Commentationes Mathematicae Universitatis Carolinae

Ryszard Grzaślewicz
 On positive operator-valued continuous maps

Commentationes Mathematicae Universitatis Carolinae, Vol. 37 (1996), No. 3, 499--505

Persistent URL: http://dml.cz/dmlcz/118856

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On positive operator-valued continuous maps

Ryszard Grza̧śLewicz

> Abstract. In the paper the geometric properties of the positive cone and positive part of the unit ball of the space of operator-valued continuous space are discussed. In particular we show that ext-ray $\mathrm{C}_{+}(K, \mathcal{L}(H))=\left\{\mathbb{R}_{+} \mathbf{1}_{\left.\left\{k_{0}\right\} \mathbf{x} \otimes \mathbf{x}: \mathbf{x} \in \mathbf{S}(H), k_{0} \text { is an isolated point of } K\right\}}^{\text {ext } \mathbf{B}_{+}(\mathrm{C}(K, \mathcal{L}(H)))} \begin{array}{rl} & =s \text {-ext } \mathbf{B}_{+}(C(K, \mathcal{L}(H))) \\ & =\left\{f \in \mathrm{C}\left(K, \mathcal{L}(H): f(K) \subset \text { ext } \mathbf{B}_{+}(\mathcal{L}(H))\right\} .\right. \\ \text { Moreover we describe exposed, strongly exposed and denting points. }\end{array}\right.$.

Keywords: exposed point, denting point, Hilbert space, positive operator
Classification: Primary 47D20; Secondary 46B20

1. Introduction

The paper is devoted to the geometric properties of the space of continuous functions from a compact Hausdorff space K with values in the space of operators acting on a Hilbert space H. Namely, we deal with the positive part of the unit ball and the cone of positive operators in $\mathcal{L}(H)$. We consider such points as strongly extreme, exposed, strongly exposed and denting points.

For a Banach space E we denote by $\mathbf{B}(E)$ and $\mathbf{S}(E)$ respectively the unit ball and the unit sphere of E. A subset P of E is called a convex cone (of vertex 0) if P is convex $(\mathbf{x}, \mathbf{y} \in P, \alpha \in[0,1] \Rightarrow \alpha \mathbf{x}+(1-\alpha) \mathbf{y} \in P)$ and invariant under multiplication by positive constant $\left(\mathbf{x} \in P, \lambda \in \mathbb{R}_{+} \Rightarrow \lambda \mathbf{x} \in P\right)$. A ray $R=\left\{\lambda \mathbf{x}_{o}: \lambda \in \mathbb{R}_{+}\right\}=\mathbb{R}_{+} \mathbf{x}_{o}, 0 \neq \mathbf{x}_{o} \in P$, is called an extreme ray $(R \in$ ext-ray $P)$ if $\mathbf{x} \in R, \mathbf{y} \in P$, and $\mathbf{x}-\mathbf{y} \in P$ imply $\mathbf{y} \in R$.

A point \mathbf{q} of a convex set $Q \subset E$ is extreme $(\mathbf{q} \in \operatorname{ext} Q)$ if it is not the midpoint of any segment of positive length contained in Q; strongly extreme ($\mathbf{q} \in \mathbf{s}$-ext Q) if $\left\|\frac{\mathbf{x}_{n}+\mathbf{y}_{n}}{2}-\mathbf{q}\right\| \rightarrow 0$ for $\mathbf{x}_{n}, \mathbf{y}_{n} \in Q$ implies $\left\|\mathbf{x}_{n}-\mathbf{q}\right\| \rightarrow 0$ (or equivalently $\left\|\mathbf{x}_{n}-\mathbf{y}_{n}\right\| \rightarrow 0$, since $\mathbf{x}_{n}-\mathbf{q}=\frac{\mathbf{x}_{n}-\mathbf{y}_{n}}{2}+\left(\frac{\mathbf{x}_{n}+\mathbf{y}_{n}}{2}-\mathbf{q}\right)$); exposed $(\mathbf{q} \in \exp Q)$ if there exists $\xi \in Q^{*}$ such that $\xi(q)=\sup \xi(Q)>\xi(\mathbf{x})$ for all $\mathbf{x} \in Q \backslash\{\mathbf{q}\}$; strongly exposed $(\mathbf{q} \in \mathbf{s}-\exp Q)$ if it is exposed and if $\xi\left(x_{n}\right) \rightarrow \xi(q)$ for $\mathbf{x}_{n} \in Q$ then $\left\|\mathbf{x}_{n}-\mathbf{q}\right\| \rightarrow 0$; and denting $(\mathbf{q} \in$ dent Q) if for all $\varepsilon>0$ we have $\mathbf{q} \notin$ $\overline{\text { conv }}(Q \backslash\{\mathbf{q}+\varepsilon \mathbf{B}(E)\})$. Note that in general this classes of points do not coincide. We have s-exp $Q \subset$ dent $Q \subset \mathbf{s - e x t} Q \subset \mathbf{e x t} Q$ and $\mathbf{s}-\exp Q \subset \exp Q \subset \mathbf{e x t} Q$.

