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On bounds of the drag for Stokes flow

around a body without thickness

Didier Bresch

Abstract. This paper is devoted to lower and upper bounds of the hydrodynamical drag T
for a body in a Stokes flow.
We obtain the upper bound since the solution for a flow in an annulus and therefore

the hydrodynamical drag can be explicitly derived. The lower bound is obtained by com-
parison to the Newtonian capacity of a set and with the help of a result due to J. Simon
[10]. The chosen approach provides an interesting lower bound which is independent of
the interior of the body.

Keywords: Stokes flows, hydrodynamical drag, lower and upper bounds

Classification: 76D07

Introduction. Some problems like homogenization require an upper bound re-
lated to a “small” obstacle for the drag or the capacity (see for instance G. Al-
laire [1] about Stokes homogenization and D. Cioranescu and F. Murat [3] about
Laplace homogenization).
In this paper, we derive lower and upper bounds independent on the interior

of the body.
The method is based on the fact that the solution corresponding to a flow in an

annulus can be explicitly obtained. Moreover, the hydrodynamical drag can be
compared to the Newtonian capacity of a set; therefore a result due to J. Simon
[10] can be used. The originality of the present paper comes from the lower bound
estimate; this is not a common result in fluid mechanics. We obtain a lower bound
which depends only on the section of the obstacle A. Therefore, it provides an
interesting value for some obstacles with zero thickness.

Remark. J. Sanchez Hubert and E. Sanchez Palencia [9] have studied the drag
for some obstacles without thickness in an unbounded domain by an asymptotic
expansion method around the shape. In particular, they have studied the flow
around an half plane in the case of a Navier Stokes stationary 2 D flow and they
have proved that in this case the drag is not null. Here we derive a lower bound
which is true for all bounded obstacle with a non null section and which gives an
hydrodynamical drag (non null). �

Statement of the problem. Let A and D be respectively a compact set and
an open connected set with sufficiently regular boundaries (C2 for example) such
that A ⊂ D. Then we consider the domain Ω = D/A.
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We are interested in the hydrodynamical drag T which is defined as follows
(see for instance [2])

(1) T = −e1 .

∫

∂A
(−p Id+ σ(uS))n ds =

1

2

∫

Ω
σ(uS)

2

where σ(y)2 =
∑

i j σij(y)
2 and σij = ∂i yj+∂j yi for all i and j and where (uS, p)

is the solution of the following Stokes problem

(2)























−∆uS +∇p = 0 in Ω ,

∇ . uS = 0 in Ω ,

uS = 0 on ∂A ,

uS = e1 on ∂D ,

where e1 is the first basis vector.

Remark. We denote n the unit interior normal vector (outside A on ∂A, inside D
on ∂D). This describes the flow around a body A moving with a velocity −e1, in
spatial coordinates fixed with respect to A. �

Notations and main results. Let c be the center and rA be the radius of the
smallest ball BA which contains A. Let RD be the radius of the biggest ball
centered in c and contained in D. We assume that rA < RD and we denote
CrA,RD

= { x ∈ R
N : rA < |x − c| < RD }.

Using the variational formulation of (2), we will check in Lemma 6 that T
decreases with Ω. This means that T decreases when D increases and A decreases.
Thus we can bound T by the drag associated to the annuli which are respectively
included in and containing Ω.
Since the annulus CrA,RD

is included in Ω, we obtain an upper bound of the
drag associated to (2). More precisely we get the following result.

Proposition 1. Let (uS, p) be the solution of (2).
If N = 2 :

T ≤ 4π(r2A +R2D)

(r2A − R2D) + (r
2
A +R2D) log

RD
rA

.

If N = 3 :
T ≤ D(rA, RD)

with

D(a, b) =
8π

3
β2(
1

a5
− 1

b5
) +
16π

3
αβ(

1

a3
− 1

b3
) +
40π

3
α2(
1

a
− 1

b
)

+
64π

3
αγ(b2 − a2) + 4πγ2(b5 − a5)
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and where the constants α, β, γ are explicitly given in Lemma 4. �

Conversely, Ω is included in the annulus CRA,TD
where RA is the radius of

the biggest ball contained in A and TD is the radius of a concentric ball which
contains D. Therefore we obtain, for example in dimension 2, the following lower
bound

T ≥ 4π(R2A + T 2D)

(R2A − T 2D) + (R
2
A + T 2D) log

TD
RA

.

