4. (1) Cn · x = C(2n−1)(x),

(2) x/Cn = x/(2n−1)C.

Proof: (1) For n = 1 the proposition holds. Let it hold for a given n. Then
using 1.3,

Cn+1x = (C · Cn)x = C(Cn(Cx))

= C(C(2n−1)(Cx)) = C(2n)(Cx)

= C(2(n+1)−1)(x).

(2) By 2.3, for any y,

y ≤ x/Cn ⇐⇒ Cny ≤ x

⇐⇒ C(2n−1)(y) ≤ x

⇐⇒ y ≤ x/(2n−1)C.

Putting first y = x/Cn and then y = x/(2n−1)C, we obtain the desired equality.
�

Let T be a system of covers. It is said to be down-directed if it contains, with
any S, T ∈ T , a common refinement; that is, a cover R such that R ≤ T and
R ≤ S.

Lemma 2.5. If T is down-directed then
∨

S∈T

x/S/S/S =
∨

V ∈T

∨

U∈T

∨

T∈T

x/T/U/V.

Proof: For “≤”, take S = T = U = V . On the other hand, for given T, U, V ,
consider a common refinement S. Then by (6) of Fact 1.1, a/S/S/S ≥ a/T/U/V .

�

Let T be a system of covers and k ≥ 1. Put T k = {Sk | S ∈ T }.



A sufficient condition of full normality 385

Proposition 2.6. If T is a down-directed admissible system then T k is admis-

sible and down-directed as well.

Proof: Directedness. Let Sk, T k ∈ T k be given. Let R ∈ T be a common
refinement of S and T . By Lemma 2.1, Rk refines both Sk and T k.

Admissibility. By induction. Basis (k = 2): Using (2) of Fact 2.4,

x ≥
∨

S∈T

x/S2 =
∨

S∈T

x/S/S/S =
∨

V ∈T

∨

U∈T

∨

T∈T

x/T/U/V = x

by admissibility of T used three times. Consequently, T is admissible.

Step: Since Sk+1 = S · Sk ≤ (Sk)2, we get
∨

S∈T

x/Sk+1 =
∨

S∈T

x/(Sk)2 =
∨

T∈T k

x/T 2

and since we assume T k to be admissible (and know that it is down-directed),

we may use the Basis to show that this expression equals x. Hence T k+1 is
admissible. �

3. Construction of a star-refinement

Let T be a fixed system of covers and A a cover. We will now construct a
subset DT,A of L, which will be, under certain assumptions on T , a cover that
star-refines A. Put

DT,A = {x | ∃ S ∈ T , ∃ a ∈ A s.t. x ∈ S and a/S3 ∧ x 6= 0}.

For S ∈ T and a ∈ A, dS(a) denotes the set {x ∈ S | a/S3 ∧ x 6= 0}. Thus,

DT,A =
⋃

{dS(a) | S ∈ T , a ∈ A}.

Observation 3.1.
∨

dS(a) = S(a/S3).

Fact 3.2. a/S3 ≤
∨

dS(a) ≤ a/S2.

Proof: The first inequality follows from (1) of Fact 1.1. As for the second one,
by (1) of Fact 2.4,

S(a/S3) = S(a/(5)S) = S((a/(4)S)/S)

≤ a/(4)S (by (4) of Fact 1.1)

≤ a/(3)S = a/S2.

�

Remark. The lower bound we have just obtained will ensure that the elements
of DT,A do constitute a cover while by virtue of the upper bound they are still
small enough to star-refine A.
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Lemma 3.3. If T is down-directed and admissible then DT,A is a cover.

Proof:

∨
DT,A =

∨

a∈A

∨

S∈T

∨
dS(a) ≥

∨

a∈A

∨

S∈T

a/S3

=
∨

a∈A

a

by Proposition 2.6. �

A system T of covers is well-decreasing if every subset of T has a maximum
element with respect to the refinement relation. We will now state the main
theorem of this article.

Theorem 3.4. Let T be a well-decreasing admissible system of covers and A a
cover. Then DT,A is a cover star-refining A. In particular, any locale that has
such a system is fully normal.

Proof: Since any well-decreasing system is down-directed, DT,A is a cover by
the preceding lemma. We wish to prove that DT,A ≤∗ A.
Let x ∈ DT,A; we investigate DT,A · x. Certainly x ∈ dS(a) for some S ∈ T ,

a ∈ A. Put

M = {U ∈ T | ∃ c ∈ A, ∃ y ∈ dU (c) s.t. y ∧ x 6= 0}.

First of all, x ∈ dS(a) and x 6= 0 imply (1) S ∈ M. In particular,M is not void.
Let M be the maximum element of M with respect to ≤. Denoting the c and
y one has for M as c0 and y0, we get y0 ∧ x 6= 0 and y0 ∈ dM (c0). Since by
(1), S ≤ M , there exists x′ ∈ M such that x ≤ x′ and y0 ∧ x′ 6= 0. Hence, (2)
x′ ≤ My0.
Consider u ∈ DT,A such that u ∧ x 6= 0. Necessarily u ∈ dU (b) for some b ∈ A

and U ∈ T . Since u ∧ x 6= 0, U ∈ M and U ≤ M . This implies that there is also
u′ ∈ M such that u′ ≥ u. Clearly u′ ∧ x′ 6= 0, which, combined with (2), yields
u′ ≤ M(My0). Now

u ≤ u′ ≤ M(My0) ≤ M2y0

≤ M2(
∨

dM (c0)) ≤ M2(c0/M
2) (by 3.2)

≤ c0.