[^0]Moreover, if Q is compact then dent $Q=\mathbf{s - e x t} Q=\operatorname{ext} Q$ and s-exp $Q=\boldsymbol{\operatorname { e x p }} Q$. Note that if $\mathbf{q} \in \mathbf{e x t} Q$ is a point of continuity for $Q\left(\mathbf{x}_{n} \rightarrow \mathbf{q}\right.$ weakly, $\mathbf{x}_{n} \in Q$, implies $\mathbf{x}_{n} \rightarrow \mathbf{q}$ in norm) then $\mathbf{q} \in \operatorname{dent} Q([14])$. For an operator $T: E \rightarrow E$ we denote by IsDom $T=\{\mathbf{x} \in E:\|T \mathbf{x}\|=\|\mathbf{x}\|\}$ its isometric domain.

Let H be a (real or complex) Hilbert space equipped with the inner product $\langle\cdot, \cdot\rangle$. By $\mathcal{L}(H)$ we denote the space of bounded operators acting on H. The space $\mathcal{L}(H)$ is equipped with the standard operator norm. Note that IsDom T is a closed linear subspace for all $T \in \mathbf{B}(\mathcal{L}(H))$. Moreover, $T\left(\{\mathbf{x}\}^{\perp}\right) \subset(T \mathbf{x})^{\perp}$ for $\mathbf{x} \in \mathbf{I s D o m} T$ and $T\left((\mathbf{I s D o m} T)^{\perp}\right) \perp T(\mathbf{I s D o m} T), T \in \mathbf{B}(\mathcal{L}(H))$.

For $\mathbf{y}, \mathbf{z} \in H$ we denote by $\mathbf{y} \otimes \mathbf{z}$ the one dimensional operator defined by $(\mathbf{y} \otimes \mathbf{z})(\mathbf{x})=\mathbf{y}\langle\mathbf{x}, \mathbf{z}\rangle, \mathbf{x} \in H$.

The operator $T \in \mathcal{L}(H)$ is called positive $(T \geq 0)$ if T is self-adjoint $\left(T=T^{*}\right)$ and $\langle T \mathbf{x}, \mathbf{x}\rangle \geq 0$ for all $\mathbf{x} \in H$. An operator T is a (orthogonal) projection if $T=T^{2}$ and $T=T^{*}$. If T is a projection then $T \mathbf{x}=\mathbf{0}$ for all $\mathbf{x} \perp$ IsDom T.

The cone of all positive operators is denoted by $\mathcal{L}_{+}(H)$. The positive part of the unit ball is denoted by $\mathbf{B}_{+}(\mathcal{L}(H))$. Note that $\|T\|=\sup \{\langle T x, x\rangle:\|x\| \leq 1\}$ for $T \geq 0$. Hence $\|T\| \leq\|T+R\|$ for $T, R \in \mathcal{L}_{+}(H)$.

Let $T \in \mathbf{B}_{+}(\mathcal{L}(H))=\{T \in \mathcal{L}(H): 0 \leq T \leq I\}$. Then $T^{2},(I-T) \in \mathbf{B}_{+}(\mathcal{L}(H))$. We have $2 T-T^{2}=T(2 I-T) \geq 0$ and $0 \leq(I-T)^{2}=I-2 T+T^{2}$, so $2 T-T^{2} \leq I$. Thus $2 T-T^{2} \in \mathbf{B}_{+}(\mathcal{L}(H))$, too.

A one dimensional operator $\mathbf{x} \otimes \mathbf{y}, \mathbf{x}, \mathbf{y} \in \mathbf{S}(H)$, is positive if and only if $\mathbf{x}=\mathbf{y}$.
Let $\mathbf{C}(K, E)$ denote the Banach space of all continuous functions from a compact Hausdorff space K into a Banach space E equipped with the supremum norm $\|f\|=\sup _{k \in K}\|f(k)\|_{E}$.

