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On a theorem of Fermi

V.V. Slavskii

Abstract. Conformally flat metric ḡ is said to be Ricci superosculating with g at the
point x0 if gij(x0) = ḡij(x0), Γ

k
ij(x0) = Γ̄

k
ij(x0), Rk

ij(x0) = R̄k
ij(x0), where Rij is the

Ricci tensor. In this paper the following theorem is proved:

If γ is a smooth curve of the Riemannian manifold M (without self-crossing), then
there is a neighbourhood of γ and a conformally flat metric ḡ which is the Ricci super-

osculating with g along the curve γ.

Keywords: conformal connection, development

Classification: 53A30, 53C20

Let g = gijdxidxj and ḡ = ḡijdxidxj be two metrics on the n-dimensional
manifold M . The metric ḡ is said to be tangent, respectively osculating with the
metric g at the point x0 ∈ M ([1]), if

gij(x0) = ḡij(x0), respectively,

gij(x0) = ḡij(x0),
∂gij

∂xk
(x0) =

∂ḡij

∂xk
(x0)

(
or Γk

ij(x0) = Γ̄
k
ij(x0)

)
,

where Γk
ij are the Cristoffel symbols.

If γ is a smooth curve of the manifoldM , then there is a local Euclidean metric
ḡ which is osculating with the g along the curve (this theorem is due to Fermi [1]).
The Riemannian curvature tensor can be computed with the help of the first

and second derivatives of the metric tensor gij ; hence, there exists no local-
Euclidean metric which is superosculating of degree two with g. But if we consider
a class of conformally flat metrics, there is a conformally flat metric which has
some equal combinations of first and second derivatives.

Definition. Conformally flat metric ḡ is said to be Ricci superosculating with g

at the point x0 if

gij(x0) = ḡij(x0), Γk
ij(x0) = Γ̄

k
ij(x0), Rij(x0) = R̄ij(x0),

where Rij is the Ricci tensor.
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Theorem. If γ is a smooth curve of the Riemannian manifold M (without self-
crossing), then there is a neighbourhood of γ and a conformally flat metric ḡ

which is the Ricci superosculating with g along the curve γ.

To prove the theorem we use the conformal connection and a conformal de-
velopment of the curve ([2]–[4]). Let Rn+2 = Rn+1 × R be a pseudo-Euclidean
Minkowski space with a Lorentz inner product given by formula ([5]):

〈z1, z2〉 = (x1, x2)− ζ1ζ2,

where zi = (xi, ζi) ∈ Rn+2, i = 1, 2; (x1, x2) is an inner product for the Eu-
clidean space Rn+1. Let C+ = {z = (x, ζ) : 〈z, z〉 = 0, ζ > 0} denote the light
cone of the Minkowski space. We consider the basis F for the space Rn+2 as the
column of vectors of Rn+2. Let GL(n+ 1, 1) be a manifold of all the basis of the
kind:

F t = {e1, . . . , en, z, z∗},

where {e1, . . . , en} are spacelike vectors (i.e. ‖ḡij‖ = ‖〈ei, ei〉‖ is a positively
definite matrix),

(1) 〈z, ei〉 = 〈z∗, ei〉 = 0, 〈z, z∗〉 = −1, 〈z〉2 = 〈z∗〉2 = 0.

Let us fix the basis Fe ∈ GL(n+ 1, 1), then any other basis F ∈ GL(n+ 1, 1)
can be identified with the linear transformation F such that F = F · Fe. The
matrix-valued 1-form Φ is defined by

Φ = dF · F−1 = ‖ω.j
i. ‖, i, j = 1, . . . , n+ 2,

or

(2) dF = d(F · Fe) = dF · F−1 · F · Fe = Φ · F.

Now (1) implies

dḡij = ω.k
i. ḡkj + ω.k

j. ḡki,

ω.n+2
n+1. = ω.n+1

n+2. = 0, ω.n+1
n+1. + ω.n+2

n+2. = 0,

ω.k
n+1.ḡki − ω.n+2

i. = 0, ω.k
n+2.ḡki − ω.n+1

i. = 0.

