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Metrizable completely distributive lattices

Zhang De-Xue

Abstract. The purpose of this paper is to study the topological properties of the interval
topology on a completely distributive lattice. The main result is that a metrizable com-
pletely distributive lattice is an ANR if and only if it contains at most finite completely
compact elements.
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Classification: 54C08, 06B30

0. Introduction

It is a fundamental result in topology that the unit interval [0, 1] is an absolute
retract (AR). Since every completely distributive lattice can be embedded as a
subcomplete lattice (hence a closed subspace) in some power of [0, 1], it is natural
to ask whether a completely distributive lattice is an AR or ANR.
By improving the method of Katětov [6], Liu and Luo [8] have proved the

following result.
Let L be a completely distributive lattice with a countable strict join generating

set (see [8] for definition or the note after 3.1), X a normal space, f, g : X → L
are lsc, usc in the sense of 1.6 respectively and g ≤ f , then there is a continuous
h : X → L such that g ≤ h ≤ f . Hence L is an AR by a routine argument like
4.2.
Meanwhile by a very different methods, precisely, making use of the semiuni-

formity which generates both the order and the topology on a continuous lattice,
van Gool [3] has introduced new definitions of lsc and usc functions with values
in a continuous lattice, and proved the following result.
Let L be an arcwise connected, metrizable, linked bicontinuous lattice, X a

normal space, f, g : X → L are lsc and usc functions in the sense of van Gool [3]
respectively, then there is a continuous h : X → L such that g ≤ h ≤ f . Therefore
by a routine argument L is an AR in this case.

Now questions arise:

(1) What is the relation between the result of Liu and Luo [8] and that of van
Gool [3]?

(2) When is a completely distributive lattice an ANR?
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The purpose of this paper is to answer these two questions, precisely we have
obtained:

(1) A metrizable completely distributive lattice is an ARN if and only if L
contains at most finite completely compact element.

(2) For distributive lattices, the result of Liu and Luo is equivalent to that of
van Gool.

1. Completely distributive lattices and semicontinuous mappings

In this section, we recall some basic results about completely distributive lat-
tices, continuous lattices, and some characterizations of semicontinuous mappings.

1.1 Definition. Let a, b be elements in a complete lattice L, we say that a is
way below b (wedge below b), in symbols a ≪ b (a ⊳ b), if for every directed
(arbitrary) D ⊂ L, b ≤

∨

D implies there is some d ∈ D with a ≥ d. And a
complete lattice L is called continuous (completely distributive) if every element
of L is the supremum of all the elements which are way below (wedge below) it,
i.e. a =

∨

{b ∈ L | b ≪ a} (a =
∨

{b ∈ L | b ⊳ a}) for all a ∈ L.

Suppose L is a complete lattice, write Idl(L) (Low(L)) for the complete lattice
of all the ideal (lower sets) in L, and sup : Idl (L) → L (Low(L) → L) for the
supremum operation, then easily we have

1.2 Theorem. Let L be a complete lattice, then

(1) L is continuous if and only if sup : Idl(L)→ L has a left adjoint ↓↓ : L →
Idl(L), or equivalently sup preserves infs. In this case ↓↓ a = {b ∈ L | b ≪
a} for a ∈ L;

(2) L is completely distributive if and only if sup : Low(L) → L has a left
adjoint β : L → Low(L). In this case β(a) = {b ∈ L | b ⊳ a} for a ∈ L.

�

Note. If L is completely distributive, then for each a ∈ L, ↓ a is just the ideal
generated by the lower set β(a).

1.3 Corollary. (1) In a continuous lattice L, the way below relation has the
interpolation property, that is to say for a ≪ b there is some c ∈ L, a ≪ c ≪ b.
(2) In a completely distributive lattice L, the wedge below relation has the
interpolation property. �

1.4 Corollary. Let L be a complete lattice, then

(1) L is continuous if and only if the equation
∧

i∈I

∨

j∈Ji

di,j =
∨

f∈
Q

i∈I
Ji

∧

i∈I

di,f(i)

holds if I 6= Φ and Di = {di,j | j ∈ Ji} is a directed set for each i ∈ I;
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(2) L is completely distributive if and only if the equation