Obviously for a convex set $Q \subset E$ if $f(K) \subset \operatorname{ext} Q$ then $f \in \mathbf{e x t}\{f \in \mathbf{C}(K, E)$: $f(K) \subset Q\}$. There is a natural question for which classes of convex sets Q the inverse implication characterize extreme points. Negative example of continuous function $F: K \rightarrow Q\left(Q\right.$ is closed symmetric subset of $\left.\mathbb{R}^{4}\right)$ was presented in [2]. In fact $f \in$ ext $f \in \mathbf{B}(\mathbf{C}(K, E))$ with $f(k) \notin \mathbf{e x t} \mathbf{B}(E)$ for all $k \in K$.

Using Michael's selection theorem ([16]) we can prove that ext $\{f \in \mathbf{C}(K, E)$: $f(K) \subset Q\}=\{f \in \mathbf{C}(K, E): f(K) \subset$ ext $Q\}$ for any stable convex subset Q of E. Recall that a convex set $Q \subset E$ is said to be stable if the barycenter map $Q \times Q \ni(\mathbf{x}, \mathbf{y}) \rightarrow \frac{\mathbf{x}+\mathbf{y}}{2} \in Q$ is open. Point out that in finite dimensional space a set is stable (see [18]) if and only if all m-skeletons ($m=0,1, \ldots, n$) of Q are closed (an m-skeleton of Q is a set of all $\mathbf{x} \in Q$ such that the face generated by \mathbf{x} in Q has dimension less than or equal to m).

We say that a compact Hausdorff space K carries a strict positive measure if there exists a strictly positive Radon measure μ on K (i.e. $\mu(U)>0$ for all nonempty open $U \subset K$). The problem of characterization of spaces K which carry a strictly positive measure has been studied by many authors (e.g., see [1], [5], [11], [15], [17]). In particular Kelley ([13]) introduced the notion of intersection numbers of a collection of subsets to give the characterization of spaces which carry a strictly positive measure. It should be pointed out that in the case of a compact

Hausdorff space the problem mentioned above is equivalent to the problem of existence of a finitely additive strictly positive measure. Note that $\mathbf{C}(K, \mathbb{R})$ carries a strictly positive functional if and only if its dual $\mathbf{C}(K, \mathbb{R})$ contains a weakly compact total subset ([19, Theorem 4.5b]). We refer the reader [3, Chapter 6], for summary of those and related results. In fact a strictly positive measure on K can be considered as a functional on $\mathbf{C}(K, \mathbb{R})$ which exposes the function $\mathbf{1}_{K}$. By $\mathbf{1}_{A}$ we denote the characteristic function of a set $A \subset K$.

We have

$$
\begin{gather*}
\text { ext } \mathbf{B}_{+}(\mathcal{L}(H))=\left\{T \in \mathcal{L}(H): T^{2}=T, T^{*}=T\right\} \tag{12}\\
\text { s-ext } \mathbf{B}_{+}(\mathcal{L}(H))=\text { ext } \mathbf{B}_{+}(\mathcal{L}(H))([9]) . \\
\exp \mathbf{B}_{+}(\mathcal{L}(H))=\left\{\begin{array}{ll}
\text { ext } \mathbf{B}_{+}(\mathcal{L}(H)) & \text { if } H \text { is separable } \\
\emptyset & \text { if } H \text { is not separable }
\end{array}([7]),\right. \\
\text { s-exp } \mathbf{B}_{+}(\mathcal{L}(H))=\text { dent } \mathbf{B}_{+}(\mathcal{L}(H))= \begin{cases}\text { ext } \mathbf{B}_{+}(\mathcal{L}(H)) & \text { if } \operatorname{dim} H<\infty \\
\emptyset & \text { if } \operatorname{dim} H=\infty\end{cases} \\
\text { ext-ray } \mathcal{L}_{+}(H)=\left\{\mathbb{R}_{+} \mathbf{x} \otimes \mathbf{x}: \mathbf{0} \neq \mathbf{x} \in H\right\} .
\end{gather*}
$$

The aim of this paper is to continue investigation for the space of operator valued continuous functions with values in $\mathcal{L}_{+}(H)$. We show that

$$
\begin{gathered}
\text { ext } \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))=\left\{f \in \mathbf{C}(K, \mathcal{L}(H)): f(K) \subset \text { ext } \mathbf{B}_{+}(\mathcal{L}(H))\right\} \\
\text { s-ext } \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))=\mathbf{e x t} \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H))) \\
\exp \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))=\left\{\begin{array}{l}
\text { ext } \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H))) \\
\text { if } H \text { is separable and } K \\
\text { carries a strictly positive } \\
\text { measure } \\
\text { if } H \text { otherwise }
\end{array}\right. \\
\text { s-exp } \mathbf{B}_{+}(\mathcal{L}(H))=\text { dent } \mathbf{B}_{+}(\mathcal{L}(H))= \begin{cases}\text { ext } \mathbf{B}_{+}(\mathcal{L}(H)) & \text { if } \operatorname{dim} H<\infty \text { and } \\
\emptyset & \text { card } K<\infty \\
\emptyset & \text { if } \operatorname{dim} H=\infty\end{cases}
\end{gathered}
$$

