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On congruences of G-sets

B.M. Vernikov
∗

Abstract. We describe G-sets whose congruences satisfy some natural lattice or mul-
tiplicative restrictions. In particular, we determine G-sets with distributive, argue-
sian, modular, upper or lower semimodular congruence lattice as well as congruence
n-permutable G-sets for n = 2, 2.5, 3.

Keywords: G-set, congruence lattice, congruence distributivity, congruence modularity,
congruence n-permutability

Classification: 08A60, 08A30

Introduction

Let A be a non-empty set, G a group, and ϕ a homomorphism from G into the
full transformation group of A. Then A may be considered as a unary algebra
with the set G of operations, where an operation g ∈ G is defined by the rule
g(x) = (ϕ(g))(x) for every x ∈ A. These algebras are called G-sets . Some basic
information about G-sets and, in particular, about their congruences may be
found, for example, in [6].
Studying of congruences of unary algebras appears to be sufficiently natural

per se, and indeed it became the subject of several papers (see, for example, [1],
[3]–[5], [7] where questions close to those of the present paper have been studied
for the case of mono-unary algebras). Our main motivation, however, comes
from a different source. Recent results by M.V. Volkov and the author show
that, for some wide classes of semigroup varieties, the structure of subvariety
lattices can be described in terms of congruence lattices of certain G-sets (see, in
particular, [10], [11], [16], [17]). Such a description effectively reduces questions
if the subvariety lattice of a variety V satisfies a lattice restriction to analogous
questions about congruence lattices of some G-sets depending on V . Of course, to
make this reduction really useful one must be able to answer the latter questions,
this means, to describeG-sets with various restrictions to their congruences. Some
partial results of such kind have occasionally arisen in [10], [17] but gradually it
became clear that it is worth studying congruences of G-sets more systematically
to clarify already existing and to provide a basis for further applications of the
general reduction technique.

∗ The research described in this publication was made possible in part by Grant No. NMU000
from the International Science Foundation
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In the present paper we describe G-sets whose congruences satisfy certain im-
portant lattice or multiplicative restrictions. The paper consists of three sections.
Section 1 contains some preliminaries and a general result describing a “good
part” of the congruence lattice of an arbitrary G-set. Sections 2 and 3 are re-
spectively devoted to some lattice and multiplicative restrictions to congruences
of G-sets. We mention that the results of this paper at first permit to give shorter
and simpler proofs of the results of the papers [9], [14], [15] than the original
proofs, and at second already found some interesting new applications as, for ex-
ample, complete descriptions of semigroup varieties with semimodular subvariety
lattice [12], with commuting fully invariant congruences on free objects [13], with
distributive, modular or semimodular lattice of overcommutative subvarieties or
with n-permutable (n = 2, 2.5, 3) subcommutative fully invariant congruences on
free objects [8].

1. The sublattice of greedy congruences

The congruence lattice of a G-set A is denoted by Con(A). A G-set A is said
to be transitive if, for all a, b ∈ A, there exists g ∈ G such that g(a) = b. It
is well known (see, for example, [6, Lemma 4.20]) that if A is a transitive G-set
then the lattice Con(A) is isomorphic to an interval of the subgroup lattice of G
(more precisely, Con(A) ∼= [StabG(a), G], where a is an arbitrary element in A
and StabG(a) = {g ∈ G | g(a) = a}).
A transitive G-subset of a G-set A is called an orbit of A. Clearly, any G-set

is a disjoint union of its orbits. In view of the remark in the previous paragraph,
it is natural to investigate the lattice Con(A) modulo the congruence lattices of
the orbits of A.
Now let α be a congruence on a G-set A and B and C two different orbits of

A. We say that α connects B and C if bαc for some b ∈ B and c ∈ C. We say
that α collapses B and C and write BαC if xαy for all x, y ∈ B ∪ C. We call a
congruence α greedy if it collapses any pair of orbits it connects. Let GCon(A)
denote the set of all greedy congruences of A.

Lemma 1.1. For any G-set A, the set GCon(A) forms a sublattice of Con(A).

Proof: Let α, β ∈ GCon(A) and γ = α ∨ β. Suppose that B and C are two
different orbits of A and γ connects them, that is, bγc for some b ∈ B and c ∈ C.
Hence there exist elements a0, . . . , an ∈ A such that

b = a0 α a1 β a2 α . . . α an = c.

