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The Re-nonnegative definite solutions

to the matrix equation AXB = C

Qingwen Wang, Changlan Yang

Abstract. An n × n complex matrix A is called Re-nonnegative definite (Re-nnd) if the
real part of x∗Ax is nonnegative for every complex n-vector x. In this paper criteria
for a partitioned matrix to be Re-nnd are given. A necessary and sufficient condition
for the existence of and an expression for the Re-nnd solutions of the matrix equation
AXB = C are presented.

Keywords: Re-nonnegative define matrix, matrix equation, generalized singular value
decomposition

Classification: 15A24, 15A57

In 1996, Lei Wu and Bryan Cain [1] defined a Re-nonnegative definite (Re-nnd)
matrix (that is, A ∈ Cn×n is called Re-nnd if Re[x∗Ax] ≥ 0 for every nonzero
x in Cn×1), presented a criterion for Re-nndness, and solved the matrix inverse
problem: Given complex matrices X and B, find the set of all complex Re-nnd
matrices A such that AX = B. It is well known that the matrix equation

(1) AXB = C,

where A, B, C are given and X is unknown, is very important; it was investigated
by C.G. Khatri and S.K. Mitra [2], K.E. Chu [3], A.D. Porter and N. Mousouris
[4], D. Hua [5], Q.W. Wang [6]–[8] and others. In this paper we extend the results
of [1], give criteria for 2× 2 and 3 × 3 partitioned matrices to be Re-nnd, derive
a necessary and sufficient condition for the existence of and an expression for Re-
nnd solutions of the equation (1). Throughout this paper, C, Cm×n, Cm×n

r , GLn,
En will represent the complex field, the set of allm×n matrices over C, the set of
all matrices in Cm×n with rank r, the set of all n× n invertible matrices and the
set of all n×n Re-nnd matrices, respectively. A∗, rank A, Re[b] and Ii will denote
the conjugate transpose of a complex matrix A, the rank of A, the real part of a
complex number b, and i × i identity matrix, respectively. H(A) = 1

2 (A
∗ + A),

P−∗ = (P ∗)−1 = (P−1)∗.
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2. Criteria for partitioned matrices to be Re-nnd

In this section, we improve a result concerning Re-nndness, and give a criterion
for 3× 3 matrix to be Re-nnd.

Lemma 1 ([1]). A ∈ En iff H(A) is nonnegative definite (abbreviated nnd).

Extending Lemma 2 in [1], we have the following

Lemma 2. Let a Hermitian matrix A be partitioned as

A =

[

A11 A12
A∗

12 A22

]

,

where A11 and A22 are Hermitian submatrices. Then the following conditions are

equivalent:

(i) A is nnd;

(ii) rank[A11, A12] = rank A11, both A11 and A22 − U∗A11U are nnd where

U is an arbitrary but fixed solution of the matrix equation A11X = A12
for X ;

(iii) rank[A∗

12, A22] = rank A22, both A22 and A11 − U∗A22U are nnd where

U is an arbitrary but fixed solution of A22X = A∗

12 for X .

Theorem 1. Suppose

A =

(

A11 A12
A21 A22

)

∈ C
n×n

where Aii ∈ Cni×ni (n1+n2 = n). Then the following statements are equivalent:

(i) A ∈ En;

(ii) rank(A11 + A∗

11) = rank[A11 + A∗

11, A12 + A∗

21], both A11 and A22 −
U∗A11U are Re-nnd, where U is an arbitrary but fixed solution of the

matrix equation

(A11 +A∗

11)X = A12 + A∗

21

for X ;

(iii) rank(A22 + A∗

22) = rank(A
∗

12 + A21, A22 + A∗

22), both A22 and A11 −
U∗A22U are Re-nnd, where U is an arbitrary solution of the matrix equa-

tion
(A22 +A∗

22)X = A∗

12 + A21

for X .

