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The Lévy laplacian and differential

operators of 2-nd order in Hilbert spaces

Roman Lávička

Abstract. We shall show that every differential operator of 2-nd order in a real separable
Hilbert space can be decomposed into a regular and an irregular operator. Then we
shall characterize irregular operators and differential operators satisfying the maximum
principle. Results obtained for the Lévy laplacian in [3] will be generalized for irregular
differential operators satisfying the maximum principle.
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Classification: 31C45, 46C99, 47F05

0. Preliminaries

First of all, we shall introduce some notation and the Lévy laplacian will be
defined. Let H be a real separable Hilbert space with inner product ( . , . ). The
induced norm is denoted by

‖x‖ =
√

(x, x), x ∈ H.

A bilinear functional a : H × H → R is said to be bounded if

(1) ‖a‖ = sup
‖x‖=1,‖y‖=1

|a(x, y)| < +∞,

and symmetric if a(x, y) = a(y, x) for all x, y ∈ H. If A and B are Banach
spaces (we shall write B-space instead of Banach space), we denote by L(A,B)
the B-space of all bounded linear operators mapping A into B. Let S∗ denote the
adjoint operator to S ∈ L ≡ L(H,H). An operator S ∈ L is called self-adjoint,
if S∗ = S. We denote by N 2s the B-space of all symmetric bounded bilinear
functionals on H with the norm (1) and by Ls the B-space of all self-adjoint
operators on H endowed with the operator norm.

Remark. A mapping Φ, defined for each S ∈ Ls by

(2) Φ(S)(x, y) = (Sx, y), x, y ∈ H,
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is an isometric isomorphism Ls onto N 2s . We may identify elements of these
B-spaces.
Let x ∈ H. For r > 0 denote by B(x, r) the ball in H having its center at x

and its radius r, i.e.,

B(x, r) = {y ∈ H; ‖y − x‖ < r}.

Denote by Gx all real functionals defined on H having the Fréchet derivatives of
2-nd order at the point x. Let f ∈ Gx. Then the Fréchet derivative of 2-nd
order of the functional f at the point x which is denoted by f ′′(x) is an element
of N 2s . Let E = {en}∞n=1 be an orthonormal basis of H (in what follows we shall
write ON-basis instead of orthonormal basis). We define Dijf(x) = f

′′(x)(ei, ej),
i, j = 1, 2, 3, . . . and the Lévy laplacian of f at the point x by

LEf(x) = lim
n→∞

1

n

n
∑

i=1

Diif(x),

whenever the limit exists, as in [5].

Remark. If f ′′(x) ∈ L∞ ∩ Ls, then Diif(x) = (f
′′(x)ei, ei) → 0 and, conse-

quently, LEf(x) = 0.

If G ⊂ H is an open set, then we denote by C2(G) the set of all functionals
f : G→ R having continuous Fréchet derivatives of 2-nd order on G.

1. Regular and irregular operators

We shall show that every differential operator of 2-nd order can be decomposed
into a regular and an irregular part. First of all, we shall prove a lemma.

Lemma. Let a be a bounded bilinear functional on H and b(x) = a(x, x), x ∈ H.

Then for each x ∈ H

b′′(x)(h, k) = a(h, k) + a(k, h), h, k ∈ H

and, in particular, b′′(x) = 2a if a is symmetric.

Proof: It is easy to compute. �

Now we define differential operators which we are going to deal with.

Definition 1. Let ψ ∈ L(N 2s ,R). For each x ∈ H define

D
ψ
x f = ψ(f

′′(x)), f ∈ Gx.

(In what follows we shall write also D
ψf(x) instead of D

ψ
x f .) Then the family

D
ψ = {Dψ

x ; x ∈ H} is called a differential operator (of 2-nd order). Denote by
D the set of all such differential operators.
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Remark. If D ∈ D, then there is a unique ψ ∈ L(N 2s ,R) such that D = D
ψ.

This is a consequence of the previous lemma. IfDψ,Dϕ ∈ D, we define, of course,
D
ψ +D

ϕ =D
ψ+ϕ.

It is apparent that the description of differential operators is equivalent to
the description of the dual space L∗

s of Ls. We denote by L∞ the B-space of
all compact linear operators on H with the operator norm. Let L ∈ L∞ and
T = L∗L. It is well-known that there are an ON-basis E = {en}∞n=1 of H

consisting of eigenvectors of T and a sequence of non-negative numbers {µn}
such that

Tx =

∞
∑

n=1

µn(x, en)en, x ∈ H.