Since an /∈ B, there exists the least i such that ai /∈ B. Clearly, i ≥ 1. Thus
ai−1 ∈ B and ai−1ζai, where ζ is one of the congruences α and β. Let D be
the orbit of A that contains ai. Then D 6= B, and ζ connects B and D. Since
ζ is greedy, we have BζD. In particular, xζy for all x, y ∈ B whence xγy.
Symmetrically, considering the maximal j such that aj /∈ C, one can verify that
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xγy for all x, y ∈ C. Finally, for every x ∈ B and y ∈ C, we have x γ b γ c γ y
whence xγy. We see that BγC, thus γ is greedy.
Now consider δ = α ∧ β and suppose that it connects B and C, that is, bδc

for some b ∈ B and c ∈ C. Hence bαc and bβc. Since α and β are greedy, this
implies BαC and BβC. Thus, for every x, y ∈ B ∪C, xαy and xβy whence xδy.
We see that BδC, and therefore, δ is greedy as well. �

We are going to show that the sublattice GCon(A) allows an easy description
modulo the congruence lattices of the orbits of A. For a G-set A, we denote by
Orb(A) the set of all orbits of A. We denote by Part(X) the partition lattice of
a set X .

Proposition 1.2. Let A be a G-set and Orb(A) = {Ai | i ∈ I}. Then the lattice
GCon(A) is isomorphic to a subdirect product of the lattices Part(Orb(A)) and
Con(Ai), where i runs over I.

Proof: We shall write an element of the direct product

Part(Orb(A)) ×
∏

i∈I

Con(Ai)

as the vector (σ; . . . , αi, . . . ), where σ is a partition of the set Orb(A) and αi is
a congruence on the orbit Ai. Put

L = {(σ; . . . , αi, . . . ) | if AiσAj for some i 6= j, then αi = ∆i},

where ∆i is the universal relation on the orbit Ai.
Let x = (σ; . . . , αi, . . . ), y = (τ ; . . . , βi, . . . ) belong to L. Then x ∨ y =

(σ ∨ τ ; . . . , αi ∨ βi, . . . ). If Ai(σ ∨ τ)Aj for some i 6= j, then either AiσAk

or AiτAk for some k 6= i. Hence either αi = ∆i or βi = ∆i, and therefore,
αi ∨ βi = ∆i. Now consider x ∧ y = (σ ∧ τ ; . . . , αi ∧ βi, . . . ). If Ai(σ ∧ τ)Aj

for some i 6= j, then AiσAj and AiτAj . Hence αi = βi = ∆i, and therefore,
αi ∧ βi = ∆i. We see that both x ∨ y and x ∧ y belong to L, that is, L is a
sublattice of Part(Orb(A))×

∏

i∈I

Con(Ai). It is obvious that the projections of L

on each of the lattices Part(Orb(A)) and Con(Ai), i ∈ I, are surjective. Thus
the lattice L is a subdirect product of these lattices.
Now we define a mapping f : GCon(A) −→ L by the following rule: if α is a

greedy congruence on A then put f(α) = (ᾱ; . . . , αi, . . . ), where the congruence
αi is merely the restriction of α to the orbit Ai and AiᾱAj if and only if either
i = j or α collapses Ai and Aj . It is clear that f(α) ∈ L for each α ∈ GCon(A).
It can be easily verified that f is an isotone bijection from GCon(A) onto L and
the inverse bijection is also isotone. Hence f is a lattice isomorphism. �

Proposition 1.2 implies that the lattice Con(A) has a very simple structure
modulo congruence lattices of orbits of A in the case when Con(A) = GCon(A),
that is, when every congruence on A is greedy. Our next proposition characterizes
G-sets with the latter property.
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Proposition 1.3. Let A be a G-set. Then each congruence on A is greedy if
and only if, for every pair of different orbits B, C ∈ Orb(A), no non-singleton
homomorphic image of B is isomorphic to a homomorphic image of C.