∧

i∈I

∨

j∈Ji

di,j =
∨

f∈
Q

i∈I
Ji

∧

i∈I

di,f(i)

holds if I 6= Φ and Ji 6= Φ for each i ∈ I. �

Note. In the literature a complete lattice L is called completely distributive if
the equations

∧

i∈I

∨

j∈Ji

di,j =
∨

f∈
Q

i∈I
Ji

∧

i∈I

di,f(i)(1)

∨

i∈I

∧

j∈Ji

di,j =
∧

f∈
Q

i∈I
Ji

∨

i∈I

di,f(i)(2)

hold if I 6= Φ and Ji 6= Φ for i ∈ I. It is proved in [5] that (1) and (2) are
equivalent, hence the definition of complete distributivity in 1.1 is equivalent to
that in the literature.

1.5 Corollary. A distributive complete lattice L is completely distributive if and
only if both L and Lop are continuous. �

1.6 Definition. Let L be a complete lattice, then

(1) The lower (upper) topology θ∗(L) (θ
∗(L)) is the topology generated by

{L\ ↓a | a ∈ L} ({L\ ↑a | a ∈ L}) as a subbase. The interval topology θ(L) is the
coarsest common refinement of both θ∗(L) and θ∗(L).

(2) An upper set U ⊂ L is called Scott open if for every directed set D ⊂ L,
∨

D ∈ U implies u ∩ D 6= Φ; easily all the Scott open sets form a topology σ(L),
called the Scott topology. Trivially σ(L) is finer than θ(L).

(3) A mapping f from a topological space to L : X → L is called continuous
(Scott continuous, lsc, usc) if f is continuous with respect to the interval topology
θ(L) (σ(L), θ∗(L), θ

∗(L) respectively).

Trivially f : X → L is usc if and only if for each a ∈ L, f[a] = {x ∈ X | f(x) ≥

a} is closed; f is lsc if and only if for each a ∈ L, f [a] = {x ∈ L | f(x) ≤ a} is
closed.

1.7 Lemma ([12], [2]). Let L be a continuous lattice, X a topological space,
write [X,

∑

L] for the set of Scott continuous mappings X → L, then [X,
∑

L] is
closed under pointwise finite infs and pointwise arbitrary sups, hence a complete
lattice. �
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1.8 Theorem ([12]). Let X be a topological space, L a continuous lattice, f :
X → L a mapping, then

(1) f is Scott continuous if and only if for each x ∈ X ,

f(x) =
∨

u∈B(x)

∧

y∈U

f(y),

where B(x) is a neighborhood base of x.
(2) The biggest Scott continuous mapping Int f majorized by f satisfies that
for each x ∈ X ,

Int f(x) =
∨

u∈B(x)

∧

y∈U

f(y),

where B(x) is a neighborhood base of x. �

1.9 Theorem ([7]). Let X be a topological space, L a completely distribu-
tive lattice, then f : X → L is lsc if and only if for each x ∈ X , f(x) =
∨

U∈B(x)

∧

y∈U f(y), where B(x) is a neighborhood base of x; or equivalently

f is Scott continuous by the above theorem. �

1.10 Corollary. For a completely distributive lattice L, the lower topology co-
incides with the Scott topology.

�

1.11 Theorem ([12]). Let X be a topological space, L a continuous lattice,
f : X → L a mapping, then the biggest Scott continuous mapping Int f majorized
by f satisfies Int f =

∨

a∈L af0[a], where for each a ∈ L, af0[a] is the characteristic

mapping on the interior of f[a] = {x ∈ X | f(x) ≥ a} with value a ∈ L, hence f is

Scott continuous if and only if f =
∨

a∈L f0[a]. �

1.12 Theorem. LetX be a topological space, L a completely distributive lattice,
f : X → L a mapping, then

(1) the biggest lsc mapping majorized by f is Int f =
∨

a∈L af0[a];

(2) the least usc mapping cl f majorizing f satisfies cl f =
∨

a∈L af[a], where

af[a] is the characteristic mapping on the closure of f[a] with value a ∈ L.

Note. It should be pointed out that (2) is not the dual of (1).

Proof: (1) It follows from the above theorem.