Let us set

ω.i
n+1. = ωi, ω.n+2

i. = ωi, ω.i
n+2. = ω∗i, ω.n+1

i. = ω∗
i , α = ω.n+1

n+1. .

The equation of Cartan-Maurera dΦ+ 12 [Φ,Φ] = 0 for Φ is written

dω
.j
i. =

n∑

k=1

ω.k
i. ∧ ω

.j
k.
+ ω∗

i. ∧ ωj + ωi ∧ ω∗j , dα = ωi ∧ ω∗i,

dωi = ωk ∧ ω.i
k. + α ∧ ωi, dω∗i = ω∗k ∧ ω.i

k. − α ∧ ω∗i.
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We now give a construction of the conformal Cartan connection. Let g =
gijdtidtj be the Riemannian metric on the manifold M . Let Φ be the differential
matrix 1-forms defined by the formulas:

ωi = dti, ω
.j
i. = Γ

j
ikdtk, ω∗

i =
1

n − 2

(
Rikdtk −

Rgikdtk

2(n − 1)

)
= Aikdtk, α = 0,

where Γ
j
ik are the Cristoffel symbols, Rik is the Ricci tensor, Aik is the reduced

Ricci tensor, R is the scalar curvature. The form Φ is called the normal conformal
Cartan connection of the Riemannian manifoldM ([2]–[4]). We denote this matrix

of differential 1-forms by Φ = {ωi, ω
.j
i. , ω

∗
i , 0}.

Definition. Let {M, g} be the Riemannian manifold; and let α be a differ-

ential 1-form on M . The extended conformal Cartan connection matrix Φ̃ =
{ωi, ω̃

.j
i. , ω̃

∗
i., α} on the manifold M , associated with α, is the matrix defined by

the formulas:

ω̃
.j
i. = ω

.j
i. − αiω

j + αjωi =
(
Γj

ik
− αiδ

j
k
+ αjgik

)
dtk,

ω̃∗
i = ω∗

i − αiα − Dαi +
|α|2

2
ωi =

(
Aij − αiαj − αi,j +

|α|2

2
gij

)
dtj ,

where α = αiωi = αiω
i, Dαi is the covariant derivative, |α|

2 = αiαi.

The curvature matrix of the extended Cartan connection is defined by the
formula:

dΦ̃ +
1

2
[Φ̃, Φ̃] =




W̃
·j
i· | S̃i | 0
— — —
0 | 0 | 0
— — —
S̃j | 0 | 0




,

where W̃
.j
i. =W

.j
i. are the forms of the Weyl tensor (it is independent of the choice

of α), S̃i = Si + αsW
.j
s. are the forms of the Schouten-Weyl tensor ([6]).

Definition. Let γ = {xi(t) : a ≤ t ≤ b} be a smooth curve of the manifold
{M, g, α} and F0 = {e01, . . . , e

0
n, z0, z0∗} ∈ GL(n + 1, 1) be a starting basis such

that:
gij(γ(a)) = 〈e0i , e

0
j 〉.

The lifting F : [a, b] → GL(n + 1, 1) is the solution of the differential matrix

equation Ḟ = Φ(γ̇)F, F (a) = F0. The vector function z : [a, b] → C+ (the
component of F) is called the conformal development of γ.

Remark 1. The development z does not depend on the choice of the local basis
{e1, . . . , en} and the form α on the manifold M (for the proof see [3]).