Proof: Necessity. Let B, C be two different orbits of A such that a non-
singleton homomorphic image B′ of B is isomorphic to a homomorphic image C′

of C. Denote by f an isomorphism from B′ onto C′. Now we define a partition α
of A with only non-singleton classes of the form X ∪f(X), where X runs over B′.
It can be straightforwardly verified that α is a congruence. Clearly, α connects
B and C, and the restriction of α to B coincides with the kernel of the natural
homomorphism from B onto B′. Since the latter set is non-singleton, not all
elements of B are α-equivalent. Therefore α does not collapse B and C so it is
not greedy.

Sufficiency. Let a congruence α connect two different orbits B and C. Denote
by β and γ the restrictions of α to B and C respectively and define a mapping
f : B/β −→ C/γ by putting

f(X) = {y ∈ C | yαx for all x ∈ X}

for each β-class X . To prove that the definition is correct, let us check, first of all,
that the set f(X) is non-empty for any X ∈ B/β. Indeed, there are some b ∈ B
and c ∈ C such that bαc. Fix a β-class X and take an element x0 ∈ X . Since B
is transitive, there exists g ∈ G such that x0 = g(b). Hence x0 = g(b) α g(c), and
therefore, x α g(c) for all x ∈ X . We have g(c) ∈ C because C is a G-subset of
A. Thus g(c) ∈ f(X), and the latter set is non-empty. Clearly, f(X) is a γ-class
so the correctness of the definition is proved.
Now take any γ-class Y ∈ C/γ and consider the set

X = {x ∈ B | xαy for all y ∈ Y }.

By symmetry, X is non-empty and is a β-class and obviously f(X) = Y . This
means that f maps B/β onto C/γ.
Suppose that f(X) = f(X ′) = Y for some X, X ′ ∈ B/β. Take an element

y ∈ Y . Then by definition xαyαx′ for all x ∈ X and x′ ∈ X ′ whence xαx′ and
X = X ′. Thus f one-to-one.
Finally let X ∈ B/β, f(X) = Y , and g ∈ G. Take an element x′ ∈ g(X). Then

x′ = g(x) for some x ∈ X . We have xαy for all y ∈ Y whence x′ = g(x) α g(y).
This implies that g(f(X)) = g(Y ) = f(g(X)). Thus f is an isomorphism.
Now the condition of our Proposition applies yielding that both B/β and C/γ

are to be singletons. Hence xαy whenever x, y ∈ B or x, y ∈ C. Further, for every
x ∈ B and y ∈ C, we have x β b α c γ y, and therefore, xαy. Thus α collapses B
and C so α is greedy. �

The characterization given by Proposition 1.3 says roughly speaking that all
congruences of a G-set are greedy if and only if its orbits are extremely different.
By this reason we shall call G-sets all whose congruences are greedy segregated .
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2. Lattice restrictions

Recall that an element z of a lattice L is said to cover an element x ∈ L if
x < z and there is no y ∈ L such that x < y < z. A lattice 〈L; ∨,∧〉 is called
(weakly) upper semimodular if, for all x, y ∈ L, their join x∨ y covers y whenever
x covers their meet x ∧ y (respectively, whenever x and y cover x ∧ y). (Weakly)
lower semimodular lattices are defined dually.

Proposition 2.1. Let A be a G-set. If the lattice Con(A) is either weakly upper
semimodular or weakly lower semimodular then A is segregated.

Proof: Suppose that A is not segregated. By Proposition 1.3 there exist two
different orbits B, C ∈ Orb(A) and congruences β ∈ Con(B), γ ∈ Con(C) such
that B/β ∼= C/γ and |B/β| > 1. For any µ ∈ Con(B) and ν ∈ Con(C), we
denote by µ ⊕ ν a congruence on A given by the following rule: (x, y) ∈ µ ⊕ ν
if and only if either x = y or x, y ∈ B and xµy or x, y ∈ C and xνy. Now
put α = β ⊕ γ. Clearly, the coideal [α) of the lattice Con(A) is isomorphic to
the lattice Con(A/α). Since any interval of a weakly upper (lower) semimodular
lattice is a weakly upper (lower) semimodular lattice by itself, it is sufficient to
verify that the lattice Con(A/α) is neither weakly upper semimodular nor weakly
lower semimodular. In other words, without any loss we may (and will) consider
A/α instead of A and so assume that A simply has two non-singleton isomorphic
orbits B and C. Further, it is easy to see that, for any G-subset D of A, the lattice
Con(D) is isomorphic to the ideal (ρD ] of Con(A), where ρD is the congruence
on A given by the rule: xρDy if and only if either x = y or x, y ∈ D. Hence we
may (and will) consider B ∪C instead of A. In other words, we will assume that
A = B ∪ C.
We shall make use of two constructions which extend congruences of B to