For a body A with zero thickness (that is with an empty interior), this inequality
provides T ≥ 0 which is not an interesting result !
A better lower bound depending only on the section of A is given in Theorem 2

hereafter. For some bodies with zero thickness, this result provides a nonzero lower
bound.

Remark. Isoperimetric inequality for the capacity obtained by the Schwarz sym-
metrization (see for instance J. Mossino [8, p. 60]) cannot be used. In the case of
an obstacle without thickness, this inequality leads to T ≥ 0 which again is not
an interesting result. �

We denote rD the radius of the smallest ball which contains D. Let us consider
a hyperplane P ⊂ R

N and denote Ap the orthogonal projection of A on P . We
get a lower bound of the energy which depends on the area σp of the biggest disk
contained in Ap. In fact one has the following theorem.

Theorem 2. Let (uS, p) be the solution of (2).
If N = 2 :

2π

log(4πrD
rA
+ e)

≤ T with e = π(1 +

√

1 +
1

π2
) .

If N = 3 :

4π(2 rD + h)
√

σp

π3

(2 rD + h)−
√

σp

π3

≤ T with h = rA(1 +

√

1 +
σp

π3r2A
) .

�

Remarks. In both cases, N = 2 and N = 3, we can apply an orthogonal
projection on every hyperplanes in R

N . The biggest area provides the most
interesting inequality.
Note that for N = 2 the biggest area coincides with the length of the diameter

of A. �

Before beginning we prove that in fact, in our problem, the hydrodynamical

drag T is equal to the energy E =

∫

Ω
|∇uS|2; namely we have the following pre-

liminary result.
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Lemma 3. Let (uS, p) be the solution of (2). Then,

T =

∫

Ω
|∇uS|2 .

Proof: Let us suppose that uS can be written in the form uS = v+h with v = 0
on ∂Ω, ∇ . v = 0 in Ω, ∇ . h = 0 in Ω, h = e1 in a neighbourhood of ∂D and
h = 0 on ∂A.
Since we have

(3)
1

2
σ(uS)

2 − |∇uS|2 =
∑

ij

∂j(uS)i∂i(uS)j ,

with σ defined in (1), and recalling the definitions of h and v, we can show with
the help of the Green formula that

∫

Ω

∑

ij

∂jvi∂i(uS)j = 0

and
∫

Ω

∑

ij

∂jhi∂i(uS)j = 0 .

Thus from the decomposition of uS and the definition (1), the result holds.
Now, we just have to build the decomposition of uS. Let Ω1 an open set such

that A ⊂ Ω1, Ω1 ⊂ D for which we define θ ∈ D(D) with θ = 1 in Ω1.
We define h as follows

h = e1 +

2
∑

i=1

(
−∂(θxi)

∂xi
e1 +

∂(θxi)

∂x1
ei) .

Thus, uS = h+ v satisfies the properties mentioned at the beginning of the proof.
�

1. Stokes upper bound

In this section we study the problem (2) for which we give some properties con-
cerning the associated energy. First, we use an idea of G.G. Stokes [12] developed
for example by G. Allaire [1] to obtain the exact solution of the problem (2) in
an annulus Ca,b = Bb/Ba with Ba and Bb two concentric balls.
Therefore, we recall the following result for which all coefficients can be expli-

cated.
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Lemma 4. The solution of (2) in Ca,b is of the form

(4)

{

u = x1rf(r)er + g(r)e1 ,

p = x1h(r) ,

for r = |x| ∈ [a, b]. The functions f, g, h are given by the following equalities:

if N = 2 :


























f(r) =
β

r4
+

α

r2
+ γ ,

g(r) = −α log r − β

2r2
− 3
2
γ r2 + η ,

h(r) =
2α

r2
− 4γ ,

with






































α = −(a2 + b2)γ ,

β = a2b2γ ,

η = (−(a2 + b2) log a+
b2

2
+
3

2
a2)γ ,

γ =
1

(a2 − b2) + (a2 + b2) log b
a

;

if N = 3 :


























f(r) =
β

r5
+

α

r3
+ γ ,

g(r) =
−β

3 r3
+

α

r
− 2γ r2 + η ,

h(r) =
2α

r3
− 10γ ,

with



















































α = −
(

a3 + b2 × b3 − a3

b2 − a2
)

γ ,

β = a2b2 × b3 − a3

b2 − a2
γ ,

η =
(

3a2 +
4

3
b2 × b3 − a3

ab2 − a3
)

γ ,

γ
(

−1
3
a3 × b3 − a3

b2 − a2
− (a3 + b2

b3 − a3

b2 − a2
)− 2b3 + b(3a2 +

4

3
b2 × b3 − a3

ab2 − a3
)
)

= b .