Proof: Note that

2H(A) =

(

A11 +A∗

11 A12 +A∗

21
A21 +A∗

12 A22 +A∗

22

)

,

2H(A22) = A22 +A∗

22, 2H(A11 − U∗A22U) = A11 +A∗

11 − U∗(A22 +A∗

22)U .
By Lemma 1 and Lemma 2, (i) ⇔ (iii).
Similarly, (i) ⇔ (ii) may be proved. �
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Lemma 3. Let

A =







A11 A∗

21 X∗

31

A21 A22 A∗

32

X31 A32 A33







r1

r2

n−r1−r2

r1 r2 n−r1−r2

be Hermitian. Then there exists X31 ∈ C(n−r1−r2)×r1 such that A is nnd if and

only if both
(

A11 A∗

12
A21 A22

)

and

(

A22 A∗

32
A32 A33

)

are nnd.

Proof: “Necessity” is obvious by Lemma 2. Now we prove the “Sufficiency”.
By Lemma 2, we may assume that U1 (respectively U2) is an arbitrary solution
of A22X = A21 (respectively A33X = A32) for X . Taking X31 = A32U1 and

P =





Ir1 O O

−U1 Ir2 O

O −U2 In−r1−r2



 ,

we get that

P ∗AP = diag(A11 − U∗

1A22U1, A22 − U∗

2A33U2, A33).

By Lemma 2, A is nnd. �

Theorem 2. Suppose

A =







A11 A12 A13

A21 A22 A23

X31 A32 A33







r1

r2

n−r1−r2

∈ C
n×n.

r1 r2 n−r1−r2

Then there exists X31 ∈ C(n−r1−r2)×r1 such that A ∈ En if and only if

A1 =

(

A11 A12
A21 A22

)

∈ Er1+r2 , A2 =

(

A22 A23
A32 A33

)

∈ En−r1 .

Proof: Assume B11 = A11 + A∗

11, B21 = A21 + A∗

12, B31 = X31 + A∗

13, B22 =
A22 +A∗

22, B32 = A32 +A∗

23, B33 = A33 +A∗

33. Then

2H(A1) =

(

B11 B∗

21
B21 B22

)

, 2H(A2) =

(

B22 B∗

32
B32 B33

)

,

2H(A) =





B11 B∗

21 B∗

31
B21 B22 B∗

32
B31 B32 B33



 .

Hence, the theorem follows immediately from Lemma 3 and Lemma 1. �
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3. Re-nnd solutions to the matrix equation (1)

Now we consider the Re-nnd solutions of (1) where A ∈ Cm×n, B ∈ Cn×q,
C ∈ Cm×q are given and X ∈ Cn×n is unknown.
We decompose the matrices A and B∗ using the generalized singular value

decomposition (GSVD) [9]

(2) UAP =
[

∑

k
A

, On−k

]

, V B∗P =
[

∑

k

, On−k

]

,

where

(3)

∑

A
=





Ir

SA

O



 ,
∑

=





O

S

Ik−r−s



 ,

SA = diag(αr+1, . . . , αr+s), S = diag(βr+1, . . . , βr+s),

α2i + β2i = 1, i = r + 1, . . . , r + s, 1 > αr+1 ≥ · · · ≥ αr+s > 0, 0 < βr+1 ≤ · · · ≤

βr+s < 1, k = rank
( A
B∗

)

, r = k − rank B, s = rank A+ rank B − k, U ∈ Cm×m,

V ∈ Cn×n are unitary and P ∈ GLn.

Remark. Proofs, properties of the GSVD and a numerically stable algorithm for
the computation of the GSVD can be found in [9]–[10].

Let

(4) P−1XP−∗ =











X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44











r

s

k−r−s

n−k

,

r s k−r−s n−k

(5) UCV ∗ =







C11 C12 C13

C21 C22 C23

C31 C32 C33







r

s

m−r−s

.

n−k+r s k−r−s

Lemma 4. Consider the matrix equation (1). Let P−1XP−∗, UCV ∗ be as in

(4) and (5), respectively. Then (1) is consistent if and only if Ci1 (i = 1, 2, 3) and
C3j (j = 2, 3) vanish, in which case the general solution is

(6) X = P







X11 C12S
−1 C13 X14

X21 S−1
A C22S

−1 S−1
A C23 X24

X31 X32 X33 X34
X41 X42 X43 X44






P ∗,
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where Xi1, Xi4 (i = 1, 2, 3, 4), X3j , X4j (j = 2, 3) are arbitrary complex matrices
whose orders are given by (4).