Remark 2. In the case of the continuous curve γ, the lifting of the curve, for an
arbitrary connection, was defined in [7].
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Lemma. Let Z : D → C+ be an immersion of the domain D ⊂ Rn into the light

cone C+ ⊂ Rn+2 of the Minkowski space Rn+2, and let ḡ = 〈dZ, dZ〉 = ḡijdxidxj

denote the conformally flat metric ([5]), then

d2Z = Zijdxidxj = ZkΓ̄
k
ijdxidxj + Z∗ḡijdxidxj + ZĀijdxidxj ,

where Γ̄k
ij are the Cristoffel symbols, Āik is the reduced Ricci tensor of the metric

ḡ, the vector Z∗ is defined by the formulas:

〈Z∗, Zi〉 = 0, 〈Z, Z∗〉 = −1, 〈Z∗, Z∗〉 = 0,

where Zi =
dZ
dxi , Zij =

∂2Z
dxidxj .

Proof: The vectors {Z1, . . . , Zn, Z, Z∗} form a basis, hence

(3) Zij = ZkMk
ij + Z∗Nij + ZPij .

It is easy to see, from (1), that

Mk
ij = Γ̄

k
ij , Nij = ḡij .

If we differentiate (3) with respect to xs and equate the mixed partial derivatives
Zijs and Zisj , we obtain Pij = Āij . �

Remark. The tensors ḡij and Āij completely define the second fundamental
form of the surface {Z(x)} in the Minkowski space.

Proof of the theorem: Let {x1, x2, . . . , xn} be the Fermi co-ordinate system
([8]) in the tube about the curve

γ =
{
x : x2 = · · · = xn = 0, a ≤ x1 ≤ b

}
,

that is:

(a) the tangent vectors ∂
∂x1

, . . . , ∂
∂xn form the orthonormal frame field along

the curve γ,
(b) the curves {x1 = const, xi = cis : s > 0, i ≥ 2} are geodesics, where

{ci}n
i=2 are constants.

Let Bε(γ) = {x :
∑n

i=2(x
i)2 < ε2, a ≤ x1 ≤ b} denote the (solid) tube of the

radius ε about γ. We will determine the immersion

Z : Bε(γ)→ C+,

such that ḡ = 〈dZ, dZ〉 will be the required conformally flat metric.
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Let x0 = (a, 0, . . . , 0) ∈ Bε(γ) be the starting point. Any point x = (x
1, . . . , xn)

∈ Bε(γ) can be connected with x0 by the curve (open polygon) lx consisting of
the two arcs. The first arc is a line segment along the axis of Bε(γ):

x(t) = {a(1− t) + tx1, 0, . . . , 0}, 0 ≤ t ≤ 1,

the second arc is the geodesic segment which is orthogonal to the axis

x(t) = {x1, (t − 1)x2, . . . , (t − 1)xn}, 1 ≤ t ≤ 2.

The curve lx : [0, 2] → Bε(γ) depends smoothly on the terminal point x. Let L
denote the family of all such curves lx.
Let us fix the basis F0 ∈ GL(n+ 1, 1) and associate lx with the lifting

Fx(t) = {e1(t)x, . . . , en(t)x, z(t)x, z∗(t)x} ,

into the group GL(n+ 1, 1). Then we may consider the map

F : x ∈ Bε(γ)→ Fx(2) ∈ GL(n+ 1, 1).

Let Φ̄ = {ω̄i, ω̄
.j
i. , ω̄

∗
i., α} be a matrix 1-forms corresponding to the map F by the

formula (2). Let Z(x) = z(2)x be a component of the map F, that is the terminal
point of the development lx.
Since Φ̄ = Φ

∣∣
L
, then the forms Φ̄ and Φ are equal along the axis Bε(γ) (on the

tangent space of the manifold M). We have

dZ = Ziω̄
i = Zidxi,

dZi = ω̄
.j
i. Zj + ω̄iZ

∗ + ω̄∗
i Z,

for any point of γ. Then

d2Z = ω̄
.j
i. dxiZj + ω̄idxiZ∗ + ω̄∗

i dxiZ = ω
.j
i. dxiZj + ωidxiZ∗ + ω∗

i dxiZ,

for any point of γ. The application of the Lemma gives us the required result.
Other applications of the conformal development curves can be find in [3]. �
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