congruences of A. Fix an isomorphism f from B onto C. For every x ∈ A, put
x′ = x whenever x ∈ B, and x′ = f−1(x) whenever x ∈ C. Clearly, x′ ∈ B for
each x ∈ A. Now, for every congruence µ on B, we define a binary relation µ′ on
A as follows: xµ′y if and only if x′µy′. It is easy to see that µ′ is a congruence
on A. Clearly, µ′-classes are exactly X ∪ f(X) where X runs over the set of all
µ-classes and f(X) = {f(x) | x ∈ X}. We note that xµ′x′ for every x ∈ A.
Further, for every congruence µ on B, we denote by f(µ) the set of all pairs of the
form (f(x), f(y)), where (x, y) runs over µ. Clearly, f(µ) is a congruence on C.
Put µ̃ = µ ⊕ f(µ). It is clear that µ̃ < µ′.
Let us verify that µ′ covers µ̃ for every µ ∈ Con(B). Suppose that µ̃ < ζ ≤ µ′

for a congruence ζ ∈ Con(A), and fix a pair (x, y) ∈ ζ\µ̃. Clearly, µ̃|B = µ′|B = µ
whence ζ|B = µ. By symmetry, µ̃|C = µ′|C = ζ|C = f(µ). Hence x and y should
belong to different orbits, and therefore, we may assume that x ∈ B an y ∈ C. In
this case we have f(x) µ̃ y. Let now zµ′t. If z, t ∈ B or z, t ∈ C then zζt because
µ′|B = ζ|B and µ′|C = ζ|C . Suppose that z ∈ B and t ∈ C. Then f(z) µ̃ t. Since
B is transitive, there exists g ∈ G with g(x) = z. Hence

z = g(x) ζ g(y) µ̃ g(f(x)) = f(g(x)) = f(z) µ̃ t
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whence zζt. Thus µ′ = ζ, and µ′ covers µ̃.
The lattice Con(B) is non-trivial because |B| > 1. Since this lattice is alge-

braic (as the congruence lattice of a universal algebra), it is weakly atomic [2,
Theorem 2.2], this means that every non-singleton interval of Con(B) contains a
two-element subinterval. In particular, there exist congruences β1, β2 ∈ Con(B)
such that β1 covers β2. Now we consider the following five congruences on
A : β̃2, β

′
2, β̃1, β

′
1, and δ = β1 ⊕ f(β2) (see the diagram).

Aβ′
2

β̃2

δ

β̃1

β′
1

All lines on this diagram represent in actual fact the cover relation. Indeed, as
shown above, β′

1 covers β̃1, and β′
2 covers β̃2. The definition of δ easily implies that

δ covers β̃2 and is covered by β̃1. It remains to check that β′
1 covers β′

2. Suppose
that β′

2 ≤ ζ ≤ β′
1 for some congruence ζ ∈ Con(A). Since β′

1|B = β1, β′
2|B = β2,

and β1 covers β2, we have either ζ|B = β1 or ζ|B = β2.
First suppose that ζ|B = β1. Let xβ′

1y. Then x′β1y
′ whence x′ζy′. We then

have x β′
2 x′ ζ y′ β′

2 y whence xζy. Thus ζ = β′
1. Suppose now that ζ|B = β2.

Let xζy. Then x′ β′
2 x ζ y β′

2 y′ whence x′ζy′. Therefore x′β2y
′ and xβ′

2y. Thus
ζ = β′

2 in this case. We have proved that β′
1 covers β′

2.

We see that β′
2 and δ cover β̃2 = β′

2 ∧ δ while β′
2 ∨ δ = β′

1 does not cover δ. On

the other hand, β′
1 = β′

2∨β̃1 covers β
′
2 and β̃1 while β̃1 does not cover β̃2 = β′

2∧β̃1.
Hence the lattice Con(A) is neither weakly upper semimodular nor weakly lower
semimodular. �

We are now well prepared to prove the main result of this section.