Furthermore, µn is an eigenvalue of T corresponding to the eigenvector en. Define

(3) ‖L‖1 =
∞
∑

n=1

(µn)
1

2 .

A compact operator L is said to be nuclear if ‖L‖1 < ∞. We denote by L1 the
B-space of all nuclear operators on H with the norm (3).
Notice that for every A ∈ L1 ∩ Ls there are an ON-basis E = {en}∞n=1 of H

and a sequence {λn} ∈ ℓ1, i.e.
∑∞
n=1 |λn| < +∞, such that

Ax =

∞
∑

n=1

λn(x, en)en, x ∈ H.

It is well-known that AB ∈ L1 if A ∈ L1 and B ∈ L, see [4, p. 121].
Let E = {en}∞n=1 be an ON-basis of H and L ∈ L1. Define the trace of L by

(4) tr(L) =
∞
∑

n=1

(Len, en).

The sum in (4) is absolutely convergent and independent of the choice of the
ON-basis E, as shown in [4, Theorem 8.1, p. 127].

Example 1. Now we describe a differential operator of the above type in R
m,

see Definition 1. Let H = R
m, E = {ei}

m
i=1 be the standard basis of R

m and

ψ ∈ L(N 2s ,R). Then there is a symmetric matrix A = [aij ]i,j=1,2,...,m such that

ψ(a) =

m
∑

i,j=1

aija(ei, ej), a ∈ N 2s .

Consequently,

D
ψf(x) =

m
∑

i,j=1

aijDijf(x) = tr(Af
′′(x))
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for each x ∈ H and f ∈ Gx. Denote by ∆ the Laplace operator, i.e.,

∆ =

m
∑

i=1

∂2

∂x2i
.

Then ∆ = D
tr.

Definition 2. Let ψ ∈ L∗
s . If there is an A ∈ L1 ∩ Ls such that

ψ(B) = tr(AB), B ∈ Ls,

then ψ is said to be regular. If ψ(B) = 0 for each B ∈ L∞ ∩ Ls, then ψ is said
to be irregular.

Theorem 1. For each ψ ∈ L∗
s, there are a unique regular functional ψr and

a unique irregular functional ψi such that ψ = ψr + ψi.

Proof: By the Hahn-Banach theorem there is a τ ∈ L∗
∞ such that τ = ψ on

L∞ ∩Ls. Moreover, for each τ ∈ L∗
∞ there exists a unique operator A ∈ L1 such

that ‖τ‖ = ‖A‖1 and
τ(E) = tr(AE), E ∈ L∞,

see [4, Theorem 12.3, p. 170]. Take such an A ∈ L1 and define B =
1
2 (A + A

∗),

C = 12 (A−A∗), ψr(D) = tr(BD), D ∈ Ls and ψi(D) = tr(CD)+ψ(D)−tr(AD),
D ∈ Ls.
Since B ∈ L1 ∩ Ls, ψr is regular. In order to prove that ψi is irregular it is
sufficient to show that

tr(CD) = 0, D ∈ L∞ ∩ Ls.

Let D ∈ L∞∩Ls. Then there are an ON-basis E = {en}∞n=1 of H and a sequence
of real numbers {λn} such that

Dx =

∞
∑

n=1

λn(x, en)en, x ∈ H.

Since C∗ = −C we have (Ch, h) = 0 for each h ∈ H. Trivially,

tr(CD) =

∞
∑

n=1

λn(Cen, en) = 0,

and the assertion is proved. Obviously, ψr + ψi = ψ. It only remains to show
uniqueness of such a decomposition. We prove that there is no non-trivial ψ ∈ L∗

s

which is both regular and irregular. Let A ∈ L1 ∩Ls satisfy that tr(AD) = 0 for
each D ∈ L∞ ∩Ls. Fix an h ∈ H, ‖h‖ = 1 and consider D ∈ L∞ ∩Ls defined by
Dk = (k, h)h, k ∈ H. By assumptions we get

(Ah, h) = tr(AD) = 0.

Since A is a self-adjoint operator we conclude A = 0. �
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Definition 3. Let ψ ∈ L(N 2s ,R). Then D
ψ is said to be a regular or irregular

operator if ψ is regular or irregular, respectively.