�
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Outline of the proof. Replacing the expression (4) of (uS, p) in the system (2),
we obtain the following system















































g′(r)

r
+ (N + 1)f(r) + rf ′(r) = 0 ,

h(r)− g′′(r) − (N − 1)g
′(r)

r
− 2f(r) = 0 ,

h′(r) − (N + 3)f ′(r) − rf ′′(r) = 0 ,

f(a) = g(a) = 0 ,

f(b) = 0 and g(b) = 1 .

We can check that f, g, h, previously defined, satisfy this system. For more details
see for instance G. Allaire [1, appendix B]. �

With the help of Lemmas 3 and 4, we obtain the following explicit formula for
the hydrodynamical drag T in an annulus Ca,b.

Lemma 5. Let (uS, p) be the solution of (2) in Ca,b.

If N = 2 :

T =
4π(a2 + b2)

(a2 − b2) + (a2 + b2) log b
a

.

If N = 3 :

(5)
T =
8π

3
β2(
1

a5
− 1

b5
) +
16π

3
αβ(

1

a3
− 1

b3
) +
40π

3
α2(
1

a
− 1

b
)

+
64π

3
αγ(b2 − a2) + 4πγ2(b5 − a5),

where the constants α, β, γ are given in Lemma 4. �

Outline of proof. For N = 2 or 3, we have

u(r) = x1 r f(r) er + g(r) e1 ,

so that
|∇u|2 =

∑

i j

(∂iuj)
2 =

∑

i j

(

∂i(x1xjf(r)) + δj1∂ig(r)
)2

,

where δij is the Krönecker symbol.
Therefore, we easily derive

(6)
|∇u|2 = r2f(r)2 + g′(r)2 + x21

(

(N + 2)f(r)2 + r2f ′(r)2

+ 4r f(r)f ′(r) +
4

r
f(r)g′(r) + 2f ′(r)g′(r)

)

.
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From (6) and by using the explicit formulas for f and g defined in Lemma 3, we
can deduce an explicit form of the drag in an annulus. Hereafter we distinguish
the cases N = 2 and N = 3.

— For N = 2. Recalling that x1 = r cos θ,

∫ 2π

0
cos2 θ = π and



























g′(r) =
−α

r
+

β

r3
− 3γr ,

rf(r) =
α

r
+

β

r3
+ γr ,

r2f ′(r) =
−2α

r
− 4β

r3
,

we can evaluate all the terms in the right hand side of

‖∇u‖2L2(Ca,b)
= ‖g′(r)‖2L2(Ca,b)

+ ‖rf(r)‖2L2(Ca,b)

+

∫

Ca,b

(

r2f ′(r)2 + 4f(r)2
)

r3 cos2 θ dr dθ

+

∫

Ca,b

(

4rf(r)f ′(r) + 4
f(r)

r
g′(r) + 2f ′(r)g′(r)

)

r3 cos2 θ dr dθ .

Thus we obtain, with the help of α, β, γ given in Lemma 4, the announced result.

— For N = 3. Recalling that x1 = r cos θ sinϕ,

∫ 2π

0

∫ π

0
cos2 θ sin3 ϕdθ dϕ =

4

3
π and



























g′(r) =
−α

r2
+

β

r4
− 4γr ,

rf(r) =
α

r2
+

β

r4
+ γr ,

r2f ′(r) =
−3α
r2

− 5β
r4

,

we can evaluate all the terms in the right hand side of

‖∇u‖2L2(Ca,b)
= ‖g′(r)‖2L2(Ca,b)

+ ‖rf(r)‖2L2(Ca,b)

+

∫

Ca,b

(

r2f ′(r)2 + 5f(r)2
)

r4 cos2 θ sin3 ϕdr dθ dϕ

+

∫

Ca,b

(

4rf(r)f ′(r) + 4
f(r)

r
g′(r) + 2f ′(r)g′(r)

)

r4 cos2 θ sin3 ϕdr dθ dϕ .