(2) Since a mapping g : X → L is usc if and only if for each a ∈ L, g[a] = {x ∈

X | g(x) ≥ a} is closed, hence cl f ≥
∨

a∈L af[a] is trivial.

Conversely since
∨

a∈L af[a] ≥ f we need only to prove that h =
∨

a∈L af[a] is

usc, and this follows from the fact that for each a ∈ L, h[a] =
⋂

b∈β(a) f[b]. �
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1.13 Corollary. Let L be a completely distributive lattice, X a topological
space, f : X → L lsc, then for every a ∈ L and B ⊂ β(a) with

∨

B = a,
f[a] =

⋂

b∈B f0[a]. �

1.14 Proposition. Let X be a topological space, L a completely distributive
lattice, A ⊂ L is a subset satisfying that for each a ∈ L, the supremum of
A∩β(a) is a; {Fa | a ∈ A} is a decreasing family of closed sets, i.e. for b ≤ a in A,
Fb ≥ Fa, then the mapping h =

∨

a∈A aFa is usc, where aFa is the characteristic
mapping on Fa with value a. �

2. Interval topology on completely distributive lattices

In this section, we study some basic properties of the interval topology on
completely distributive lattices.

2.1 Definition. The Lawson topology λ(L) on a complete lattice L is defined
to be the coarsest common refinement of the Scott topology σ(L) and the upper
topology θ∗(L).

By Corollaries 1.5, 1.10 we have

2.2 Proposition. For a completely distributive lattice L, the following topologies
coincide with each other:

(1) the interval topology θ(L);
(2) the Lawson topology λ(L) on L;
(3) the Lawson topology on Lop;
(4) the biscott topology, i.e. the topology generated by σ(L) ∪ σ(Lop) as a
subbase. �

2.3 Theorem ([2]). Let L be a continuous lattice, then

(1) a net (xj)j∈J converges to x ∈ L with respect to the Lawson topology
if and only if

∧

j∈J

∨

i≥j xi =
∧

p(j)≥j

∨

j∈J xp(j) = x, hence a directed

(filtered) set D in L converges to
∨

D (
∧

D);
(2) (L, λ(L)) is a compact Hausdorff topological semilattice; hence if L is
completely distributive, then (L, θ(L)) is a compact Hausdorff topological
lattice. �

2.4 Corollary. A sublattice of completely distributive lattice is a closed set in
the interval topology if and only if it is a subcomplete lattice. �

2.5 Theorem. Let L be a completely distributive lattice, then every element
a ∈ L has a neighborhood base consisting of open sublattices in the interval
topology.

Proof: Let a be an element in L. Since L is continuous, a has a neighborhood
base N(a) consisting of open subsemilattices which are upper sets in the topology
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σ(L) = θ∗(L) by Proposition 3.3 in [2, p. 69]. Similarly by continuity of Lop,
a has a neighborhood base N∗(a) consisting of open subsemi-join-lattices which
are lower sets in the topology θ∗(L). Then it can be easily verified that {U∩V |U ∈
N(a) and V ∈ N∗(a)} is a neighborhood base of a ∈ L in θ(L), and that U ∩ V
is sublattice is obvious. �

2.6 Corollary. Let L be a completely distributive lattice, then every a ∈ L has
a neighborhood base consisting of subcomplete lattices in the interval topology.

Proof: A direct consequence of the above theorem and the fact that (L, θ(L))
is compact Hausdorff. �

In the remainder of this section, we study the connectedness of the interval
topology on a completely distributive lattice.
2.7 Definition. Let L be a complete lattice, a ∈ L, then

(1) a is called compact if a ≪ a;
(2) a is a coprime if a ≤ b ∨ c implies a ≤ b or a ≤ c;
(3) a is called completely compact if a ⊳ a.

Trivially a is completely compact if and only if a is a compact coprime.

2.8 Proposition ([2]). Every element in a completely distributive lattice L can
be represented as union of coprimes in L, hence if β∗(a) = {b ∈ β(a) | b is a
coprime}, then

∨

β∗(a) = a for every a ∈ L. �

2.9 Lemma. If a complete lattice L has a nonzero completely compact element,
then (L, θ(L)) is not connected.

Proof: Let b =
∨

{x ∈ L | a � x}, then L = ↑ a∪ ↓ b and ↑ a∩ ↓ b = Φ, hence
(L, θ(L)) is not connected. �

2.10 Lemma ([11]). A completely distributive lattice L has a nonzero compact
element if and only if L has a nonzero completely compact element.