ext-ray $\mathbf{C}_{+}(K, \mathcal{L}(H))=\left\{\mathbb{R}_{+} \mathbf{1}_{\left\{k_{0}\right\}} \mathbf{x} \otimes \mathbf{x}: \mathbf{0} \neq \mathbf{x} \in H, k_{0}\right.$ is an isolated point of $\left.K\right\}$. The corresponding results for the whole unit ball are presented in [8], [10].

2. Extremality

Theorem 1. For any Hilbert space H we have

$$
\text { ext } \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))=\left\{f \in \mathbf{C}(K, \mathcal{L}(H)): f(K) \subset \text { ext } \mathbf{B}_{+}(\mathcal{L}(H))\right\}
$$

Proof: Fix $f \in \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))$ with non extremal value. Let $\mathbf{x}_{o} \in \mathbf{S}(H)$ be such that $f^{2}(k) \mathbf{x}_{o} \neq f(k) \mathbf{x}_{o}$ for some $k \in K$. Put $f_{1}=2 f-f^{2}$ and $f_{2}=f^{2}$. We have $\frac{f_{1}+f_{2}}{2}=f$ and $0 \leq f_{i}(k) \leq I$. Moreover $f_{1}(k) \mathbf{x}_{o}=2 f(k) \mathbf{x}_{o}-f^{2}(k) \mathbf{x}_{o} \neq$ $f^{2}(k) \mathbf{x}_{o}=f_{2}(k) \mathbf{x}_{o}$, so $f_{1} \neq f_{2}$.

Theorem 2. We have s-ext $\mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))=$ ext $\mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))$.
Proof: Let $f \in$ ext $\mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))$. Fix $\varepsilon>0$. We need to show that there exists $\delta>0$ such that $\left\|\frac{g_{n}+h_{n}}{2}-f\right\|<\delta, \mathbf{x}, \mathbf{y} \in \mathbf{B}(H)$ implies $\left\|g_{n}-h_{n}\right\|<\varepsilon$.

From the uniform convexity of H there exists $\delta(\varepsilon)$ such that $\left\|\frac{\mathbf{x}+\mathbf{y}}{2}\right\|>1-\delta(\varepsilon)$ implies $\|\mathbf{x}-\mathbf{y}\|<\varepsilon / 2$. Put $\delta=\min \left(\frac{\varepsilon}{8}, \delta(\varepsilon)\right)$. Fix $k \in K$. For $\mathbf{x} \perp$ IsDom $f(k)$ with $\|\mathbf{x}\| \leq 1$ we have $\left\|g_{n}(k) \mathbf{x}-h_{n}(k) \mathbf{x}\right\| \leq 2\left\|g_{n}(k) \mathbf{x}+h_{n}(k) \mathbf{x}\right\| \leq 4 \delta \leq \frac{\varepsilon}{2}$.

For $\mathbf{y} \in \operatorname{IsDom} f(k)$ with $\|\mathbf{y}\| \leq 1$ we have $\left\|\frac{g_{n}(k) \mathbf{y}+h_{n}(k) \mathbf{y}}{2}\right\| \geq\left\|f_{n}(k) \mathbf{y}\right\|-$ $\left\|\frac{g_{n}(k) \mathbf{y}+h_{n}(k) \mathbf{y}}{2}-f_{n}(k) \mathbf{y}\right\| \geq 1-\delta$. Thus $\left\|g_{n}(k) \mathbf{y}-h_{n}(k) \mathbf{y}\right\| \leq \frac{\varepsilon}{2}$.

