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A functional representation of the hyperspace monad

Taras Radul

Abstract. A functional representation of the hyperspace monad, based on the semilattice
structure of function space, is constructed.
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0. All spaces are compact Hausdorff spaces (compacta), all mappings are con-
tinuous. A functional representation of the hyperspace functor exp is given in [1].
This representation essentially uses the linear structure on function spaces.
From the algebraic point of view hyperspaces are free Louson semilattices.

Hence it would be natural to involve the semi-lattice structure on function spaces
into representations of the hyperspace functor. In this paper such a representation
is given not only for the hyperspace functor but also for the hyperspace monad.
The paper is organized as follows: in Section 1 we give some necessary defini-

tions and recall a result from [1], in Section 2 we construct the monad E and in
Section 3 we prove that the monad E and the hyperspace monad are isomorphic.

1. By Comp we denote the category whose objects are compacta (compact Haus-
dorff spaces) and morphisms are continuous mappings.
For a compactum X by exp X we denote the set of non-void compact subsets

of X provided with the Vietoris topology. A base of this topology consists of the
sets of the form < U1, . . . , Un >= {A ∈ exp X | A ⊂

⋃n
i=1 Ui, A∩Ui 6= ∅ for each

i ∈ {1, . . . , n}} where U1, . . . , Un are open in X . The space exp X is called the
hyperspace of X .
For a continuous mapping f : X → Y the mapping exp f : exp X → exp Y is

defined by the formula exp f(A) = fA ∈ exp Y , A ∈ exp X . It is easy to see that
this defines a functor exp : Comp→ Comp (the hyperspace functor).
Let F, G be two functors in the category Comp. We say that a transformation

ϕ : F → G is defined if for every X ∈ Comp is defined the mapping ϕX :
FX → GX . The transformation ϕ = {ϕX} is called natural if for every mapping
f : X → Y we have ϕY ◦ F (f) = G(f) ◦ ϕX .
A monad T = (T, η, µ) in a category E consists of an endofunctor T : E → E

and natural transformations η : IdE → T (unity), µ : T 2 → T (multiplication)
satisfying the relations µ ◦ Tη = µ ◦ ηT =1T and µ ◦ µT = µ ◦ Tµ.
A natural transformation ψ : T → T ′ is called a morphism from monad T =

(T, η, µ) into monad T
′ = (T ′, η′, µ′) if ψ ◦ η = η′ and ψ ◦ µ = µ′ ◦ ψT ′ ◦ Tψ.
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A morphism of monads is called an isomorphism, provided each component ψX
is a homeomorphism.
Define the natural transformations s : IdComp → exp and u : exp 2 → exp

as follows: sX(x) = {x} for each x ∈ X ; uX(A) = ∪A, A ∈ exp 2 X . Then
H = (exp , s, u) is monad ([2]).
Now we recall the result from [1]. Let us denote by C+(X) the space of non-

negative continuous functions on X with natural metric, order, linear and multi-
plicative structures. By αX we denote the function equal α on X .
By Φ(X) we denote all functionals ϕ : C+(X)→ R+ satisfying next conditions:

(1) ϕ(f + g) ≤ ϕ(f) + ϕ(g),

(2) ϕ(fg) ≤ ϕ(f)ϕ(g),

(3) f ≤ g implies ϕ(f) ≤ ϕ(g),

(4) ψ(αf) = αϕ(f),

(5) ψ(f + αX) = ψ(f) + α,

(6) ϕ(αX ) = α,
where f, g ∈ C+(X), α ∈ R+.

The set Φ(X) provides a topology with a base consisting of sets of the form
(µ;ϕ1, . . . , ϕn; ε) = {µ′ ∈ Φ(X) | |µ′(ϕi) − µ(ϕi)| < ε for each i ∈ {1, . . . , k}}
where ϕ1, . . . , ϕk ∈ C+(X), ε > 0. It is shown in [1] that the functor Φ(X) is
naturally isomorphic to the hyperspace functor.

2. Let us consider the space C(X ; [0; 1]) equipped by sup-metric and semilattice
operation – pointwise minimum.
Let µ ∈ C(C(X, [0; 1]), [0; 1]). We say that µ is normed if µ(cX ) = c for each

c ∈ [0; 1].
We say that µ is supported on a closed set A ⊂ X if for each functions g1, g2 :

X → [0; 1] such that g1|A = g2|A we have µ(g1) = µ(g2).
The minimal closed set A on which µ is supported will be called the sup-

port of µ (briefly A = supp(µ)). So, we can consider µ as an element from
C(C(A, [0; 1]), [0; 1]) if A = supp(µ).
We say that µ is symmetric on its support if for each ϕ ∈ C(A, [0; 1]) for each

h ∈ Auth(ϕ(A)) we have µ(ϕ) = µ(h ◦ ϕ). Finally we say that µ preserve the
semilattice operation if µ(min{ϕ1, ϕ2}) = min{µ(ϕ1), µ(ϕ2)} for each ϕ1, ϕ2 ∈
C(X, [0; 1]).
Let us define the space E(X) consisting of µ ∈ C(C(X, [0; 1]), [0; 1]) which