Proof: Sufficiency is trivial. Now we prove the necessity. Suppose a 6= 0 is
compact in L, i.e. a ≪ a. Let β∗(a) = {x ∈ β(a) |x is a coprime}, then

∨

β∗(a) =
a. We claim that every chain in β∗(a) has an upper bound. Indeed let C ⊂ β(a)
be a chain, then trivially

∨

C = c is a coprime, and it is left to prove that c ∈ β(a).
Suppose D ⊂ L satisfies

∨

D ≥ a, then there are finite elements {d1, . . . , dn} ⊂ D
with

∨

i≤n di ≥ a.
Since every element in C is a coprime, there exists certain i such that x ≤ di

for all x ∈ C, hence c ≤ di, c ∈ β(a).
Now let {cγ | γ ∈ Γ} be the maximal elements in β∗(a), then the supremum

of
⋃

γ∈Γ β∗(cγ) is a, hence there exist finite t1, . . . , tm ∈
⋃

γ∈Γ β∗(cγ) such that
∨

i≤m ti = a. Assume ti ∈ β∗(cγ(i)) for each i ≤ m. Since for each i ≤ m cγ(i)
is a coprime, there exists ti(j) ti(j) ≥ cγ(i), then by maximality of cγ(i) we have

ti(j) = cγ(i), and ti(j) ∈ β∗(cγ(i)), hence cγ(i) ⊳ cγ(i), i.e. cγ(i) is completely

compact. Finally since
∨

i≤m ti = a, at least one of the cγ(i)’s is nonzero. �
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2.11 Theorem. Let L be a completely distributive lattice, then the following
statements are equivalent:

(1) (L, θ(L)) is connected;
(2) L is order sense, i.e. whenever x < y in L, there exists z ∈ L such that

x < z < y;
(3) L has no nonzero compact element;
(4) L has no nonzero completely compact element.

In this case we say that L is connected.

Proof: The equivalence of (1), (2) and (3) follows from Theorem 5.15 in [2,
p. 301], and that of (3) and (4) follows from the above lemma. �

3. Weight for complete lattices

In this section we introduce the concept of weight for a complete lattice and
discuss some of its basic properties.

3.1 Definition. A subset B in a complete lattice L is called a base if every
element a ∈ L can be represented as union of subsets of B. And the weight of L
w(L) is defined to be min{|B| | B ⊂ L is a base}.

Note. (1) If X is a topological space, then the weight of the open set lattice
O(X) is just the weight of the space w(X).

(2) Trivially the notion of a join generating set defined in [8] is just that of a
base in the above definition.

3.2 Proposition. Suppose B is a subset of a complete lattice, then the following
conditions are equivalent:

(1) B is a base;
(2) whenever y � x, there is a b ∈ B with b � x and b ≤ y.

If L is continuous, (2) is equivalent to

(2′) whenever y � x, there is a b ∈ B with b � x and b ≪ y.

If L is completely distributive, (2) is equivalent to

(2′′) whenever y � x, there is a b ∈ B with b � x and b ⊳ y.

�

3.3 Corollary. If B is a base for a completely distributive lattice L, then for
each a ∈ L the supremum of B ∩ β(a) is a. �

3.4 Lemma. Suppose w(L) ≤ a, {as}s∈S ⊂ L is a subset, then there is a subset
S0 ⊂ S such that |S0| ≤ a and

∨

s∈S0
as =

∨

s∈S as.

Proof: Suppose B = {bt | t ∈ T } is abase of cardinality ≤ α and denote by B0
the collection of b ∈ B such that for some s ⊆ b ≤ as. To every b ∈ B0 assign an
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s(b) ∈ S such that b ≤ as(b). In this way a function s : B0 → S is defined, now

we prove that S0 = s(B0) ⊂ S satisfies the lemma.