Now let $\mathbf{z} \in \mathbf{B}(H)$. And let $\mathbf{y} \in \operatorname{IsDom} f(k)$ and $\mathbf{x} \in(\operatorname{IsDom} f(k))^{\perp}$ be such that $\mathbf{z}=\mathbf{x}+\mathbf{y}$. Obviously $\|\mathbf{x}\|,\|\mathbf{y}\| \leq 1$. Now we have $\left\|\left(g_{n}(k)-h_{n}(k)\right) \mathbf{z}\right\|=$ $\left\|g_{n}(k) \mathbf{x}-h_{n}(k) \mathbf{x}+g_{n}(k) \mathbf{y}-h_{n}(k) \mathbf{y}\right\| \leq\left\|g_{n}(k) \mathbf{x}-h_{n}(k) \mathbf{x}\right\|+\left\|g_{n}(k) \mathbf{y}-h_{n}(k) \mathbf{y}\right\| \leq$ $\varepsilon / 2+\varepsilon / 2=\varepsilon$, so $\left\|g_{n}(k)-h_{n}(k)\right\| \leq \varepsilon$ and $\left\|g_{n}-h_{n}\right\| \leq \varepsilon$.
Theorem 3. ext-ray $\mathbf{C}_{+}(K, \mathcal{L}(H))=\left\{\mathbb{R}_{+} f: f=\mathbf{1}_{\left\{k_{0}\right\}} \mathbf{x} \otimes \mathbf{x} \in \mathbf{C}(K, \mathcal{L}(H)), \mathbf{0} \neq\right.$ $\mathbf{x} \in H, k_{0}$ is an isolated point of $\left.K\right\}$.
Proof: Fix $f=\mathbf{1}_{\left\{k_{0}\right\}} \mathbf{x} \otimes \mathbf{x} \in \mathbf{C}(K, \mathcal{L}(H))$. Let $0 \neq g \in \mathbf{C}_{+}(K, \mathcal{L}(H))$ such that $f-g \in \mathbf{C}_{+}(K, \mathcal{L}(H))$. Then $g \leq f$, so $g(k)=0$ for $k \neq k_{0}$. Moreover $0 \leq g\left(k_{0}\right) \leq \mathbf{x} \otimes \mathbf{x}$. Hence $g\left(k_{0}\right)=\alpha \mathbf{x} \otimes \mathbf{x}$ where $\alpha \in(0,1]$, i.e. $g=\alpha f$ and $f \in$ ext-ray $\mathbf{C}_{+}(K, \mathcal{L}(H))$.

Let k_{0} be a not isolated point of K such that $f\left(k_{0}\right) \neq 0$. Then there exists a continuous function $\gamma: K \rightarrow[0,1]$ with $\gamma\left(k_{0}\right)=1$ and $\gamma\left(k_{1}\right)=0$ for some $k_{1} \neq k_{0}$ such that $f\left(k_{1}\right) \neq 0$. Put $g=\gamma f \in \mathbf{C}_{+}(K, \mathcal{L}(H))$. Then $f-g \in \mathbf{C}_{+}(K, \mathcal{L}(H))$ and $g \neq \lambda f, \lambda \in \mathbb{R}_{+}$, i.e. f do not generate the extreme ray.

If for two isolated points $k_{i}, i=1,2, f\left(k_{i}\right) \neq 0$, then by the analogous arguments $\mathbb{R}_{+} f \notin$ ext-ray $\mathbf{C}_{+}(K, \mathcal{L}(H))$.

If k_{0} is an isolated point of K and $f\left(k_{0}\right)$ is not of the form $\mathbf{x} \otimes \mathbf{x}\left(f\left(k_{0}\right)\right.$ do not generate extreme ray in $\left.\mathcal{L}_{+}(H)\right)$. Then there exists $0 \neq T \in \mathcal{L}_{+}(H)$ such that $f\left(k_{0}\right) \pm T \in \mathbf{C}_{+}(K, \mathcal{L}(H))$ and $T \neq \lambda f\left(k_{0}\right), \lambda \in \mathbb{R}_{+}$. For $g=\mathbf{1}_{\left\{k_{0}\right\}} T \in$ $\mathbf{C}_{+}(K, \mathcal{L}(H))$ we have $f-g \in \mathbf{C}_{+}(K, \mathcal{L}(H))$ and $g \neq \lambda f, \lambda \in \mathbb{R}_{+}$, i.e. f do not generate the extreme ray, too.

Theorem 4. If H is separable and a compact Hausdorff space K carries a strictly positive measure then

$$
\exp \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))=\mathbf{e x t} \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))
$$

Otherwise

$$
\exp \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))=\emptyset
$$

Proof: Let H be separable and let μ be a strictly positive measure on K with $\mu(K)=1$. We fix an orthonormal basis $\left\{\mathbf{e}_{i}\right\}_{i \in I}$ and a sequence of strictly positive
reals α_{i} such that $\sum_{i \in I} \alpha_{i}=1$. Fix $f_{o} \in \mathbf{e x t} \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))$. We define a functional ξ on $\mathbf{C}(K, \mathcal{L}(H))$ by

$$
\xi(g)=\int_{K} \sum_{i \in I} \alpha_{i} \operatorname{Re}\left\langle(2 g(k)-I) \mathbf{e}_{i},\left(2 f_{o}(k)-I\right) \mathbf{e}_{i}\right\rangle d \mu(k),
$$