Theorem 2. Each differential operator can be uniquely written as a sum of

a regular and an irregular operators.

Proof: This follows directly from Theorem 1 and Remark following Definition 1.
�

Remark. Definition 1 is a special case of the definition of differential operator of
n-th order on functionals defined in a topological linear space in [1]. The concept
of regular functional introduced there is slightly different from that defined above.
In [1] a functional ψ ∈ L∗ is said to be regular provided ‖ψ‖ = ‖ψ|L∞‖, i.e.,

sup{|ψ(f)|; f ∈ L, ‖f‖ = 1} = sup{|ψ(f)|; f ∈ L∞, ‖f‖ = 1}.

A functional ψ ∈ L∗ was shown to be regular if and only if there was an A ∈ L1
such that

ψ(B) = tr(AB), B ∈ L.

Furthermore, it was proved that each ψ ∈ L∗ could be uniquely written as a sum
of a regular functional and a functional vanishing on L∞. A decomposition of
a differential operator, which is a consequence of the decomposition of ψ, is not,
however, unique in general.
J.L. Daleckij and S.V. Fomin developed the theory of regular differential op-

erators in [2]. They dealt with parabolic equation arising from these differential
operators there.
Now we give some examples of differential operators.

Example 2. Let D
ψ be a regular operator. Then there is an A ∈ L1 ∩ Ls such

that
ψ(B) = tr(AB), B ∈ Ls.

There exist an ON-basis E = {en}
∞
n=1 of H and a sequence {λn} ∈ ℓ1 such that

Ax =

∞
∑

n=1

λn(x, en)en, x ∈ H.

By easy computation we get for each x ∈ H and f ∈ Gx

D
ψf(x) = tr(Af ′′(x)) =

∞
∑

n=1

(Af ′′(x)en, en) =

=

∞
∑

n=1

(f ′′(x)en, Aen) =

∞
∑

n=1

λnDnnf(x).
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Example 3. By Example 1, in R
m each differential operator of 2-nd order of the

above type is regular and only trivial differential operator is irregular.

Example 4. The Lévy laplacian can be extended to a differential operator of the
above type and each such extension gives an irregular operator. In fact, define

τ(b) = lim
n→∞

1

n

n
∑

i=1

b(ei, ei)

for each b ∈ P = {c ∈ N 2s ; limn→∞
1
n

∑n
i=1 c(ei, ei) exists}. Obviously,

|τ(b)− τ(c)| ≤ ‖b− c‖

for each b, c ∈ P , which means that τ is a bounded linear functional on P . By
the Hahn-Banach theorem there is a ψ ∈ L(N 2s ,R) such that ψ|P = τ . Then

the differential operator D
ψ is an extension of LE and each such extension is

an irregular operator because τ = 0 on L∞ ∩ Ls by the remark at the end of
Preliminaries.

2. Characteristic properties of irregular operator

Theorem 3. Let D ∈ D and x ∈ H.

A. If D is an irregular operator, then the following assertions hold.

(1) For each u, v ∈ Gx, the formulaD(uv)(x) = u(x)Dv(x)+v(x)Du(x)
holds.

(2) Let u = (u1, . . . , um) have components from Gx and a real function
F defined on R

m have the second Fréchet derivative at u(x). Then
D(F ◦ u)(x) =

∑m
n=1 ∂nF (u(x))Dun(x).

B. If D is a differential operator satisfying the above condition (1) or the
condition (2) for each u ∈ Gx and F (y) = y2, y ∈ R, then D is an

irregular operator.

Proof: Let D = D
ψ be an irregular operator, x ∈ H and u, v ∈ Gx. Then it is

easy to show that

(uv)′′(x)(h, k) = v(x)u′′(x)(h, k) + v′(x)(h)u′(x)(k)+

+u′(x)(h)v′(x)(k) + u(x)v′′(x)(h, k), h, k ∈ H.

A linear operator S on H is said to be finite-dimensional if S(H) is a finite di-
mensional subspace of H. We denote by Lf the space of all finite-dimensional

operators on H. Obviously, Lf ⊂ L∞. Define t ∈ N 2s by

t(h, k) = u′(x)(h)v′(x)(k) + v′(x)(h)u′(x)(k), h, k ∈ H.
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The bilinear functional t ∈ N 2s is identified with an operator S ∈ Ls ∩ Lf with
dimS(H) ≤ 2. Recalling that ψ is irregular we have ψ(t) = 0 and

D
ψ(uv)(x) = ψ((uv)′′(x)) = ψ(u(x)v′′(x) + v(x)u′′(x)) =

= u(x)Dψv(x) + v(x)Dψu(x),

which completes the proof of (1).