Thus we obtain, with the help of α, β, γ given in Lemma 4, the announced result.
�

As a consequence of Lemma 5, we have the following result.
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Corollary 6. Let N > 3, a > 0. Let ua,b be the solution in Ca,b given in

Lemma 4 and (ua,∞, pa,∞) be a solution of (2) in Ca,∞ = {x ∈ R
3 : |x| > a}

given by

(7) ua,∞ = x1 r f(r)er + g(r) e1 , pa,∞ = x1 h(r) ,

where

(8)































f(r) =
3 a3

4 r5
− 3 a

4 r3
,

g(r) =
−a3

4 r3
− 3 a

4 r
+ 1 ,

h(r) = − 3 a

2 r3
.

We have

||∇ua,b||2L2(Ca,b)3×3
→ ||∇ua,∞||2L2(Ca,∞)3×3

as b → ∞. �

Proof for a = 1. We first check that (ua,∞, pa,∞) is a solution of (2) in Ca,∞

with
T = ||∇ua,∞||2L2(Ca,∞)3×3

= 6π .

Using Lemma 4 and the formula (5), we show that

||∇ua,b||2L2(Ca,b)3×3
→ (40π/3 + 8π/3− 48π/9)× 9/16 = 6π

when b → +∞. The general case a 6= 1 is deduced from the previous proof. �

Remark. For N = 2 we have not the same type of convergence accordingly to
the Stokes paradox (see for instance J.G. Heywood [7]). In this case we get the
following convergence result T → 0 when b → ∞. �

Now let us give a result concerning the variation of E with respect to the
domain Ω.

Lemma 7. Let Ω ,Ω′ be two open sets such that Ω ⊂ Ω′ (that is A′ ⊂ A and
D ⊂ D′), (uS, p) be the solution of (2) in Ω = D/A and (u′S, p

′) be the solution

of (2) in Ω′ = D′/A′. We have

∫

Ω
|∇uS|2 ≥

∫

Ω′

|∇u′S|2 .
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Proof: Let ũS denote the following extension of uS

ũS =











uS in Ω,

0 in A − A′,

e1 in D′ − D.

Then, we have ũS = u′S + ϕ where ϕ ∈ H10 (Ω
′) and ∇ . ϕ = 0 in Ω′. Therefore

∫

Ω′

|∇ũS|2 =
∫

Ω′

|∇u′S|2 +
∫

Ω′

|∇ϕ|2 + 2
∫

Ω′

∇ϕ . ∇u′S

but
∫

Ω′

∇ϕ . ∇u′S = −
∫

Ω′

ϕ∆u′S = 0

so that
∫

Ω′

|∇ũS|2 ≥
∫

Ω′

|∇u′S|2 .

�

With the help of this lemma and thanks to the expressions given in Lemma 5
we easily obtain the Stokes upper bound given in Lemma 1.

2. Stokes lower bound

In this section we derive the lower bound (i.e. we prove Theorem 2) with the
help of a result of J. Simon [10]. The result is based on a personal communication
with A. Ancona and is recalled in Lemma 9 hereafter.
Let uL be the solution of

(9)











−∆uL = 0 in Ω ,

uL = 0 on ∂D ,

uL = 1 on ∂A .

In the sequel, we shall denote by uL the following extension of ũL

ũL =

{

uL in Ω,

1 in A.

We shall obtain a lower bound on the capacity depending on some geometrical
parameters and use Lemma 14 in order to minimize the Stokes drag.
Let us recall the following result.
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Lemma 8. The measure −∆uL has its support ∂A and

capDA =

∫

D
d(−∆uL) .

Proof: Let uL be the extension defined above; uL being in H1(D) we have

〈−∆uL, ϕ〉 =
∫

D
∇uL.∇ϕdx =

∫

Ω
∇uL.∇ϕdx , ∀ϕ ∈ H10 (D) .

Moreover uL ∈ H2(Ω) so that the trace of the normal derivative on ∂Ω can be
defined and the Green formula in Ω can be used leading to

∫

Ω
∇uL.∇ϕdx = −

∫

∂A

∂uL
∂n

ϕdσ .