$g \in \mathbf{B}(\mathbf{C}(K, \mathcal{L}(H)))$. We have $\xi(g) \leq 1=\xi\left(f_{o}\right)$ for $g \in \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))$. Now suppose that $\xi(g)=1$ for some $g \in \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))$. Note that if $0 \leq T \leq I$ then $-I \leq(2 T-I) \leq I$ and $\|2 T-I\| \leq 1$. We get $\left\langle(2 g(k)-I) \mathbf{e}_{i},\left(2 f_{o}(k)-I\right) \mathbf{e}_{i}\right\rangle=1$ μ-a.e. and $(2 g(k)-I) \mathbf{e}_{i}=\left(2 f_{o}(k)-I\right) \mathbf{e}_{i}$. Hence $(2 g(k)-I)=\left(2 f_{o}(k)-I\right)$ and $g=f_{o}$, i.e. $f_{o} \in \exp \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))$.

Now suppose that a functional ξ_{o} exposes $\mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))$ at f_{o} belonging to $f_{o} \in \exp \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))$. Obviously $\left\|f_{o}(k)\right\|=0$ or 1 . Put $K_{0}=\{k \in K$: $\left.f_{o}(k)=0\right\}$ and $K_{1}=K \backslash K_{0}$. The sets K_{0}, K_{1} are clopen.

Fix $\mathbf{x} \in \mathbf{S}(H)$. We define a functional ν on $\mathbf{C}(K, \mathbb{R})$ by

$$
\nu(h)=\xi_{o}\left(h\left(f_{o}-\mathbf{1}_{K_{0}} \mathbf{x} \otimes \mathbf{x}\right)\right), \quad h \in \mathbf{C}(K, \mathbb{R})
$$

We claim that ν is strictly positive. Indeed, suppose to get a contradiction, that there exists $h_{o} \in \mathbf{C}(K, \mathbb{R})$ such that $0 \leq h_{o} \leq 1, h_{o} \neq 0$, and $\nu\left(h_{o}\right) \leq 0$. If $\operatorname{supp} h_{o} \subset K_{1}$ then $h_{o} f_{o} \neq 0$, and $\nu(1) \leq \nu(1)-\nu\left(h_{o}\right)=\nu\left(1-h_{o}\right)=\xi_{o}((1-$ $\left.\left.h_{o}\right) f_{o}\right)-\xi_{o}\left(\mathbf{1}_{K_{0}} \mathbf{x} \otimes \mathbf{x}\right)<\xi_{o}\left(f_{o}\right)-\xi_{o}\left(\mathbf{1}_{K_{0}} \mathbf{x} \otimes \mathbf{x}\right)=\nu(1)$, which is impossible. It follows that K_{1} carries a strictly positive measure.

If supp $h_{o} \subset K_{0}$ then $\nu(1) \leq \nu(1)-\nu\left(h_{o}\right)=\nu\left(1-h_{o}\right)=\xi_{o}\left(f_{o}+h_{o} \mathbf{x} \otimes \mathbf{x}\right)-$ $\xi_{o}\left(\mathbf{1}_{K_{0}} \mathbf{x} \otimes \mathbf{x}\right)<\xi_{o}\left(f_{o}\right)-\xi_{o}\left(\mathbf{1}_{K_{0}} \mathbf{x} \otimes \mathbf{x}\right)=\nu(1)$, which is impossible. It follows that K_{0} carries a strictly positive measure. Therefore if $\exp \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H))) \neq \emptyset$ then K carries a strictly positive measure.

Let $\left\{\mathbf{e}_{i}\right\}_{i \in I}$ be an orthonormal basis of H such that, $\left\{\mathbf{e}_{i}\right\}_{i \in J}, J \subset I$, is the orthonormal base of $\bigcap_{k \in K} \operatorname{Ker} f(k)$. For $L \subset I$ we denote by P_{L} a projection on $\overline{\text { lin }}\left\{\mathbf{e}_{i}\right\}_{i \in L}$. Consider now a function m on all subsets of I defined by