Let u and F satisfy the assumptions of (2). A simple calculation shows that
for each h, k ∈ H

(F ◦u)′′(x)(h, k) =
m

∑

n=1

∂nF (u(x))u
′′
n(x)(h, k)+

m
∑

i,p=1

∂ipF (u(x))u
′
i(x)(h)u

′
p(x)(k).

Since the second sum of the above equality for a fixed x is a member of N 2s
identified with an operator of Ls ∩ Lf we conclude the proof of (2) as above. It
remains to prove the part B.

Let x ∈ H and D = D
ψ satisfy the assumptions of B. Let d ∈ H

∗, and put
e(y, z) = d(y)d(z), y, z ∈ H. Since (d2)′′(x) = 2e and d′′(x) = 0, we get

2ψ(e) =D
ψ(d2)(x) = 2d(x)Dψd(x) = 0.

Hence, ψ(e) = 0. If a, b ∈ H
∗ and c ∈ N 2s is defined by

(3) c(y, z) = a(y)b(z) + a(z)b(y), y, z ∈ H

we have ψ(c) = 0 for the following equality holds:

c(y, z) = (a+ b)(y)(a+ b)(z)− a(y)a(z)− b(y)b(z), y, z ∈ H.

Noting that each bilinear functional of N 2s which is identified with an operator of
Ls ∩Lf can be written as a finite sum of bilinear functionals of the type (3) and
using the density of Lf ∩ Ls in L∞ ∩ Ls with respect to the operator norm and
the continuity of ψ, we conclude that ψ is irregular. �

It is well-known that the Laplace operator in R
m is independent of the choice of

an ON-basis in R
m. We now show that the independence of a differential operator

of functionals of a certain class defined in the following definition on the choice of
an ON-basis in H is equivalent to the irregularity of the differential operator if H

is an infinite dimensional space.

Definition 4. We denote by F the set of all S ∈ Ls such that there are a real
number λ and a linear operator T ∈ Ls ∩ L∞ for which S = λI + T . Here I is
the identity operator on H. If a ∈ H define

Ωa = {f ∈ Ga; f
′′(a) ∈ F}.

If U is a unitary operator on H, i.e., U is a linear operator satisfying

(Ux,Uy) = (x, y), x, y ∈ H,

and an a ∈ H, then we define a rotation around the point a by

Ua(x) = a+ U(x− a), x ∈ H.
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Theorem 4. Let H be an infinite dimensional space and a ∈ H. If D =D
ψ ∈ D,

then the following statements are equivalent each to other.

(i) The differential operator D is irregular.

(ii) If S ∈ F , then ψ(U∗SU) = ψ(S) for each unitary operator U on H.

(iii) If f ∈ Ωa, then the following condition of invariance (CI) holds:
(CI) If U is a unitary operator on H, then D(f ◦ Ua)(a) = Df(a).

Proof: We now show that (i) implies (ii). Let S ∈ F . Then there are λ ∈ R and
T ∈ Ls ∩L∞ such that S = λI + T . Recalling that ψ is irregular if ψ(C) = 0 for
each C ∈ Ls ∩ L∞, we get for each unitary operator U that

ψ(U∗SU) = ψ(λI + U∗TU) = ψ(λI) = ψ(S)

because U∗U = I and U∗TU is a compact operator on H.
It is easy to show that for each f ∈ Ga and each unitary operator U on H the

equality
(f ◦ Ua)

′′(a) = U∗f ′′(a)U

holds and hence

(4) D
ψ(f ◦ Ua)(a) = ψ(U

∗f ′′(a)U).

By (4), (iii) follows from (ii). Now we prove that (ii) follows from (iii). Fix a linear
operator S ∈ F . Consider a functional f defined by

f(x) =
1

2
(Sx, x), x ∈ H.

Since f ′′(a) = S we have that f ∈ Ωa and according to (iii) and (4)

ψ(U∗SU) =D
ψ(f ◦ Ua)(a) = D

ψf(a) = ψ(S).

