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Countable fan-tightness versus countable tightness

A.V. Arhangel’skii, A. Bella

Abstract. Countable tightness is compared to the stronger notion of countable fan-tight-
ness. In particular, we prove that countable tightness is equivalent to countable fan-
tightness in countably compact regular spaces, and that countable fan-tightness is pre-
served by pseudo-open compact mappings. We also discuss the behaviour of countable
tightness and of countable fan-tightness under the product operation.

Keywords: tightness, fan-tightness, countably compact spaces, pseudo-compact space,
P-point, biquotient mapping

Classification: 54A25

The notion of countable fan-tightness was introduced in a natural manner by
the first author during his investigation on the topological properties of a function
space in the topology of pointwise convergence (see [3]). In fact, the main result
of [3] says that the space Cp(X) has countable fan-tightness if and only if X

n is
a Hurewicz space for any integer n.
The aim of this paper is to study various topological properties related to the

concept of countable fan-tightness, in particular with respect to the much more
familiar concept of countable tightness. Among other things, for instance, we
show that these two notions coincide in any countably compact regular space.
Henceforth all spaces are assumed at least T1 and all mappings continuous; ω

denotes the set (or the discrete space) of all the intergers.
A space X has countable tightness if whenever A ⊂ X and x ∈ A, there exists

a countable set B ⊂ A such that x ∈ B.
A space X has countable fan-tightness if for any countable family {An : n ∈ ω}

of subsets of X satisfying x ∈ ∩n∈ωAn it is possible to select finite sets Kn ⊂ An

in such a way that x ∈ ∪n∈ωKn.
It is evident that a space having countable fan-tightness has also countable

tightness. The converse is in general false.

Example 1. Let us take the product of the usual convergent sequence ω + 1 with
the discrete space ω. The quotient space of it obtained by identifying all non
isolated points is called Fréchet-Urysohn fan; it is usually denoted by Sω. This
fan is a typical example of a countable space with only one non-isolated point the
fan-tightness of which is not countable.

Example 2. Put O = (0, 0), A = {(0, n) : n ∈ ω\{0}} and B = {(m, n) : m, n ∈ ω\
{0}}. On the setX = {O}∪A∪B we introduce a topology in the following way. All
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points of B are isolated, for each n ∈ ω \ {0} the subspace Pn = {(m, n) : m ∈ ω}
is compact and the subspace {O} ∪ A is also compact. Now take on X the finest
(strongest) topology satisfying the previous conditions. This space, introduced by
R. Arens [1], is usually denoted by S2. Let us show that the fan-tightness of this
space at the point O is not countable. Take Ak = {(m, n) : n > k, m, n ∈ ω\{0}}.
Then one can not choose finite subsets of Ak in such a way that their union would
have O as a limit point.

Clearly, if the fan-tightness of a space X is countable, and Y is a subspace of
X , then the fan-tightness of Y is also countable.

Remark 1. In the definition of fan-tightness, the family {An : n ∈ ω} can be
assumed decreasing, without any loss of generality. Indeed, suppose that the
definition of the countable fan-tightness holds for any decreasing family of sets in
a spaceX , and let {An : n ∈ ω} be a (not necessarily decreasing) family of subsets
of X such that x ∈ ∩n∈ωAn for some x ∈ X . Put A′

n = ∪k≥nAk and select finite

sets K ′
n ⊂ A′

n in such a way that x ∈ ∪n∈ωK ′
n. Let Kn = ∪m≤nK ′

m∩An. Clearly

∪n∈ωKn = ∪n∈ωK ′
n and therefore x ∈ ∪n∈ωKn.

Lemma 1. Let B and {An : n ∈ ω} be subsets of a space X satisfying the

following conditions:

(i) An ∩ B 6= ∅ for every n ∈ ω;
(ii) every sequence {xn : n ∈ ω} such that xn ∈ An has a limit point in X ;
(iii) for every neighbourhood U of B in X there is a neighbourhood V of B in

X such that V ⊂ U ;
(iv) if C ⊂ X and C ∩ B 6= ∅ then there is a countable subset M ⊂ C such

that M ∩ B 6= ∅.

Then there exist finite sets Kn ⊂ An such that ∪n∈ωKn ∩ B 6= ∅.