Theorem 2.2. Let A be a G-set and L a class of lattices closed under taking
intervals and subdirect products. Suppose that every lattice in L is either weakly
upper semimodular or weakly lower semimodular. Then the lattice Con(A) be-
longs to L if and only if:

(a) the lattice Con(B) belongs to L for every orbit B of A;
(b) the lattice Part(Orb(A)) belongs to L;
(c) A is segregated.

Proof: Necessity. The fact that A is segregated immediately follows from
Proposition 2.1. To get (a) and (b), we note that the lattices Con(B) and
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Part(Orb(A)) are isomorphic to some intervals of the lattice Con(A). Indeed,
Con(B) ∼= (ρB] (see the proof of Proposition 2.1), and the partition lattice
Part(Orb(A)) is isomorphic to the coideal [π) of Con(A), where π is the par-
tition of A into orbits.

Sufficiency immediately follows from Proposition 1.2. �

It is well known that, for any set X , the lattice Part(X) is upper semimodu-
lar; if |X | > 3 then Part(X) is not weakly lower semimodular; if |X | = 3 then
Part(X) ∼=M3 is arguesian; finally Part(X) is distributive if and only if |X | ≤ 2.
It is known also that the class of all (weakly) upper semimodular lattices as well
as the class of all (weakly) lower semimodular lattices are closed under taking in-
tervals and subdirect products. Combining these observations with Theorem 2.2,
we immediately obtain a variety of corollaries dealing with some concrete lattice
restrictions to the congruence lattice of a G-set. We explicitly formulate only
three of them here.

Corollary 2.3. Let A be a G-set. The lattice Con(A) is (weakly) upper semi-
modular if and only if, for every orbit B of A, the lattice Con(B) is (weakly)
upper semimodular and A is segregated. �

Corollary 2.4. Let A be a G-set. The lattice Con(A) is modular (arguesian,
lower semimodular, weakly lower semimodular) if and only if, for every orbit B
of A, the lattice Con(B) is modular (respectively, arguesian, lower semimodular,
weakly lower semimodular), A has ≤ 3 orbits and is segregated. �

In fact, it is clear that every lattice quasiidentity (in particular, identity) which
is strictly weaker than distributivity and stronger than modularity might be added
to the list of the conditions in Corollary 2.4.

Corollary 2.5. Let A be a G-set. The lattice Con(A) is distributive if and only
if, for every orbit B of A, the lattice Con(B) is distributive, A has ≤ 2 orbits and
is segregated. �

3. Multiplicative restrictions

As we have mentioned at the beginning of Section 1, the congruence lattice of
a transitive G-set A is isomorphic to the interval [StabG(a), G] of the subgroup
lattice of G where a is an arbitrary element of A. It is easy to check (see [8])
that this result has a natural multiplicative analogue. Namely, let B(A) be the
semigroup of all binary relations on the set A and let P(G) denote the semigroup
of all subsets of the group G (where the product of two subsets C, D ⊆ G is
defined as the subset {cd | c ∈ C, d ∈ D}). Then the isomorphism between
Con(A) and [StabG(a), G] extends to an isomorphism between the subsemigroup
of B(A) generated by congruences of A and the subsemigroup of P(G) generated
by subgroups ofG containing the subgroup StabG(a). Taking this into account, we



610 B.M.Vernikov

may, as by studying the lattice restrictions, investigate the multiplicative behavior
of congruences of G-sets modulo orbits.
Let α and β be congruences on a G-set A. Put α ◦2 β = αβ and, for any

positive integer n > 2,

α ◦n β =

{

(α ◦n−1 β)β if n is even,

(α ◦n−1 β)α if n is odd.

A G-set A is called congruence n-permutable if α◦nβ = β ◦nα for all congruences
α, β on A.

Lemma 3.1. Let n > 1 be an integer. If a G-set A is congruence n-permutable
then A contains ≤ n orbits.

Proof: Clearly, any partition of the set Orb(A) induces a partition of A, and the
latter partition is a congruence on A. Therefore our lemma immediately follows
from the fact that, for any set X with > n elements, there exist partitions α and β
of X such that α◦nβ 6= β◦nα. This fact is certainly known but, for completeness’
sake, we will prove it here.
Thus, let X = {x1, . . . , xn+1, . . . }. We define the partitions α and β of X as

follows:

if n is even then non-singleton α-classes are exactly {x1, x2}, {x3, x4}, . . . ,
{xn−1, xn}, and non-singleton β-classes are exactly {x2, x3}, {x4, x5}, . . . ,
{xn, xn+1};

if n is odd then non-singleton α-classes are exactly {x1, x2}, {x3, x4}, . . . ,
{xn, xn+1}, and non-singleton β-classes are exactly {x2, x3}, {x4, x5}, . . . ,
{xn−1, xn}.