It only remains to prove that (ii) implies (i). Fix a linear functional ψ ∈ L∗
s

satisfying (ii). According to Theorem 1, there are a unique regular functional
ψr and a unique irregular functional ψi such that ψ = ψr + ψi. We shall show
that ψr ≡ 0. As we know there are an ON-basis E = {en}∞n=1 and a sequence

{λn} ∈ ℓ1 such that for each T ∈ Ls

(5) ψr(T ) =

∞
∑

n=1

λn(Ten, en).

By the hypothesis and the definition of an irregular operator we obtain for each
T ∈ Ls ∩ L∞ and unitary operator U on H

ψr(U
∗TU) = ψ(U∗TU) = ψ(T ) = ψr(T ).
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Now we show that {λn} is a constant sequence. Assume on the contrary that
λi 6= λj for some i, j. Defining

Tx = (x, ei)ei, x ∈ H,

and considering a unitary operator U on H such that Uej = ei, Uei = ej and
Uen = en for n 6= i, j we get

λi = ψr(T ) = ψr(U
∗TU) = λj ,

a contradiction. For µ = λ1 = λ2 = . . . we have ψr = µtr. For the first time
we shall use the assumption that H is an infinite dimensional space. Since every
constant infinite sequence of ℓ1 is trivial µ = 0 and the proof is complete. �

Let H = R
m, a ∈ H and D

ψ ∈ D. Then F = Ls, Ωa = Ga and ψ = ψr.
Notice that in this case we actually proved that if the condition (CI) holds for
each f ∈ Ga, then there is a µ ∈ R such that

ψ(A) = µtr(A), A ∈ Ls.

Since the trace tr satisfies (ii) in Theorem 4 we verified the following remark.

Remark. Let H = R
m, a ∈ H and D ∈ D. Then the condition (CI) holds for

each f ∈ Ga if and only if there is a µ ∈ R such that D = µ∆.

Remark. By the previous theorem, if a ∈ H and D
ψ is an irregular operator for

which ψ(I) = 1, then D
ψ restricted to Ωa coincides with the invariant Laplace

operator at the point a introduced in [7]. In the paper it is shown that

Ωa = {f ∈ Ga; f satisfies (CI)},

which means that Ωa is a set of all functionals f ∈ Ga the differential operator of
which is independent of the choice of an ON-basis.

3. Differential operators satisfying maximum principle

We now characterize differential operators satisfying the maximum principle
on the class of functionals defined below. In this paragraph G ⊂ H will be
a nonempty bounded open set unless otherwise specified.

Definition 5. We denote by Cb(G) the set of all functionals f : G → R which

are bounded and uniformly continuous on G. For each g ∈ Cb(G) define

‖g‖0 = sup
x∈G

|g(x)|.

Moreover, we denote by C2b (G) the set of all f ∈ Cb(G) for which the mapping

f ′′ : G→ N 2s

is bounded and uniformly continuous.
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Remark. The linear space Cb(G) with the norm ‖ ‖0 is a B-space because uniform
convergence preserves both boundedness and uniform continuity. If G ⊂ H and f
is a uniformly continuous functional on G, then there exists exactly one uniformly
continuous functional F on G such that F |G = f .

Example 5. Quadratic forms of L restricted to G belong to C2b (G). Let S ∈ L

and f(x) = (Sx, x), x ∈ G. For each x ∈ H

f ′(x)h = (Sx, h) + (S∗x, h), h ∈ H and f ′′(x) = S + S∗.

Then it is easy to verify that f , f ′ and f ′′ are bounded and uniformly continuous
on G.

Definition 6. A differential operator D ∈ D is said to have the property (MP)
on G if for every f ∈ C2b (G) with Df ≥ 0 on G we have

sup f(G) = sup f(∂G).

Remark. A functional f ∈ C2b (G) does not necessarily attain its maximum on G.
Consider e.g. a quadratic form

f(x) =

∞
∑

n=1

(

1−
1

n+ 1

)

x2n, x ∈ G = B(0, 1),

where E = {en}∞n=1 is an ON-basis of H and xn = (x, en) for n ∈ N and x ∈ H.
If a B ∈ Ls is positive (i.e., (Bh, h) ≥ 0 for each h ∈ H), we write B ≥ 0. For

each x0 ∈ H define

τx0(x) =
1

2
‖x− x0‖

2, x ∈ H.