Proof: We shall call a point x ∈ X special, if there is a sequence ξ = {xn : n ∈ ω}
such that xn ∈ An and x is a limit point of ξ. Let S be the set of all special points
of X . Let us show that S ∩B 6= ∅. Assume the contrary. Then the set U = X \S
is a neighbourhood of B. By (iii), there is a neighbourhood V of B in X such that
V ⊂ U . By the condition (i), An ∩ V 6= ∅. Therefore we can choose xn ∈ An ∩ V
for each n ∈ ω. By (ii), there is a limit point y of the sequence ξ = {xn : n ∈ ω}
in X . Clearly, y is a special point and hence y ∈ S. But y ∈ V ⊂ U = X \ S and
thus we reach a contradiction. Since S∩B 6= ∅, using (iv) there exists a countable
set M ⊂ S such that M ∩ B 6= ∅. Put M = {yn : n ∈ ω} and for every n select a
sequence ξn = {zn

i : i ∈ ω} in accordance with the definition of special point. To

finish, define Kn = {z1n, z2n, . . . , zn
n}. �

After this lemma the next assertions are easily proved.

Proposition 1. Let X be a space regular at all points of a subspace Y , which
is countably compact in X . Further, let B be a compact subset of Y and {An :
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n ∈ ω} a countable family of subsets of Y such that the following conditions are
satisfied:

(1) An ∩ B 6= ∅ for each n ∈ ω;
(2) If C ⊂ X and C ∩ B 6= ∅, then there is a countable set M ⊂ C such that

M ∩ B 6= ∅.
Then there are finite subsets Kn ⊂ An such that ∪n∈ωKn ∩ B 6= ∅.

Proof: In the notations of Lemma 1, condition (1) is condition (i) and condition
(2) is condition (iv). Condition (ii) is satisfied automatically, since Y is countably
compact in X and condition (iii) is also satisfied, since B is compact and X is
regular at each point of Y . Therefore, it is enough to apply the lemma. �

Theorem 1. Let X be a space and Y ⊂ X . If Y is countably compact in X ,
X is regular at each point of Y and t(y, X) ≤ ω for each y ∈ Y , then Y has
countable fan-tightness.
Proof: To prove this we only need to apply Proposition 1, taking B to be the
one point set {y}, where y ∈ Y is the point at which we are verifying that the
fan-tightness is countable. �

Corollary 1. Let X be a Tychonoff space. If at(X) ≤ ω (that is, t(x, βX) ≤ ω
for each x ∈ X [4]), then X has countable fan-tightness.
Corollary 2. A countably compact regular space has countable tightness if and

only if it has countable fan-tightness.

The particular case of Corollary 2 concerning compact Hausdorff spaces was
announced without proof in [3].

Remark 2. Sω cannot be embedded into a countably compact regular space of
countable tightness since such a space has countable fan-tightness, by Corollary 2.

It is natural to ask whether every regular space of countable fan-tightness can
be embedded into a countably compact regular space of countable tightness. We
will show that this in general cannot be done even for a countable space with only
one non-isolated point.

Proposition 2. If p ∈ ω∗ = β(ω) \ ω then the single ultrafilter space ω ∪ {p}
(with the topology induced from β(ω)) has countable fan-tightness if and only if
p is a P-point in ω∗.

Proof: Let {An : n ∈ ω} be a family of subsets of ω such that p ∈ ∩n∈ωAn.
As in Remark 1, we may assume that this family is decreasing. If p is a P-point
in ω∗, then there exists a set B ∈ p such that B \ An is finite for each n. Put
Kn = (An \An+1)∩B. Each Kn is finite and ∪n∈ωKn = A0∩B ∈ p. Conversely,
suppose that ω ∪ {p} has countable fan-tightness and let {An : n ∈ ω} be a set
of members of p. We may assume that the family {An : n ∈ ω} is decreasing and
select finite sets Kn ⊂ An witnessing that ω ∪ {p} has countable fan-tightness
at p. Letting B = ∪n∈ωKn, we have B ∈ p and B \An ⊂ K0 ∪ · · · ∪Kn−1. Thus
p is a P-point in ω∗. �



568 A.V.Arhangel’skii, A.Bella

If p is a P-point in ω∗, then ω ∪ {p} provides an example of a countable
non-first countable space having countable fan-tightness. Coming back to the
question formulated before, observe that if p is a P-point of ω∗, then the space
X = ω ∪ {p} cannot be embedded into a countably compact regular space Z
of countable tightness. Indeed, if X is a subspace of Z then p is not isolated
in X \ ω, otherwise there would be a closed neighbourhood U of p in X such
that U ⊂ X , contradicting the fact that X is not locally compact at p. Now,
let {Vn : n ∈ ω} be a family of neighbourhoods of p in the space X \ ω. As
Z is regular, for each n we can select a closed neighbourhood Wn of p in the
space X such that Wn \ ω = Wn ∩ ω \ ω ⊂ Vn. But p is a P-point in ω∗ and
therefore there exists B ∈ p in such a way that B \Wn is finite for each n. The set
B \ω is a neighbourhood of p in X \ω which is contained in every Vn, in evident
contradiction with the fact that Z has countable tightness.
Furthermore, if p is not a P-point then, by Proposition 2, the fan-tightness of

X is not countable. Therefore, by Corollary 2, X cannot be embedded into a
regular countably compact space of countable tightness. So we have obtained a
new and more instructive proof of the following result of V.I. Malykhin (see [8]):
Theorem 2. A single ultrafilter space ω ∪ {p} can never be embedded into a
countably compact regular space of countable tightness.
We do not know whether some regular space having not countable fan-tightness

may be embedded into a pseudo-compact regular space of countable tightness.
However, in certain cases this cannot happen.
Theorem 3. Let X be a regular space with finitely many non isolated points. If
X can be embedded as a dense subspace into a pseudo-compact regular space of
countable tightness Y , then the fan-tightness of X is countable.

Proof: Fix a family {An : n ∈ ω} of subsets of X and a point x ∈ X such that
x ∈ ∩n∈ωAn, and let B = {x}. Then all the conditions of Lemma 1 are satisfied.
In particular, (ii) holds because every infinite subset of An, having almost all
its points isolated in X and hence also in Y , must possess a limit point in Y .
Therefore, applying the lemma, we are done. �

As a consequence of the above theorem, we get that Sω cannot be embedded
as a dense subspace into a pseudo-compact regular space of countable tightness.
Furthermore, Malykhin’s Theorem can be strengthened as follows:
Theorem 4. No single ultrafilter space X = ω∪{p} can be embedded as a dense
subspace into a pseudo-compact regular space of countable tightness.

Proof: If p is not a P-point then the result follows from Proposition 2 and
Theorem 3. If p is a P-point then it is enough to apply the argument used
before stating Theorem 2 (taking clearly into account that pseudo-compactness
is preserved by passing to closures of open sets). �

The above theorem is no longer true for Hausdorff pseudo-compact spaces.
Indeed every single ultrafilter space X = ω ∪ {p} can be embedded as a dense
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subspace into a Hausdorff pseudo-compact space of countable tightness. To see
this, apply the Isbell-Mrowka construction taking a maximal family of almost
disjoint subsets of ω which are closed in X .

Theorem 5. If X is a Tychonoff space such that for each Tychonoff space Y of
countable tightness the tightness of X × Y is countable then the fan-tightness of
X is countable.

Proof: Let b(X) be a Hausdorff compactification of X . Take Z to be the ω-
closure of X in b(X), that is Z = ∪{A : A ⊂ X and |A| ≤ ω}. Then the tightness
of Z at all points of X is countable, by the results in [4, Theorem 3.6]. It is also
clear that for each sequence of points in X there is a limit point in Z. Now let
{An : n ∈ ω} be a countable family of subsets of X and x a point in X such that
x ∈ An for each n ∈ ω. Letting B = {x}, we can apply Lemma 1 to the space Z
in the role of X in its statement. This concludes the argument. �

Remark 3. Theorem 5 cannot be reversed, even if we restrict ourselves to the
class of countably compact or σ-compact spaces or topological groups. Indeed,
under CH there is a countably compact regular space of countable tightness,
and, therefore, of countable fan-tightness by Corollary 2, the square of which
has uncountable tightness (see [9]). A much better result is obtained in [20,
Theorem 5], where there is a construction in ZFC of two Fréchet-Urysohn, and
hence, strongly Fréchet-Urysohn by the results in [12], σ-compact topological
groups whose product has uncountable tightness. Besides, V.V. Uspenskii in [21]
has constructed a countable topological group G of the countable fan-tightness
such that the tightness of the product G with the Frechét-Urysohn space Sc