This proves, with the help of the maximum principle, that −∆uL is equal to the

positive measure −∂uL
∂n

dσ∂A. Since

capDA =

∫

D
|∇(1 − uL)|2 = −

∫

∂D

∂uL
∂n

dσ

and
∫

D
d(−∆uL) = 〈−∆uL, 1〉 =

∫

Ω
∇uL.∇ 1 dx −

∫

∂D

∂uL
∂n

dσ ,

we get the announced result. �

We now give the fundamental result of [10] for which we recall the proof for
reader’s convenience. Let A′ be a compact set such that A′ ⊂ D with a sufficiently
regular boundary. We have the following result.

Lemma 9. Let f be a continuous map from ∂A onto ∂A′ (= f(∂A)) such that
the Green function G in D satisfies the following hypothesis

(10) G(f(x), f(y)) ≥ G(x, y) ∀x, y ∈ ∂A.

Then

capDA ≥ capDA′ .

Proof: Let u′L denote the solution of (9) with A′ instead of A. We define a

measure µ on D, whose support is ∂A′, by

∫

D
ϕdµ =

∫

D
ϕ ◦ f d(−∆uL), ∀ϕ ∈ C0(D) .
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From Lemma 8, we have

capDA =

∫

D
d(−∆uL) =

∫

D
dµ

and

capDA′ =

∫

D
d(−∆u′L) .

Let u⋆ be the solution of {

−∆u⋆ = µ in D ,

u⋆ = 0 on ∂D .

By the integral representation theory, we have

u⋆(f(x)) =

∫

D
G(f(x), y′) dµ(y′) ∀x ∈ ∂ A .

Then, using the definition of µ we get

u⋆(f(x)) =

∫

D
G(f(x), f(y)) d(−∆uL)(y) .

On the other hand,
{

−∆uL = −∆uL in D ,

uL = 0 on ∂D .

Similarly, we can show that

uL(x) =

∫

D
G(x, y) d(−∆uL)(y) .

Since
u′L(f(x)) = uL(x) = 1

and since −∆uL is a positive measure, the assumption (10) implies that

u⋆ − u′L ≥ 0 on ∂A′ .

Moreover, as u⋆−u′L = 0 on ∂D and ∆(u⋆−u′L) = 0 in Ω
′ = D/A′, the maximum

principle gives
u⋆ − u′L ≥ 0 in Ω′ .

This implies that ∂
∂n (u

⋆ − u′L) ≥ 0 on ∂D and, since −∆u⋆ = µ in D and due to
the definition of µ,

∫

D
d(−∆(uL − u′L)) ≥ 0 .

This ends the proof. �

We now calculate the capacity of two concentric balls of radius a and b centered
in 0 as well as the Green function in a ball BR (see for instance R. Dautray and
J.L. Lions [4, p. 503] and J. Simon [11, Theorem and Definition 80]). These
expressions depend on the dimension N .
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Lemma 10. Let z be the solution of (9) in Ca,b.

If N = 2 :

z(x) =
log b

|x|

log b
a

,

thus

capBb
Ba =

2 π

log b
a

.

If N = 3 :

z(x) =
(1

b
− 1

|x|
) (1

b
− 1

a

)−1
,

thus

capBb
Ba =

4 πb a

b − a
.

�

Lemma 11. Let GBR
(x, y) be the Green function in a ball BR1 .

If N = 2 :

GBR
(x, y) =

1

2 π
log(

|x⋆ − y| |x|
R |x − y| ) ,

and if N = 3 :

(11) GBR
(x, y) =

1

4π |x − y| (1−
R |x − y|
|x| |x⋆ − y|)

with x⋆ = x
R2

|x|2 . �

With the help of Lemmas 8–11 we can now derive a lower bound of the capacity.
More precisely, we have the following result.

Theorem 12. Let capDA be the Newtonian capacity corresponding to (9).

If N = 2 :

capDA ≥ 2 π

log(2 π rD
rA
+ e)

, where e = π (1 +

√

1 +
1

π2
),

and if N = 3 :

(12) capDA ≥
4 π(2 rD + h)

√

σp

π3

(2 rD + h)−
√

σp

π3

, where h = rA (1 +

√

1 +
σp

π3r2A
) .
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Proof: We give the proof for N = 3. The reader can find the case N = 2 in
J. Simon [10, p. 22] with σp = 2 rA the length of the diameter of A.