Then we have
x1 α x2 β x3 α . . . α xn β xn+1

for n being even and

x1 α x2 β x3 α . . . β xn α xn+1

for n being odd. In both cases (x1, xn+1) ∈ α ◦n β. Suppose that (x1, xn+1) ∈
β ◦n α. If n is even there exist y2, y3, . . . , yn ∈ X such that

x1 β y2 α y3 β . . . β yn α xn+1.

From the definition of the partitions α and β, we have in succession y2 =
x1, y3 ∈ {x1, x2}, y4 ∈ {x1, x2, x3}, . . . , yn ∈ {x1, x2, . . . , xn−1}, and xn+1 ∈
{x1, x2, . . . , xn}, a contradiction. The case when n is odd is completely analo-
gous.

�
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Lemma 3.2. If a G-set A is congruence 3-permutable then it is segregated.

Proof: It is well known that every lattice of 3-permutable equivalences is mo-
dular. Now Proposition 2.1 applies.

�

Lemma 3.3. Let A be a segregated G-set, Orb(A) = {A1, A2, A3}, α, β ∈
Con(A), and x, y ∈ A. If (x, y) ∈ α ◦n β for some n ≥ 2 then one of the fol-
lowing conditions holds:

(a) there exists i ∈ {1, 2, 3} such that x, y ∈ Ai and (x, y) ∈ αi ◦n βi where αi

(respectively, βi) is the restriction of α (respectively, of β) to Ai;

(b) (x, y) ∈ αβ ∪ βα.1

Proof: Let ∆ be the universal relation on A. Clearly, if α = ∆ or β = ∆ then
(x, y) ∈ α∪ β, and therefore, the condition (b) holds. Hence we may assume that
α, β 6= ∆.
For any congruence µ on A, we say that an orbit is µ-saturated if it is the union

of µ-classes. Since A is segregated, for any congruence µ 6= ∆ on A, either all the
orbits A1, A2, A3 are µ-saturated or µ collapses two orbits Ai and Aj while the
third orbit Ak is µ-saturated ({i, j, k} = {1, 2, 3}).
Let now x, y ∈ A and (x, y) ∈ α ◦n β for some n ≥ 2. By the trivial in-

duction it is sufficient to verify that either the condition (a) holds or (x, y) ∈
α ◦n−1 β ∪ β ◦n−1 α. There exist elements z1, . . . , zn−1 ∈ A such that either
x α z1 β z2 α . . . α zn−1 β y or x α z1 β z2 α . . . β zn−1 α y.
Take the orbit Ai containing the element x and consider three cases.

Case 1. Ai is α-saturated and β-saturated .

In this case, z1, z2, . . . , zn−1, y ∈ Ai. Thus x, y ∈ Ai and (x, y) ∈ αi ◦n βi. We
have the condition (a) fulfilled.

Case 2. Ai is α-saturated but not β-saturated .

In this case β collapses Ai and some other orbit Aj while the third orbit Ak

is α-saturated ({i, j, k} = {1, 2, 3}). Therefore, z1 ∈ Ai and z2 ∈ Ai ∪ Aj . Hence
xβz2 and (x, y) ∈ β ◦n−1 α.

Case 3. Ai is not α-saturated .

Here α collapses Ai and some other orbit Aj while the third orbit Ak is α-
saturated ({i, j, k} = {1, 2, 3}). Hence z1 ∈ Ai ∪ Aj . If z2 ∈ Ai ∪ Aj then xαz2
whence (x, y) ∈ α ◦n−1 β. Thus we may assume that z2 ∈ Ak whence z3 ∈ Ak.
Suppose that z1 ∈ Ai. Then β connects Ai and Ak, and therefore, β collapses
Ai and Ak. Thus xβz3 and (x, y) ∈ β ◦n−1 α. Finally let z1 ∈ Aj . Then β
connects Aj and Ak and so it collapses these two orbits. Thus z1βz3, that is,
(x, y) ∈ α ◦n−1 β. �

1Here and below ∪ denotes the set-theoretic join of binary relations.



