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A counter-example to some recent existence

results on implicit variational inequalities

Paolo Cubiotti

Abstract. In this note we prove that some recent results on an implicit variational in-
equality problem for multivalued mappings, which seem to extend and improve some
well-known and celebrated results, are not correct.

Keywords: quasi-variational inequalities, lower semicontinuity, partition of unity, mini-
max
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1. Introduction

Very recently, in [1], J. Fu introduced the following implicit variational inequal-
ity problem for multivalued mappings; given two topological vector spaces X and
Y , two nonempty subsets C and D of X and Y , respectively, two multivalued
mappings E : C → 2C and F : C → 2D, two real functions f : C × C × D → R
and g : C × C → R, with f(x, x, y) ≥ 0 for any x ∈ C and any y ∈ F (x), find
(v, u) ∈ C × D such that

(1) v ∈ E(v), u ∈ F (v) and g(v, v) ≤ f(v, w, u) + g(v, w) for all w ∈ E(v).

Such problem extends an implicit variational problem studied by Mosco [2].
In [1], Fu stated the following assertion which he employed to obtain existence

results for problem (1) and for some special cases as quasi-variational inequalities
(for the basic definitions, we refer to [1]).

Assertion A (Theorem 1 of [1]). Let X , Y be Hausdorff locally convex topo-

logical vector spaces, C be a nonempty compact convex set of X and D be a

nonempty closed convex set of Y . Let E : C → 2C be upper hemicontinuous with
nonempty closed convex values and F : C → 2D be a mapping with nonempty
values. Suppose that f : C × C × D → R satisfies the following conditions:

(i) for each x ∈ C and y ∈ F (x), f(x, x, y) ≥ 0;
(ii) for any fixed x ∈ C and y ∈ D, the function f(x, u, y) of u is convex;

(iii) for any fixed u ∈ C, the function supy∈F (x) f(x, u, y) of x is upper semi-

continuous.
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Then there exists x∗ ∈ C such that

x∗ ∈ E(x∗) and sup
y∈F (x∗)

f(x∗, u, y) ≥ 0 for all u ∈ E(x∗).

The aim of this note is to point out that Assertion A, in general, is false,
together with several of its consequences obtained in [1]. We shall do this by
means of a simple counter-example. We shall also illustrate in detail the gap in
the original proof of Assertion A.

2. The counter-example

The following example shows that Assertion A, in general, is false.

Example 2.1. Let X = Y = D = R, C = [0, 1], F (x) ≡ {1},

E(x) =























[

3
4 , 1

]

if x ∈
[

0, 12

[

[

0, 1
]

if x = 12
[

0, 14

]

if x ∈
]

1
2 , 1

]

,

f(x, u, y) = y(u − x). It is immediate to realize that all the assumptions of
Assertion A are satisfied. In particular, we note that the graph of E is closed,
hence, since C is compact, E is upper semicontinuous. Therefore, by Lemma 1 of
[3], E is upper hemicontinuous. We note that the only fixed point of E is x∗ = 12 .

However, we have supy∈F (x∗) f(x
∗, u, y) = u − x∗ < 0 for all u ∈ [0, 12 [⊆ E(x∗).

Thus, Assertion A fails.

Remarks. (i) Example 2.1 also shows that Theorems 2, 3 and 9 of [1] are false.

(ii) We note that Theorem 2 of [1], if correct, would imply, in particular (taking
into account Theorem 1.4.16 of [4]), that the celebrated Chan and Pang’s exist-
ence theorem for generalized quasi-variational inequalities (see Theorem A in [5])
would be true without assuming the lower semicontinuity of the multifunction
E : C → 2C . Example 2.1 shows that such improvement of Chan and Pang’s
result is not possible.

We note that the original proof of Assertion A (proof of Theorem 1 in [1]) is
arranged as follows.

First step. By assuming that the conclusion is false, it is shown that there exists
a finite set {p1, . . . , pn} ⊆ X∗ (where X∗ denotes the topological dual space of X)
such that

C = V0 ∪
n
⋃

i=1

V (pi),
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where we put

V (pi) =
{

x ∈ C : Re〈pi, x〉 − sup
z∈E(x)

Re〈pi, z〉 > 0
}

,

and

V0 =
⋃

u∈A

{

x ∈ C : sup
y∈F (x)

f(x, u, y) < 0
}

,

with

A =
{

u ∈ C : ∃x ∈ C such that u ∈ E(x) and sup
y∈F (x)

f(x, u, y) < 0
}

,

and 〈·, ·〉 is the usual pairing between X∗ and X .

Second step. The author considers a continuous partition of unity
{β0, β1, . . . , βn} subordinated to the open covering {V0, V (p1), . . . , V (pn)} of C.

Third step. The author defines a function ϕ : C × C → R by setting

ϕ(x, u) = −β0(x) sup
y∈F (x)

f(x, u, y) +

n
∑

i=1

βi(x)Re〈pi, x − u〉

and observes that by the Ky Fan minimax principle (Theorem A of [3]) there
exists x̂ ∈ C such that

(2) ϕ(x̂, u) ≤ 0 for all u ∈ C.

Fourth step. The author claims that inequality (2) is a contradiction. In
particular, he claims that if β0(x̂) > 0, then there exists u0 ∈ A ⊆ C such that
ϕ(x̂, u0) > 0.
But the gap is exactly here, since the inequality (2) does not imply, in general,

any contradiction. To see this, take X, Y, D, C, F, f , and E, as in Example 2.1.
The reader can easily check that in this case we have A = [0, 12 [ , V0 = ]0, 1]. Since

V (−1) = [0, 12 [ , we can take n = 1, p1 = −1,

β0(x) =







2x if x ∈
[

0, 12

[

,

1 if x ∈
[

1
2 , 1

]

,

β1(x) =







1− 2x if x ∈
[

0, 12

[

,

0 if x ∈
[

1
2 , 1

]

.

According to Ky Fan minimax principle, there exists x̂ ∈ [0, 1] such that

ϕ(x̂, u) = (β0(x̂)− β1(x̂))(x̂ − u) ≤ 0 for all u ∈ [0, 1].

In fact, one can take x̂ = 14 since β0(
1
4 ) = β1(

1
4 ) =

1
2 , hence ϕ(14 , u) = 0 for all

u ∈ [0, 1]. Thus, the contradiction claimed in the final part of the original proof
of Assertion A does not hold.
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