Let us consider a hyperplane P ⊂ R
N such that the center of the smallest

ball which contains D belongs to it and denote Ap the projection of A on P .
We define Dp the largest disk contained in Ap for which we build a compact set

K ⊂ A sufficiently regular (C2) such that Kp = Dp.
Using the same argument as in Lemma 7, we can show that capDA increases

when D/A decreases. Therefore, if we obtain a lower bound for Ω = D/K, this
lower bound is valid for Ω = D/A.
Let us choose coordinates such that (h, 0, 0) ∈ Dp,

Dp ⊂ {(x1, x2, 0) : x1 ≥ h}, where h = rA(1 +

√

1 +
σp

π3r2A
) .

Let A′ = B√
σp/π3

be the closed ball of radius
√

σp/π3 centered in 0. Then, we

define a continuous contractive map f from ∂K to ∂A′ (= f(∂K)) such that:

f is composed of the projection on Dp, the identification of the boundary in one
point and the homeomorphism defined in G. Godbillon [6, p. 33] which transforms
the identified domain to the sphere ∂ B√

σp/π3
.

More precisely, we have the following classic result.

Lemma 13. The sphere Sm, m ≥ 1, is homeomorphic to the space obtained
from the ball Dm by the identification of its boundary Sm−1 with one point. �

Let BR1 be the ball of radius R1 = 2 rD+ h centered in 0. Since D is included
in BR1 , we get

(13) capDK ≥ capBR1
K .

Let GBR1
be the Green function (11) in BR1 . Suppose for the moment that it

satisfies the hypothesis (10). Then, Lemma 9 gives

capBR1
K ≥ capBR1

Bqσp

π3

=
4 π(2 rD + h)

√

σp

π3

(2 rD + h)−
√

σp

π3

.

The announced lower bound for capDA follows from (13).
It remains to prove that GBR1

satisfies (10).

For any x, y ∈ ∂K, x 6= y, we obtain

(14)
|x⋆ − y||x| ≤ (|x⋆ − x|+ |x − y|)|x| = R1

2 − |x|2 + |x − y||x|
≤ R1

2 − |x|2 + 2rA|x|
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and since f(x), f(y) belong to ∂B√
σp/π3

, we get

(15) |f(x)⋆ − f(y)||f(x)| ≥ (|f(x)⋆| − |f(y)|)|f(x)| = R1
2 − σp

π3
.

Since |x| ≥ x1 > h and from (14) and (15), we have

(16) |f(x)⋆ − f(y)||f(x)| ≥ |x⋆ − y||x| .
From the definition of f , we have

(17) |f(x)− f(y)| ≤ |x − y| .
Due to the definition of GBR1

(x, y) the maximum principle gives, see for instance

D. Gilbart and N.S. Trudinger [5, p. 19],

GBR1
(x, y) ≥ 0 .

Thus, with (16) and (17) we get

1

|f(y)− f(x)| (1−
R1|f(x)− f(y)|

|f(x)||f(x)⋆ − f(y)| ) ≥
1

|x − y| (1−
|x − y|R1
|x⋆ − y||x| ),

which proves (10).

Now let us give an easy result from which, with Lemma 3 and Theorem 12, we
will deduce the Stokes lower bound.

Lemma 14. Let (uS, p) and uL be respectively the solutions of (2) and (9). We
have ∫

Ω
|∇uS|2 ≥ capDA .

Proof: Let u1S ∈ H1(Ω) be the first component of uS. We have u1S = 1− uL+ϕ

with ϕ ∈ H10 (Ω), thus
∫

Ω
|∇u1S|2 =

∫

Ω
|∇uL|2 − 2

∫

Ω
∇uL .∇ϕ+

∫

Ω
|∇ϕ|2 .

Since ∫

Ω
∇uL.∇ϕ = 0

we get
∫

Ω
|∇uS|2 ≥

∫

Ω
|∇u1S|2 ≥

∫

Ω
|∇uL|2

which proves the announced result. �

Remark. In this paper we derive a lower bound for the Stokes drag. However,
by comparison to the Stokes solution, it is easy to obtain a lower bound for the
Navier-Stokes drag, namely we have the following inequality

∫

Ω
|∇uN.S|2 ≥

∫

Ω
|∇uS|2 .

�
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