$$
m(L)=\xi_{o}\left(f_{o} P_{L \cap(I \backslash J)}-P_{L \cap J}\right)
$$

If $i \in J$ then $f_{o}+\mathbf{e}_{i} \otimes \mathbf{e}_{i} \in \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))$ and $\xi_{o}\left(f_{o}+\mathbf{e}_{i} \otimes \mathbf{e}_{i}\right)<\xi_{o}\left(f_{o}\right)$. Thus $\xi_{o}\left(\mathbf{e}_{i} \otimes \mathbf{e}_{i}\right)<0$ and $m(\{i\})=\xi_{o}\left(-\mathbf{e}_{i} \otimes \mathbf{e}_{i}\right)>0$. If $i \notin J$ then there exists $k \in K$ such that $\mathbf{e}_{i} \in\left(\operatorname{Ker} f_{o}(k)\right)^{c}$ i.e. $f_{o}(k) \mathbf{e}_{i} \neq 0$ and $f_{o} P_{\left\{i_{o}\right\}} \neq 0$. We have $f_{o}=$ $f_{o} P_{\left\{i_{o}\right\}}+f_{o} P_{I \backslash\left\{i_{o}\right\}}$ and $\xi_{o}\left(f_{o} P_{I \backslash\left\{i_{o}\right\}}\right)<\xi_{o}\left(f_{o}\right)$. Hence $m\left(\left\{i_{o}\right\}\right)=\xi_{o}\left(f_{o} P_{\left\{i_{o}\right\}}\right)>0$.

Using the same arguments we get that $m(L)>0$ if L is a subset of J or L is a subset of $I \backslash J$.

Thus the function m is finitely additive and strictly positive on the family of all subsets of I. Therefore if $\exp \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H))) \neq \emptyset$ then I is countable and H is separable.

Theorem 5. If $\boldsymbol{\operatorname { d i m }} H=\infty$ or card $K=\infty$ then

$$
\text { dent } \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))=\emptyset
$$

Proof: Suppose that $\operatorname{dim} H=\infty$. Fix $f \in \operatorname{ext} \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))$ and $k_{0} \in K$. Consider the case when dim IsDom $f\left(k_{0}\right)=\infty$. Let $\left\{\mathbf{e}_{i}\right\}_{i=1}^{\infty}$ be orthonormal system in IsDom $f\left(k_{0}\right)$. Let P_{j} be a projection on $\left\{\mathbf{e}_{j}\right\}^{\perp}$. Put $f_{j}=P_{j} f$. Obviously $\left\|f_{j}-f\right\| \geq\left\|f_{j}\left(k_{0}\right)-f\left(k_{0}\right)\right\|=\left\|\mathbf{e}_{j} \otimes \mathbf{e}_{j}\right\|=1$. We have $\left\|I-\frac{1}{n} \sum_{i=1}^{n} P_{i}\right\|=$ $\left\|\frac{1}{n} \sum_{i=1}^{n} \mathbf{e}_{i} \otimes \mathbf{e}_{i}\right\|=\frac{1}{n}$ and $\left\|f-\sum_{i=1}^{n} f_{i}\right\| \leq\left\|I-\frac{1}{n} \sum_{i=1}^{n} P_{i}\right\|=\frac{1}{n}$, i.e. $f \notin$ dent $\mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))$.

Consider the case when $\operatorname{dim} \operatorname{Ker} f\left(k_{0}\right)=\infty$. Then for
$g=I-f \in \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H))) \mathbf{d i m}$ IsDom $g=\infty$, and we can apply the above argument for g.

Now suppose that card $K=\infty$.
Suppose that there exists a sequence $\left\{k_{n}\right\}$ of distinct points of K such that $\lim _{n} k_{n}=k_{0}$ and $f\left(k_{n}\right) \neq 0$. We choose the sequence of continuous functions $\gamma_{n}: K \rightarrow[0,1]$ such that $\gamma_{n}\left(k_{n}\right)=1$ and supp $\gamma_{n_{1}} \cap$ supp $\gamma_{n_{2}}=\emptyset$ if $n_{1} \neq n_{2}$. Put $f_{j}=\left(1-\gamma_{j}\right) f_{o} \in \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))$. Obviously $\left\|f_{j}-f\right\| \geq\left\|f_{j}\left(k_{j}\right)-f\left(k_{j}\right)\right\|=1$. We have $\left\|f-\sum_{i=1}^{n} f_{i}\right\| \leq\left\|\frac{1}{n} \sum_{i=1}^{n} h_{i}\right\|=\frac{1}{n}$, i.e. $f \notin \mathbf{d e n t} \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))$.