(defined below) is uncountable.
Recall that a space X is Fréchet-Urysohn provided that for every A ⊂ X

and every x ∈ A there exists a sequence in A converging to x. X is said to
be strongly Fréchet-Urysohn (or countably bisequential) if for every decreasing
family {An : n ∈ ω} of subsets of X such that there is a point x ∈ ∩n∈ωAn, then
it is possible to select xn ∈ An in such a way that the sequence {xn : n ∈ ω}
converges to x.
A typical example of a Fréchet-Urysohn, non-strongly Fréchet-Urysohn space

is Sω.
It was shown in [14], that each regular Fréchet-Urysohn space which is not

strongly Fréchet-Urysohn, contains a topological copy of Sω. Therefore, the next
assertion holds:

Proposition 3 ([14, 16b]). A regular Fréchet-Urysohn space is strongly Fréchet-
Urysohn if and only if it has countable fan-tightness.

Let Sc be the space obtained by identifying the limit points of continuum many
convergent sequences. In [18, Corollary 1.3] it is shown that a regular Fréchet-
Urysohn spaceX is strongly Fréchet-Urysohn, provided that X×Sc has countable
tightness. On the other hand, we have:
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Proposition 4. If X is a regular countably compact space of countable tightness,
then the tightness of X × Sc is countable.

Proof: The natural projection of X×Sc onto Sc is a closed continuous mapping,
since X is countably compact and Sc is Fréchet-Urysohn. It remains to refer to
a theorem in [4], which tells us that if all fibers have countable tightness, the
mapping is closed and continuous, the domain is a regular space, and the range
space is countably tight, then the tightness of the domain space is countable. �

In view of the result discussed above, it is reasonable to ask:

Question 1. Let X be a regular space. Is it true that X has countable fan-

tightness whenever X × Sc has countable tightness?

Clearly a positive answer to this question would be a strengthening of Theo-
rem 5.
A particular case of the above question is:

Question 2. Let X be a Tychonoff space such that Cp(X) × Sc is a space of

countable tightness. Is then true that X is a Hurewicz space?

In [18, Proposition 1.1] it is proved that if X is a regular space for which X×Sc

is a k-space, then the closure of every countable subset of X is locally countably
compact. This, together with Corollary 2, leads to the next result:

Theorem 6. Let X be a regular space of countable tightness. If X × Sc is a

k-space, then X has countable fan-tightness.

Theorem 7. A hereditarily normal sequential space is strongly Fréchet-Urysohn

if and only if it has countable fan-tightness.

Proof: In [7] Kannan proved that a hereditarily normal sequential space is
Fréchet-Urysohn if and only if it does not contain any copy of S2. It remains to
refer to Proposition 3. �

Observe that in Kannan’s Theorem the space under consideration need not
be strongly Fréchet-Urysohn. For instance, Sω is a hereditarily normal Fréchet-
Urysohn space which is not strongly Fréchet-Urysohn.

Corollary 3. A regular sequential space with a countable network (in particular
a countable regular sequential space) is strongly Fréchet-Urysohn if and only if it
has countable fan-tightness.

Recall, that a space X is symmetrizable, if there exists a non-negative real-
valued function d on X × X satisfying the following conditions:

d(x, y) = 0 if and only if x = y;
d(x, y) = d(y, x) for every x, y ∈ X ;

A set A ⊂ X is closed if and only if d(x, A) = inf{d(x, y) : y ∈ A} > 0 for every
x ∈ X \ A.
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Question 3. Is every regular symmetrizable space with countable fan-tightness

first countable?

We have the following partial answer:

Theorem 8. If X is a regular symmetrizable space with countable fan-tightness,
then X is first countable provided that one of the condition below holds:

(a) CH;
(b) X is metalindelöf;
(c) X is ℵ0-monolithic;
(d) All points in X are Gδ’s.

Proof: We first prove that condition (d) is sufficient, and then we reduce all
other conditions to condition (d). In [6, Lemma 6.11] it is shown that a regular
symmetrizable space whose points are Gδ’s, is either first countable or contains a
closed copy of S2. To complete the proof in case of (d), it is enough to refer to
Example 2.
Since every regular symmetrizable Fréchet-Urysohn space is first countable [2],

and X has countable tightness, it is enough to check that under any of the given
conditions (a), (b), (c), every closed separable subspace Y of X is first countable.
Indeed, we are reduced to verify that every point of Y is of type Gδ in Y . In case
(a), taking into account the regularity of the space, we see that every point of Y
has a local base of cardinality at most ℵ1 and consequently, by [16, Proposition 3],
every point of Y is of type Gδ. In case (b), we have that Y is Lindelöf and hence,
hereditarily Lindelöf, by [11, Theorem 2]. In case (c), by definition Y has a
countable network and, therefore, it is hereditarily Lindelöf. In both cases we see
that every point of Y is of type Gδ. �

Observe, that it remains unknown whether all points of a regular symmetrizable
space must necessarily be of type Gδ.
The fan-tightness plays also a role in the structure of closed mappings and of

the images under such mappings.
Recall that a Lashnev space is a closed image of a metrizable space. A Lashnev

space is always Fréchet-Urysohn, and it is well known (see [10]) that a Lashnev
space is metrizable if and only if it is strongly Fréchet-Urysohn. This assertion
can be reformulated as follows:

Proposition 5. A Lashnev space is metrizable if and only if it has countable

fan-tightness.
In [17, Theorem 1.4] it is shown that a subspace of a countable product of

Lashnev spaces is metrizable, provided it is strongly Fréchet-Urysohn. This result
naturally suggests the following:

Question 4. Is a subspace of a product of countably many Lashnev spaces

metrizable, provided that it has countable fan-tightness?
The next theorem should be compared with an analogous one due to E. Michael.



572 A.V.Arhangel’skii, A.Bella

Given a space X and a set A ⊂ X , we say that A is pseudo-compact in X if
every locally finite family of open subsets of X intersecting A is finite.

Theorem 9. Let f : X → Y be a closed mapping. If Y has countable fan-
tightness, then the boundary of every fiber of f is pseudo-compact in X .

Proof: Let us proceed by contradiction. Select y ∈ Y and assume that f−1(y) \
int(f−1(y)) is not pseudo-compact inX . Thus there exists an infinite locally finite
family {Un : n ∈ ω} of open subsets ofX such that Un∩(f−1(y)\int(f−1(y))) 6= ∅.

For every n ∈ ω we have y ∈ f(Un) \ {y}. Every finite set Kn ⊂ f(Un) \ {y}
is of the form f(Hn) for some finite set Hn ⊂ Un. Now the local finiteness
of {Un : n ∈ ω} implies that ∪n∈ωHn is closed in X and the closedness of f
implies that ∪n∈ωKn is a closed set missing y. This contradicts the countable
fan-tightness of Y , and the proof is complete. �

It is easy to realize that in the above theorem countable fan-tightness cannot
be replaced by countable tightness. For instance, consider the canonical closed
mapping used in the definition of Sω .
It is also interesting to compare Theorem 9 with Theorem 1.4b in [5], this

result says that if the tightness of Y 2 is countable, then every discrete family of
open subsets of X intersecting the boundary of a fiber of f must have cardinality
smaller than the continuum.
Since every pseudo-compact closed subspace of a normal space is countably

compact, we get:

Corollary 4. If X is a normal space, Y a space with countable fan-tightness
and f : X → Y is a closed mapping, then the boundary of every fiber of f is
countably compact.

Corollary 5. If f : X → Y is a closed mapping of a Diedonne complete (in
particular, of a paracompact) space onto a space with countable fan-tightness,
then f is compact covering, and even inductively perfect [2].

Let us have a look at the behaviour of fan-tightness under mappings. This will
allow us to obtain results on the fan-tightness of products.
Theorem 10. Let f be a closed mapping of a regular space X onto a space Y
of countable fan-tightness, and let us also assume that the fan-tightness of each

fiber of f is countable. Then the fan-tightness of X is also countable.