Indeed |S0| ≤ α and
∨

s∈S0
as ≤

∨

s∈S as are trivial. Now if
∨

s∈S as �
∨

s∈S0
as there is some s0 ∈ S such that as0 �

∨

s∈S0
as, hence there is a b ∈ B

with b �
∨

s∈S0
as and as0 ≤ b ≤ as(b) ≤

∨

s∈S0
as, a contradiction. �

3.5 Proposition. Suppose w(L) ≤ α ≥ ω, then for every base B of L there
exists a subset B0 ⊂ B such that |B0| ≤ α and B0 is a base of L.

Proof: Take a base B1 = {at | t ∈ T } of L such that |B1| ≤ α. Let B = {bs | s ∈
S} and for every t ∈ T , let

S(t) = {s ∈ S | bs ≤ at}.

Since B is a base we have
∨

s∈S(t) bs = at and by 3.4 there is a subset S0(t) ⊂ S(t)

such that |S0(t)| ≤ α and at =
∨

s∈S0(t) bs.

Let B0 = {bs | s ∈ S0(t) for some t ∈ T }, then trivially |B0| ⊂ α, and it is left
to prove that B0 is a base. Suppose x � y in L, as B1 is a base there is some
at ∈ B1 with at � y and at ≤ x, hence there is some s ∈ S0(t) such that bs ≤ x
and bs � y, therefore B0 is a base. �

A base B of a complete lattice L is called strict if every element a ∈ L can be
represented as union of elements in B which are strictly smaller than a. Trivially
L has a strict base if and only if every base of L is strict. Obviously a strict base
of a complete lattice L is just a strict join generating set in [8].

3.6 Proposition. Let L be a completely distributive lattice, then the following
conditions are equivalent:

(1) (L, θ(L)) is connected;
(2) L has no nonzero completely compact element;
(3) L has a strict base;
(4) every base of L is strict. �

3.7 Theorem ([2]). For a continuous lattice L, w(L) = w(λ(L)), where w(λ(L))
is the weight of the space (L, λ(L)), hence w(L) = w(θ(L)) if L is moreover
completely distributive. �

3.8 Theorem. Let L be a completely distributive lattice, then the following
statements are equivalent:

(1) (L, θ(L)) is metrizable;
(2) w(L) ≤ ω, i.e. L has a countable base. �
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4. AR and ANR property of metrizable completely distributive

lattices

A subspace Z ⊂ X is called a retract if there is a continuous mapping r : X → Z
with riz = idz . Z is called a neighborhood retract if Z is a retract of some open
subspace in X containing Z.
A space Z is called an absolute (neighborhood) retract (AR, ANR in short) if

Z is a (neighborhood) retract of every normal space which contains Z as a closed
subspace.
It is well known ([4]) that Z is an AR (ANR) if and only if Z is an absolute

(neighborhood) extensor, i.e. every continuous f : A → Z defined on closed
subspace A in a normal space X can be extended to X (an open subspace of X).

4.1 Theorem ([8]). Let L be a connected metrizable completely distributive
lattice, X a normal space, f : X → L is lsc, g : X → L is usc and g ≤ f , then
there is a continuous h : X → L with g ≤ h ≤ f .

Proof: By 3.8. Let A = {an |n ∈ N} be a countable base of L.

(1) For each n ∈ N , we shall define an open set Un such that

(i)
⋃

{g[b] | b ∈ A and an ⊳ b} ⊂ Un ⊂ Un ⊂ f[an];

(ii) if an < am in A, then Um ⊂ Un, if moreover an ⊳ am, then Um ⊂ Un.
Step 1. We define U1.
At first F1 =

⋃

{g[b] | b ∈ A and a1 ⊳ b} is an Fσ set since g is usc; and G1 =

X \ f[a1] is also an Fσ set since f[a1] =
⋂

b∈β(a1)∩A f0[b] is a Gδ set by 1.13, 3.3.

Second F1 and G1 are separated, i.e. F 1 ∩ G1 = G1 ∩ F1 = Φ.
Indeed since F1 is contained in the closed set g[a1] which is contained in f[a1],

hence F 1 ∩ G1 = Φ. Next for each b ∈ A with a1 ⊳ b, g[b] ⊂ f[b] ⊂ f0[a1]
by 1.13,

hence g[b] ∩ G1 ⊂ f0[a1]
∩ X \ f[a1] = Φ, therefore F1 ∩ G1 = Φ.