Proof: Obviously, the matrix equation (1) is equivalent to

UAPP−1XP−∗P ∗BV ∗ = UCV ∗.

Hence by (2)–(5), (1) is equivalent to

(7)





O X12S X13
O SAX22S SAX23
O O O



 =





C11 C12 C13
C21 C22 C23
C31 C32 C33



 .

Accordingly, the lemma follows from (7). �

Now we give the main result of the present paper.

Theorem 3. Under the conditions of Lemma 4, the matrix equation (1) has a
Re-nnd solution if and only if Ci1 (i = 1, 2, 3) and C3j (j = 2, 3) vanish, and

S−1
A C22S

−1 is Re-nnd. In that case, the general Re-nnd solution of (1) is

(8) X = P

(

M N

−N∗ + T ∗(M +M∗) D + T ∗MT

)

P ∗,

where

M =





D2 + T ∗

2 (S
−1
A C22S

−1)T2 C12S
−1 C13

F S−1
A C22S

−1 S−1
A C23

X31 G D1 + T ∗

1 S
−1
A C22S

−1T1



 ,

with F = −S−1C∗

12 + (S
−1
A C22S

−1 + S−1C∗

22S
−1
A )T2,

G = −C∗

23S
−1
A + T ∗

1 (S
−1
A C22S

−1 + S−1C∗

22S
−1
A ),

X31 ∈ {X31 ∈ C(k−r−s)×r | M ∈ Ek}, D1 ∈ Ek−r−s, D2 ∈ Er, D ∈ En−k,

T1 ∈ Cs×(k−r−s), T2 ∈ Cs×r, T ∈ Ck×(n−k), N ∈ Ck×(n−k) are all arbitrary.

Proof: If the matrix equation (1) has a solution X ∈ En, then by Lemma 4 Ci1

(i = 1, 2, 3) and C3j (j = 2, 3) vanish and X has the form of (6). Hence



















X11 C12S
−1 C13

... X14

X21 S−1
A C22S

−1 S−1
A C23

... X24

X31 X32 X33
... X34

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X41 X42 X43
... X44



















def.
===







M
... N

. . . . . . . . . . .

N1
... X44






∈ En.
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By Theorem 1, M and

(9) X44 − T ∗MT
def.
=== D

are all Re-nnd where T is an arbitrary solution of the matrix equation

(10) (M +M∗)X = N∗

1 +N.

By Theorem 2,

(

X11 C12S
−1

X21 S−1
A C22S

−1

)

and

(

S−1
A C22S

−1 S−1
A C23

X32 X33

)

are all Re-nnd. Hence by Theorem 1, on the one hand, both S−1
A C22S

−1 and

(11) X11 − T ∗

2 S
−1
A C22S

−1T2
def.
=== D2

are all Re-nnd where T2 is an arbitrary solution of the matrix equation

(12) (S−1
A C22S

−1 + S−1C∗

22S
−1
A )X = S−1C∗

12 +X21.

On the other hand,

(13) X33 − T ∗

1 S
−1
A C22S

−1T1
def.
=== D1

is also Re-nnd where T1 is any solution of the matrix equation

(14) (S−1
A C22S

−1 + S−1C∗

22S
−1
A )X = S−1

A C23 +X32.

Consequently, by (10)–(14), X has the form of (8).

Conversely, assume Ci1 (i = 1, 2, 3) and C3j (j = 2, 3) vanish and S−1
A C22S

−1

is Re-nnd. Then by Theorem 1 and Theorem 2, there exists X31 ∈ C(k−r−s)×r

such that
(

M N

−N∗ + T ∗(M +M∗) D + T ∗MT

)

is Re-nnd. Hence the matrix X of type (8) is Re-nnd. It is easy to verify that the
matrix X of type (8) is a solution of the matrix equation (1). �
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