Proof: Let x ∈ X and let {An : n ∈ ω} be a countable family of subsets of X
such that x ∈ ∩n∈ωAn. Put y = f(x) and P = f−1(y).
Case 1. There is an infinite subset M of ω such that x ∈ ∩n∈MAn ∩ P . Since the
fan-tightness of the space P is countable, it is clear how to conclude the argument.
Case 2. There is an infinite subset L ⊂ ω such that x /∈ An ∩ P for each n ∈ L. In
this case we replace An by An \P for each n ∈ L. We can also treat L as ω. Thus,
for the remaining part of the proof we assume that An ∩ P = ∅ for each n ∈ ω.
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Put Bn = f(An). Then, by continuity of f , y = f(x) ∈ ∩{Bn : n ∈ ω}. A point
z of the set P will be called nice if we can choose finite subsets Kn ⊂ An in such
a way that z ∈ ∪n∈ωKn. Our first step will be to show that x is in the closure
of the set N of all nice points of P . Take any neighbourhood U of x in X . Then
x ∈ U ∩ An. Put Cn = f(U∩An). Clearly, y ∈ Cn. It follows that there are finite
sets Hn ⊂ Cn such that y ∈ ∪n∈ωHn. We can fix a finite set Kn ⊂ U ∩ An such
that Hn = f(Kn). Let S = ∪n∈ωKn. Obviously f(S) contains y in its closure.
Therefore, S∩P 6= ∅, by closedness of f . It is clear that all points of the set S∩P
are nice and belong to the closure of U . Since X is regular it follows that x is in
the closure of N . Now we shall need the fact that the set N is ω-closed. To see
this, let E = {yi : i ∈ ω} be a countable subset of N . For each i ∈ ω and each
n ∈ ω we fix finite subsets Kn,i ⊂ An such that yi ∈ ∪n∈ωKn,i. Put K1 = K1,1,
K2 = K2,1 ∪K2,2, . . . , Kn = ∪i≤nKn,i, and so on. Then Kn ⊂ An, Kn is finite,

and yi ∈ ∪n∈ωKn for each i ∈ ω. It follows that the closure of the set E consists
only of nice points and consequently N is ω-closed.
Now we are ready to complete the argument. Since x ∈ N ⊂ B and the

tightness of the space P is countable, it follows that x is actually an element
of N . The fact that x is a nice point concludes the proof. �

Corollary 6. If X is a compact space of countable tightness and Y is a regular
space of countable fan-tightness then the fan-tightness of X × Y is countable.

The above corollary is similar to the well known result of Malykhin concerning
the tightness.
Notice that in Corollary 6 one cannot replace compactness by countable com-

pactness (at least consistently). However we have:

Corollary 7. If X is a countably compact regular space of countable tightness,
and Y is a sequential space of countable fan-tightness, then the product X × Y
has countable fan-tightness.

Proof: This follows from Corollary 2 and the well known fact that the natural
projection of X × Y onto Y is a closed mapping. �

Remark 4. In view of Corollary 7, it would be very interesting to know whether it
is consistent with ZFC that every countably compact regular space of countable
tightness is sequential. If this were the case, then consistently the square of every
countably compact regular space of countable tightness would have been a space
of countable tightness.
A mapping is said to be nowhere constant provided that all its fibers have an

empty interior. This notion leads to another consequence of Theorem 10, applied
in a combination with Corollaries 2 and 4.

Corollary 8. Let X be a normal space of countable tightness. If there exists
a nowhere constant closed mapping from X into some space of countable fan-

tightness then X has countable fan-tightness.
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Theorem 11. Let X be a space, and let Xω
b be the set Xω, equipped with the

box topology. If Xω
b is countably tight, then X is of countable fan-tightness.

Proof: Let {An : n ∈ ω} be a family of subsets of X and x ∈ ∩n∈ωAn. If
A ⊂ Xω is the set defined by A =

∏
n∈ω An and p ∈ Xω is the point whose

coordinates are all equal to x then obviously p ∈ A in the space Xω
b . By the

hypothesis, there exists a setM = {zn : n ∈ ω} ⊂ A such that p ∈ M . Now let us
denote by zn

i the i-th coordinate of the point zn. Clearly zn
i ∈ Ai for each i ∈ ω.

Putting Ki = {z1i , z2i , . . . , zi
i}, it is not difficult to check that x ∈ ∪i∈ωKi. �

A similar result cannot be proved for the usual product topology as next ex-
ample shows.
Example 3. Recall that a space X is a Hurewicz space, if for any countable family
{Un : n ∈ ω} of open covers of X it is possible to select finitely many open sets
Vn ⊂ Un in such a way that the family ∪n∈ωVn covers X . Now let X be any
Lindelöf space which is not a Hurewicz space and satisfies the condition: Xn is
Lindelöf for each n ∈ ω. For instance, we can take X to be the space of all
irrational numbers with the usual topology (see [3]). Then the space Cp(X) of
all real valued functions on X in the topology of pointwise convergence as well as
Cp(X)

ω have countable tightness (in case of irrational numbers these two spaces
have actually countable networks). On the other hand, the fan-tightness of Cp(X)
is not countable, since otherwise the space X would have been a Hurewicz space
(see [3]).