are normed, symmetric on its support and preserve the semilattice operation.
The space E(X) provides a topology with a base consisting of sets of the form
(µ;ϕ1, . . . , ϕn; ε) = {µ′ ∈ Φ(X) | |µ′(ϕi) − µ(ϕi)| < ε for each i ∈ {1, . . . , k}}
where ϕ1, . . . , ϕk ∈ C(X, [0; 1]), ε > 0.
Let f : X → Y be a mapping. Define the mapping E(f) : E(X) → E(Y ) by

the formula E(f)(µ)(ϕ) = µ(f∗(ϕ)) where µ ∈ E(X), ϕ ∈ C(Y, [0; 1]) and the
mapping f∗ : C(Y, [0; 1])→ C(X, [0; 1]) can be defined by the formula f∗(ϕ)(x) =
ϕ(f(x)), x ∈ X , ϕ ∈ C(Y, [0; 1]).
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Later we shall prove that E(X) is a compactum. So, E is an endofunctor on
the category Comp.
Let us define the mapping ηX : X → E(X) by the formula ηX(x)(ϕ) = ϕ(x)

and the mapping µX : E2(X) → E(X) by the formula µX(α)(g) = α(g̃) where
α ∈ E2(X), g ∈ C(X, [0; 1]) and the mapping g̃ : E(X)→ [0; 1] is defined by the
formula g̃(µ) = µ(g), µ ∈ E(X).
It is easy to check that ηX and µX are the components of natural transforma-

tions η and µ such that E = (E, η, µ) is the monad on the category Comp.

3. In this section we prove that the monad E is isomorphic to the monad H =
(exp , s, u).
Let us consider the mapping tX : exp X → E(X) defined by the formula

t(A)(f) = inf f(A), f ∈ C(X, [0; 1]).

Lemma. The mapping tX is homeomorphism from exp X onto E(X).

Proof: Let tX(A) = µ ∈ E(X) and (µ;ϕ1, . . . , ϕn; ε) be a neighborhood of µ.
Choose an open covering O1, . . . , Ok of A such that diamϕi(Oj) < ε for each i ∈
{1, . . . , n}, j ∈ {1, . . . , k}. Then we have tX(< O1, . . . , Ok >) ⊂ (µ;ϕ1, . . . , ϕn; ε)
and hence the mapping tX is continuous.
Consider A1, A2 ∈ exp X such that A1 6= A2. We may assume that there exists

a point a ∈ A1 such that a /∈ A2. Choose a function f ∈ C(X, [0; 1]) such that
f(a) = 0 and f(A2) = 1. Then we have tX(A1)(f) = 0 < 1 = tX(A2)(f). Hence
the mapping tX is injective.
Let us prove that the mapping tX is surjective. Consider ν ∈ E(X). We can

assume that supp(ν) = X . So, we must show that ν(f) = inf f(X). We can
assume that inf f(X) = 0.
Suppose ν(f) = a > 0. Since ν is normed, there exists a point x ∈ X such that

f(x) ≥ a. We can assume that f(x) ≤ a for each x ∈ X (in the opposite case we
can consider the function inf{f, aX}).
Let us consider two cases:

(1) f(X) = [0; a]. Define a homeomorphism h : [0; a] → [0; a] by the formula
h(t) = a − t, t ∈ [0; a]. It follows from the symmetry condition that ν(h ◦ f) =
ν(f) = a. Put g = inf{h ◦ f, f}. Then we have ν(g) = inf{ν(h ◦ f), ν(f)} = a but
g(x) ≤ 1

2a for each x ∈ X . Hence ν(g) ≤ 1
2a and we obtain the contradiction.

(2) There exists a point b ∈ (0; a) such that b /∈ f(X). Consider the function
f1 : X → {b; a} defined by the formula:

f1(x) =

{

a, f(x) > b

b, f(x) < b.

Since f ≤ f1 ≤ aX , we have ν(f1) = a. Define the function

f2(x) =

{

b, f(x) > b

a, f(x) < b.
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It follows from the symmetry condition that ν(f2) = ν(f1) = a. But
inf{f1, f2} = bX and ν(inf{f1, f2}) = b. We obtain the contradiction again.
Thus the mapping tX is homeomorphism and the lemma is proved. �

It follows from Lemma that E(X) is compactum.

Theorem. A transformation t = {tX} is the isomorphism from monad H =
(exp , s, u) into monad E = (E, η, µ).

Proof: Let us show that t is natural transformation. Let f : X → Y be a
mapping and A ∈ exp X . Then we have tY ◦ exp f(A) = inf ϕ(f(A)), ϕ ∈
C(Y, [0; 1]) and E(f) ◦ tX(A)(ϕ) = inf f∗(ϕ)(A) = inf ϕ(f(A)).
Now let us show that t is the morphism of monads H and E. The identity

t ◦ s = η is obvious. Let us check the identity t ◦ u = µ ◦ tE ◦ exp t. Take any
A ∈ exp 2X and ϕ ∈ C(X, [0; 1]). Then we have t ◦ u(A)(ϕ) = inf ϕ(∪A) and
µ ◦ tE ◦ exp t(A)(ϕ) = tE ◦ exp t(A)(ϕ̃) = inf{inf ϕ(A) | A ∈ A} = inf ϕ(∪A).
Now the statement of the theorem follows from Lemma. �
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