Finally if such sequence $\left\{k_{n}\right\}$ does not exist we can find a closed $K_{1} \subset K$ such that card $K_{1}=\infty$ and $f(k)=0$ for all $k \in K_{1}$. We choose the sequence of continuous functions $\gamma_{n}: K \rightarrow[0,1]$ such that $\left\|\gamma_{n}\right\|=1$, supp $\gamma_{n} \subset K_{1}$ and supp $\gamma_{n_{1}} \cap \operatorname{supp} \gamma_{n_{2}}=\emptyset$ if $n_{1} \neq n_{2}$. Put $f_{j}=f+\gamma_{j} \mathbf{x} \otimes \mathbf{x} \in \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))$, $\mathbf{x} \in \mathbf{S}(H)$. Obviously $\left\|f_{j}-f\right\| \geq\|\mathbf{x} \otimes \mathbf{x}\|=1$. We have $\left\|f-\sum_{i=1}^{n} f_{i}\right\| \leq$ $\left\|\frac{1}{n} \sum_{i=1}^{n} h_{i}\right\|=\frac{1}{n}$, i.e. $f \notin \mathbf{d e n t} \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))$.
Theorem 6. If $\operatorname{dim} H<\infty$ and card $K<\infty$ then

$$
\mathbf{s - e x p} \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))=\mathbf{e x t} \mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))
$$

Proof: If $\operatorname{dim} H<\infty$ or card $K<\infty$ then $\mathbf{C}(K, \mathcal{L}(H))$ is finite dimensional, so $\mathbf{B}_{+}(\mathbf{C}(K, \mathcal{L}(H)))$ is compact. Hence exposed and strongly exposed coincide. In view of Theorem 4 we finish the proof.

Remark. All the above theorems can be proven using the same arguments for the space of compact operators $\mathcal{K}(H)$ instead of $\mathcal{L}(H)$.
Questions. In [6] and [7] it is shown that the unit ball and the positive part of the unit ball is stable if $\operatorname{dim} H<\infty$. Are $\mathbf{B}(\mathcal{L}(H))$ and $\mathbf{B}_{+}(\mathcal{L}(H))$ stable for infinite dimensional H ?

In [8] it is presented an example of the extreme points of the unit ball of continues operator-valued map into $l^{p}, 1<p<\infty, p \neq 2$ with non-extremal values. What about extreme positive continuous maps into $\mathcal{L}\left(l^{p}\right), 1<p<\infty$, $p \neq 2$.

References

[1] Argyros S., On compact space without strictly positive measures, Pacific J. Math. 105 (1983), 257-272.
[2] Blumenthal R., Lindenstrauss J., Phelps R., Extreme operators into C(K), Pacific J. Math. 15 (1968), 35-46.
[3] Comfort W.W., Negrepontis S., Chain conditions in topology, Cambridge University Press, 1982.
[4] Clarkson J., Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
[5] Gaifman H., Concerning measures on Boolean algebras, Pacific J. Math. 14 (1964), 61-73.
[6] Grza̧ślewicz R., Extreme operators on 2-dimensional l^{p} spaces, Colloquium Math. 44 (1981), 309-315.
[7] Grza̧ślewicz R., Extreme positive contractions on the Hilbert space, Portugaliae Math. 46 (1989), 341-349.
[8] Grza̧ślewicz R., Extreme operator valued continuous maps, Arkiv för Matematik 29 (1991), 73-81.
[9] Grza̧ślewicz R., On the geometry of $\mathcal{L}(H)$, submitted.
[10] Grza̧ślewicz R., Hadid S.B., Denting points in the space of operator valued continuous maps, Revista Mat. Univ. Comp. Madrid, to appear.
[11] Herbert D.J., Lacey H.E., On supports of regular Borel measures, Pacific J. Math. 27 (1968), 101-118.
[12] Kadison R.V., Isometries of operator algebras, Ann. Math. 54 (1954), 325-338.
[13] Kelley J.L., Measures on Boolean algebras, Pacific J. Math. 9 (1959), 1165-1177.
[14] Bor-Luh Lin, Pei-Kee Lin, Troyanski S.L., Characterizations of denting points, Proc. Amer. Math. Soc. 102 (1988), 526-528.
[15] Maharam D., An algebraic characterization of measure algebras, Math. Ann. 48 (1947), 154-167.
[16] Michael E., Continuous selections I, Ann. of Math. 63 (1956), 361-382.
[17] Moore L.C., Jr., Strictly increasing Riesz norms, Pacific J. Math. 37 (1971), 171-180.
[18] Papadopoulou S., On the geometry of stable compact convex sets, Math. Ann. 229 (1977), 193-200.
[19] Rosenthal H.P., On injective Banach spaces and the spaces $L^{\infty}(\mu)$ for finite measures μ, Acta Math. 124 (1970), 205-248.

Institute of Mathematics, Politechnika, Wb. Wyspiańskiego 27, PL-50-370 WrocŁaw, Poland

E-mail: grzaslew@im.pwr.wroc.pl

[^0]: 1 Written while the author was a research fellow of the Alexander von Humboldt-Stiftung at Mathematisches Institut der Eberhard Karls-Universität in Tübingen.