In [3] it was shown, that the countable fan-tightness is preserved by almost
open mappings, in particular by open mappings.
Now we shall prove some other results in this direction.
Recall (see [10]) that a mapping f : X → Y is said to be biquotient, if whenever

y ∈ Y and U is a cover of f−1(y) by open subsets of X , then finitely many f(U),
with U ∈ U , cover a neighbourhood of y in Y .
Similarly, we have the following concept which was studied by Siwiec and Man-

cuso in [15] and by Siwiec in [13]. A mapping f : X → Y is countably biquotient
if, whenever y ∈ Y and {Un : n ∈ ω} is an increasing countable cover of f−1(y) by
open subsets of X , then y is in the interior of f(Un) for some n. For example, all
open mappings are biquotient, and all perfect mappings are biquotient. Moreover
every pseudo-open mapping with compact fibers is also biquotient (see [13], [15]).
Theorem 12. If X is a space of countable fan-tightness, and f : X → Y is a
countably biquotient onto mapping, then Y has also countable fan-tightness.

Proof: Let {Bn : n ∈ ω} be a family of subsets of Y and let y ∈ Y be a
point satisfying y ∈ ∩n∈ωBn. Following Remark 1, we may assume that the
family {Bn : n ∈ ω} is decreasing. Since f is countably biquotient, there is a
point x ∈ f−1(y) which is a limit point of An = f−1(Bn) for each n. Indeed,

otherwise, the family {X \f−1(Bn) : n ∈ ω} would be an increasing open cover of

f−1(y) and therefore there would exist n such that f(X \ f−1(Bn)) ⊂ Y \Bn is a
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neighbourhood of y in Y—a contradiction. Since X has countable fan-tightness,
there are finite subsets Hn of An such that x ∈ ∪n∈ωHn. Clearly, the finite sets
Kn = f(Hn) have the property we are looking for. �

Corollary 9. Let f be a pseudo-open mapping of a space X onto a space Y such
that all fibers are countably compact. If X has countable fan-tightness, then also
Y has countable fan-tightness.

Proof: It was shown in [15] that every pseudo-open mapping with countably
compact fibers is countably biquotient. It remains to apply Theorem 12. �

In particular, we see that perfect mappings preserve countable fan-tightness.
It is well known that tightness is preserved by quotient mappings. The same

is no longer true for countable fan-tightness, even if we assume that the mapping
under consideration is closed or quotient with compact fibers. Concerning the
former assertion, it is enough to remember that Sω is a closed image of a countable
metrizable space. For the latter assertion we have:

Example 4. Let R be the real line with the usual topology, and let X be the
quotient space of R obtained by identifying the pairs of the form { 1n , n} to a single
point, for each n ∈ ω \ {0}. The natural projection from R onto X is a quotient
mapping with finite fibers, but the space X is not of countable fan-tightness. To
check the last assertion, let An =]n,∞[\ω. It is clear that 0 ∈ ∩n∈ωAn, but
0 /∈ ∪n∈ωKn, for any choice of finite sets Kn ⊂ An.

We close the paper by calling the reader’s attention to another question left
open.
Question 5. Is it true that the fan-tightness of every pseudo-compact Tychonoff

space of countable tightness is countable?
At the first glance, it seems that the last question must have a negative answer.
Finally, we introduce the general concept of fan-tightness. We shall define the

fan-tightness of a space X , denoted by vet(X), as the smallest cardinal number
τ such that whenever {Aα : α ∈ τ} is a centered family of subsets of X and
x ∈ ∩α∈τ Aα, there exist finite sets Kα ⊂ Aα such that x ∈ ∪α∈τ Kα. Observe,
that for any spaceX , if the cardinal number τ is large enough, the above condition
is satisfied. Therefore, the invariant vet(X) is well defined.
Notice also that, by Remark 1, this definition is equivalent in the countable

case with the definition of countable fan-tightness, given at the beginning.
Furthermore, using the same argument as in the proof of Theorem 12, and

taking into account a characterization of biquotient mappings, similar to the char-
acterization of countable biquotient mappings we referred to before, we establish
the following result:
Theorem 13. If a space Y is an image of a space X under a biquotient mapping,
then vet(Y ) ≤ vet(X).
In particular, perfect mappings, open mappings, and more generally pseudo-

open compact mappings, do not increase fan-tightness.
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Addendum. Question 1 has been answered positively by the second named au-
thor and Jan van Mill. The proof will appear elsewhere.
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