Now by normality ofX there is an open set U1 such that F1 ⊂ U1 ⊂ U1 ⊂ f[a1].

Step 2. We define Un.
Suppose {Ui | i ≤ n − 1} have been defined satisfying (i) and (ii). Let D1 = {i ≤
n − 1 | ai ⊳ an}, D2 = {i ≤ n − 1 | an ⊳ ai}.
Let Fn =

⋃

{g[b] | b ∈ A and an ⊳ b} ∪
⋃

i∈D2
U i, Gn = X \ (f[an] ∩

⋂

i∈D1
Ui).

Then like in Step 1 it can be verified that Fn and Gn are separated Fσ sets, hence
there is an open set Vn such that Fn ⊂ Vn ⊂ V n ⊂ f[an] ∩

⋃

i∈D1
Ui, and let

Un = Vn ∩
⋂

{Ui | i ≤ n − 1 and ai < an}.

(2) Let h =
∨

n∈N anUn, where anUn denotes the characteristic mapping on Un

with value an, we claim that h is the desired mapping.

Step 1. h is continuous.
At first that h is lsc is trivial. Next the least usc function clh majorizing h satisfies
clh =

∨

n∈N anUn by Proposition 1.14, since Un is decreasing. Now we prove
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h = clh. Indeed for each a ∈ L, clh[a] =
⋂

{Un | an ∈ β(a) ∩ A} =
⋂

{Un | an ∈

β(a) ∩ A}, the last equation holds by the interpolation property of the wedge
below relation and that L has no nonzero completely compact element by 2.11.
And h[a] =

⋂

{Un | an ∈ β(a) ∩ A} is trivial, hence h = clh.

Step 2. g ≤ h ≤ f .
At first h ≤ f is trivial by (i). Next for each a ∈ L, h[a] =

⋂

{Un | an ∈ β(a)∩A} ⊃

g[a] by (i), hence g ≤ h. �

Remark. The above theorem is proved in [8], and the proof presented here is a
simplification of that one in [8] which is rather lengthy.

4.2 Theorem. Every connected metrizable completely distributive lattice L is
an AR.

Proof: It suffices to prove that every continuous mapping f : A → L defined on
a closed subspace of a normal space X can be extended to X . For each x ∈ X ,
let

f+(x) =

{

f(x), x ∈ A,

0, x /∈ A;

f−(x) =

{

f(x), x ∈ A,

1, x /∈ A;

then trivially f+ is usc and f− is lsc and f+ ≤ f−, hence there is a continuous
h : X → L such that f+ ≤ h ≤ f−, trivially such an h is an extension of f . �

4.3 Corollary. Every connected metrizable completely distributive lattice is arc-
wise connected.

�

Remark. (1) It is proved that there is a unique semiuniformity on a continuous
lattice which generates both the Lawson topology and the order, see Theorem 3.6
in van Gool [3].

(2) Making use of the semiuniformity on a uniform ordered space, van Gool [3]
has introduced new definitions of lsc and usc mappings But it is not difficult to
verify that if L is a continuous lattice, then f : X → L is lsc in the sense of van
Gool if and only if f is Scott continuous by Lemma 4.2 in van Gool [3]. Moreover
if L is linked bicontinuous, then f : X → L is usc in the sense of van Gool if and
only if f is dual Scott continuous. Hence if L is a completely distributive lattice,
then f : X → L is lsc (usc) in the sense of van Gool if and only if f is lsc (usc)
in the sense of 1.6.

(3) van Gool [3] has proved the following result:

If L as an arcwise connected, metrizable, linked bicontinuous lattice, X a nor-
mal space, f : X → L is Scott continuous, g : X → L is dual Scott continuous
with g ≤ f , then there is some continuous h : X → L such that g ≤ h ≤ f .
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(4) Since every distributive bicontinuous lattice is completely distributive,
every completely distributive lattice is linked bicontinuous and every connected
metrizable completely distributive lattice is arcwise connected, hence for distribu-
tive lattices Theorem 4.1 is equivalent to the above result of van Gool.