612 B.M.Vernikov

We say that an algebra A is congruence 2.5-permutable if the join α ∨ β in
the congruence lattice of A is equal to the union αβ ∪ βα for all congruences
α and β. Clearly, each 2-permutable algebra is 2.5-permutable and each 2.5-
permutable algebra is 3-permutable — this observation explains the term we
use. The property of being 2.5-permutable is less exotic than it might seem, it
frequently arises, for example, by studying fully invariant congruences on free
semigroups, see [15].
The main result of this section describes (modulo orbits) G-sets with n-permut-

able congruences for n = 2, 2.5, 3. By ⌈n⌉ we denote the least integer such that
n ≤ ⌈n⌉.

Theorem 3.4. Let n ∈ {2, 2.5, 3}. A G-set A is congruence n-permutable if and
only if every orbit of A is congruence n-permutable, A has ≤ ⌈n⌉ orbits and is
segregated.

Proof: Necessity follows from Lemmas 3.1 and 3.2 combined with the evident
fact that congruence n-permutability is inherited by orbits.
Sufficiency. We may assume without loss of generality that A has exactly ⌈n⌉

orbits A1, . . . , A⌈n⌉ (if necessary, we can always add a one-element orbit). For

any congruence µ on A, denote by µi the restriction of µ to Ai, i = 1, . . . , n.
We first consider the case n = 3. Let α, β ∈ Con(A), x, y ∈ A, and (x, y) ∈

αβα. By Lemma 3.3 either x, y ∈ Ai and (x, y) ∈ αiβiαi for some i ∈ {1, 2, 3}
or (x, y) ∈ αβ ∪ βα. Since Ai is congruence 3-permutable, we see that, in the
first case, (x, y) ∈ βiαiβi ⊆ βαβ. Clearly, in the second case, (x, y) ∈ βαβ too.
We have proved that αβα ⊆ βαβ, and, by symmetry, αβα = βαβ. Thus A is
congruence 3-permutable.
Now consider the case n = 2.5. Let α, β ∈ Con(A), x, y ∈ A, and (x, y) ∈ α∨β.

It is well known that α∨β =
∞
⋃

m=2
α ◦m β. We may therefore assume that (x, y) ∈

α ◦m β for some m ≥ 2. By Lemma 3.3 either x, y ∈ Ai and (x, y) ∈ αi ◦m βi for
some i ∈ {1, 2, 3} or (x, y) ∈ αβ ∪ βα. In the first case, (x, y) ∈ αi ∨ βi. Since Ai

is congruence 2.5-permutable, this implies that (x, y) ∈ αiβi ∪ βiαi ⊆ αβ ∪ βα.
Thus (x, y) ∈ αβ ∪ βα in both cases whence α ∨ β ⊆ αβ ∪ βα. The opposite
inclusion is evident. We have proved that A is congruence 2.5-permutable.
Finally consider the case n = 2. Let ∆ be the universal relation on A. Since

A is segregated, for any congruence µ on A, either µ = ∆ or both the orbits A1
and A2 are µ-saturated. Take two arbitrary congruences α and β on A. Clearly,
αβ = βα if α = ∆ or β = ∆. Suppose that α, β 6= ∆, x, y ∈ A and (x, y) ∈ αβ,
that is, x α z β y for some z ∈ A. Take the orbit Ai containing the element
z. Since Ai is both α-saturated and β-saturated, we have x, y ∈ Ai. Hence
x αi z βi y, that is, (x, y) ∈ αiβi. Since Ai is congruence 2-permutable, we then
have (x, y) ∈ βiαi ⊆ βα. Thus αβ ⊆ βα, and by symmetry αβ = βα. We have
proved that A is congruence 2-permutable. �

We conclude the paper with showing that there exists no analogue of Theo-
rem 3.4 for congruence n-permutability with n > 3. Indeed, let G be the two-
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element group, A1 and A2 two disjoint copies of G which are considered as G-sets
under natural (regular) action of G, and A = A1 ∪ A2. It is easy to check that
A is congruence 4-permutable (and even 3.5-permutable in the evident sense),
although A fails to be segregated in view of Proposition 1.3.
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