Thus, for any u ∈ DT,A, u ∧ x 6= 0 implies u ≤ c0, i.e. DT,A · x ≤ c0.
We have shown that for each x ∈ DT,A there exists c0 ∈ A with the property

that DT,A · x ≤ c0, that is, DT,A ≤∗ A. This completes the proof. �
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4. Remarks and examples

Two well-known facts are corollaries to the preceding theorem.

Remark 4.1. Let a locale L have a countable admissible system T = {Si}i<ω.

Then the system T̂ = {S0 ∧ S1 ∧ · · · ∧ Sk | k < ω} is a well-decreasing admissible
system. Theorem 3.4 can be applied, yielding the fact that L is fully normal.
Consequently, all metrizable locales are fully normal.

Remark 4.2. By metrization theorems (see [7]), existence of a countable admissi-
ble system of covers is equivalent to existence of a countable admissible uniformity
basis. This fact can now be seen more directly.

Remark 4.3. Constructivity. The only point in the argument which depended
on the axiom of choice was the proof of Lemma 2.5. There we considered a
common refinement as a function of a triple T, U, V , but we did not specify the
values. However, we use the lemma only for systems that are well-decreasing (and
hence linear orders), in which case we can take for the common refinement the
finest of the three covers. With this modification, the argument requires neither
the axiom of choice nor the law of excluded middle.

Example 4.4. A non-metrizable locale that has a well-decreasing admissible

system. In this and the following example, for an ordinal number α, the symbol
[α] denotes the set {β | β < α}. (We use a different name for the same thing to
emphasize we have in mind a set of ordinals.) The successor of α is denoted by
α + 1. The symbol ω1 stands for the first uncountable ordinal, ω for the first
infinite one. Axiom of choice is assumed from now on.
Let J = {{α} | α < ω1} and ↑β = {α | β ≤ α ≤ ω1} for β ≤ ω1.
Let X be the space [ω1+1] with the topology generated by J ∪{ ↑β | β < ω1}.

Then ΩX has a well-decreasing admissible system but it is not metrizable. To see
the former, put Sβ = J∪ ↑β and observe that {Sβ}β<ω1 meets the condition.
Suppose that ΩX is metrizable. Let T be the countable admissible system.

Define

g : T → [ω1 + 1] : S 7→ min {α | ∃ u ∈ S s.t. α ∈ u and ω1 ∈ u}.

Lemma 4.5. supS∈T g(S) = ω1.

Proof: Let β ≥ g(S) for each S ∈ T and suppose β < ω1. Then for any S and

u such that ω1 ∈ u we have Su ⊆↑(β+1). Therefore ω1 /∈
⋃
{u | u ⊳

T ↑(β + 1)}.
But, as ω1 ∈↑(β + 1), this contradicts the admissibility of T . �

Since g(S) < ω1 for all S ∈ T , and since T is countable, we have shown that ω1
has to be a supremum of countably many countable ordinals, which is impossible.
Hence ΩX is not metrizable.
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Example 4.6. A compact regular locale that has no well-decreasing admissible

system. Let Y be [ω1+1] with the usual interval topology. ΩY is compact regular
but we will show that does not have a well-decreasing admissible system.

Assume it does and call the system T . For a limit ordinal κ ≤ ω1, put

gκ : T → [κ] :

S 7→ min {α ∈ [ω1 + 1] | ∃ u ∈ S s.t. α ∈ u and κ ∈ u} and

fκ : [κ]→ T :

α 7→ max {S ∈ T | gκ(S) ≥ α}.

Verification. We have to make sure the definitions are correct, that is, to check
the domain and range of (a) gκ and (b) fκ.

(a) gκ is certainly defined on the whole of T . By the definition, gκ(S) ≤ κ, but
since κ is not the infimum of any open set (being a limit ordinal), the values are
really in [κ].

(b) First, observe that supS∈T gκ(S) = κ. This can be proved in the same
fashion as the lemma in the preceding example. Therefore, no α < κ is an upper
bound for {gκ(S)}S∈T . From this it follows that fκ is well defined on the whole
of [κ]. Its values clearly lie in T .

Lemma 4.7. Consider fκ and gκ as mappings between the posets ([κ],≤) and
(T ,≤).

(1) fκ is non-decreasing and gκ is non-increasing,

(2) α ≤ gκ(S) iff S ≤ fκ(α),
(3) gκfκ(α) ≥ α and
(4) gκ(S) > gκ(T ) implies S < T .

Proof: (1) and (2) follow straight from the definition. So does (3) from (2). It
remains to prove (4). Let S 6< T . Then since T is a linear order, S ≥ T . By (1),
gκ(S) ≤ gκ(T ), which means gκ(S) 6> gκ(T ) and we are finished. �

Proposition 4.8. supn<ω gω1fω(n) = ω1.

Proof: Let β ≥ gω1fω(n) for all n < ω. Suppose β < ω1. Fix n < ω. Then by
(3), gω1fω1(β+1) ≥ β+1 > β ≥ gω1fω(n). According to (4), fω1(β+1) < fω(n).
But by (1), gωfω1(β+1) > gωfω(n) ≥ n, where the last inequality follows from (3).
We conclude that for all n < ω, gωfω1(β +1) > n. On the other hand, for any

S we have gω(S) ∈ [ω], so that gωfω1(β + 1) < ω. This is a contradiction. �

Let us return to the example. Since gω1(S) < ω1 for each S, we have shown
that ω1 has to be the supremum of a countable set of countable ordinals. This
cannot happen and so ΩY has no well-decreasing admissible system.

Note. A similar argument can be employed to prove the following stronger
statement: If ΩZ has a well-decreasing admissible system and if there is a point
in Z with an infinite countable basis of neighbourhoods, then all x ∈ Z have
countable bases of neighbourhoods.
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