Since an AR is necessarily connected the condition that L is connected in
Theorem 4.2 is necessary, the following example showing that L is metrizable is
also indispensable. It should be pointed out that the example constructed in [8]
for this purpose is not connected.

Example. The extended long line L is constructed from the ordinal space [0, w1],
where w1 is the least uncountable ordinal, by placing between each ordinal α and
it successor α+1 a copy of the open interval (0, 1), then L is simply a connected
completely distributive lattice, but L is not metrizable, since L is not an ANR by
Proposition 4.4 in Hu [4, p. 36], then L is not an AR.

Now we prove the main result of this paper, i.e. the ANR property of completely
distributive lattices. As shown in the above example, we need only to consider
the metrizable case.

4.4 Lemma. If L is a completely distributive lattice containing at most finite
completely compact elements, then (L, θ(L)) has at most finite components, and
each of them is a subcomplete lattice.

Proof: If L contains no nonzero completely compact element, then the conclu-
sion follows from 2.11.
Now suppose {ai | i ≤ n} are the nonzero compact elements in L. For each

i ≤ n, let bi =
∨

{c ∈ L | ai � c} then trivially L = ↑ai ∪ ↓ bi and ↑ai ∪ ↓ bi and
↓ai ∩ ↓ bi = Φ. Let A be the collection of subcomplete lattices {↑ai, ↓bi | i ≤ n},
and denote by B the family of the nonempty minimal intersections of elements
in A, i.e. K ∈ B if and only if Φ 6= K =

⋂

{M |M ∈ A0 for some subset A0 ⊂ A}
and K is minimal in the sense that K ∩ M = Φ for each M /∈ A0.
Trivially B is a collection of pairwise disjoint subcomplete lattices which con-

tain no nonzero completely compact elements as a complete lattice, hence each of
them is connected. Therefore B is the collection of components in L, and |B| is
finite is obvious. �

4.5 Theorem. A metrizable completely distributive lattice L is an ANR if and
only if L contains at most finite completely compact elements.

Proof: Sufficiency: By the above lemma, if L contains at most finite completely
compact elements, then L can be decomposed into finite components, which are
subcomplete lattices. Now suppose f : A → L is a continuous mapping defined
on a closed subspace A in a normal space X , then {f−1(K) |K is a component
of L} is a pairwise disjoint closed cover of A.
By normality of X , there exists a collection of pairwise disjoint open sets

{U(K) |K is a component in L} such that f−1(K) ⊂ U(K); again by normality of
X there is an open set V (K) with f−1(K) ⊂ V (K) ⊂ V (K) ⊂ U(K) for each K.
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Now since V (K) is normal, we can extend f | f−1(K) : f−1(K)→ K to V (K)
by Theorem 4.2 since K is a connected metrizable completely distributive lattice,
trivially the combination of the thus defined extensions is an extension of f to
the open set

⋃

{V (K) |K is a component in L}.

Necessity: Suppose L has infinitely many completely compact elements
{an |n ∈ N}, by compactness of (L, θ(L)), we can assume without loss of ge-
nerality {an |n ∈ N} converges to certain a ∈ L.

Let A = { 1n |n ∈ N} ∪ {0}, then A is a closed set of the unit interval [0, 1].

Define f : A → L as follows: f( 1n ) = an for each n ∈ N and f(0) = a, then
trivially f is continuous.
By Corollary 2.6 a ∈ L has a neighborhood base consisting of subcomplete

lattices {Un |n ∈ N}.
Suppose f : U → L is an extension of f to some open set U ⊂ [0, 1] containing

A, then there is some ε > 0 such that [0, ε] ⊂ U . Without loss of generality we
can assume that f maps [0, ε] into Un for some n ∈ N . Trivially there exists m, k

big enough such that am, ak ∈ Un and
1
m , 1k ∈ [0, ε]. Obviously am and ak are

completely compact elements in the complete lattice Un. Since either am /∈↑ ak

or ak /∈↑ am, for example, assume am /∈↑ ak, then ak is nonzero in Un, hence
Un\ ↑ak and ↑ak are disjoint closed set in Un. Then a contradiction follows from

the fact that [0, ε] is connected and f( 1m) ∈ Un\ ↑ak, f(
1
k ) ∈↑ak. �
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