Then τ ′′x0(x) = I for each x ∈ H.

Theorem 5. A differential operatorDψ ∈ D has the property (MP) on G if and
only if ψ satisfies both the following conditions:

(P1) ψ(I) > 0;
(P2) (B ∈ Ls, B ≥ 0)⇒ ψ(B) ≥ 0.

Proof: Firstly, we suppose that D
ψ have the property (MP) on G. Then we

notice that ψ(I) > 0. Indeed, if this were not this case, we would get a contradic-
tion by considering −τx0 on G for a point x0 ∈ G. Suppose now that the property
(P2) does not hold. Let B ∈ Ls satisfy ψ(B) < 0 and (Bh, h) ≥ 0 for each h ∈ H.
There is a c > 0 such that

−cψ(I)− ψ(B) > 0.
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Let x0 ∈ G. Define f(x) = −cτx0(x) −
1
2 (B(x − x0), x− x0), x ∈ G. We have

Df ≥ 0 on G and
0 = f(x0) = sup f(G) > sup f(∂G),

a contradiction. It remains to show the converse assertion.

This is analogous to the proof of the maximum principle for the Lévy laplacian
in [3]. Let ψ have both properties (P1) and (P2). Without loss of generality, we
may suppose that ψ(I) = 1. Fix an f ∈ C2b (G). We shall proceed in two steps.

(i) Suppose first that there exists an a > 0 such that Df ≥ a on G and

u0 = sup f(G) > sup f(∂G).

We shall deduce a contradiction. There is a sequence {zn} ⊂ G such that
limn→∞ f(zn) = u0. For each x ∈ H and F ⊂ H denote

d(x, F ) = inf{‖x− y‖; y ∈ F}.

Observe that d(zn, ∂G) does not approach zero as n → ∞. In fact, if this were
not the case there would be a sequence {yn} ⊂ ∂G such that

lim
n→∞

‖yn − zn‖ = 0

and therefore
lim
n→∞

f(yn) = u0

by the uniform continuity of f on G, which is a contradiction. Since d(zn, ∂G)
does not approach zero there exist δ1 > 0 and a subsequence {xn} of the sequence
{zn} such that d(xn, ∂G) > δ1 for all n ∈ N. The sequence {xn} can be chosen
so that for each n ∈ N

(1) f(xn) > u0 −
1

n
≥ f(x)−

1

n
, x ∈ G.

Using the uniform continuity of f ′′ on G we can fix a δ2 > 0 such that for all
x, y ∈ G, ‖x− y‖ < δ2,

(2) ‖f ′′(x)− f ′′(y)‖ = sup
‖h‖=1,‖k‖=1

|f ′′(x)(h, k)− f ′′(y)(h, k)| <
a

4
.

Put r = min(δ1, δ2) and fix m ∈ N such that

(3)
1

m
<
a

8
r2.

Since ψ(f ′′(xm)−
a
2 I) > 0 there is an h ∈ H such that ‖h‖ = 1 and

Dhhf(xm) = f
′′(xm)(h, h) >

a

2
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by the second property of ψ.
By (2), Dhhf(x) >

a
4 for each x ∈ I = {xm + th; t ∈ (−r, r)}. Now we define

w(x) = f(x)−
a

4
τxm
(x), x ∈ I.

Since Dhhw > 0 on I, w attains its maximum on I at a point x∗ ∈ {xm ± rh}.
By (1) and (3) we have

f(xm) = w(xm) ≤ w(x∗) = f(x∗)−
a

8
r2 < f(xm),

a contradiction.

(ii) Going back to the general case we suppose Df ≥ 0 on G. For a fixed δ > 0
consider the function v = vδ defined by

v(x) = f(x) + δτ0(x), x ∈ G.

Since Dv ≥ δ on G we get by (i)

sup v(G) = sup v(∂G).

Denote c = sup τ0(∂G) < +∞. Hence

sup f(G) ≤ sup v(G) = sup v(∂G) ≤ sup f(∂G) + δc.

Since δ is an arbitrary positive number we get sup f(G) ≤ sup f(∂G). The proof
is complete. �

We now consider a differential operatorD ∈ D having the property (MP) onG.
We shall prove several lemmas which allow us to establish the maximum principle
for a larger class of functionals.

Lemma. Assume that un ∈ C2b (G) and q ∈ Cb(G) such that un → 0 and Dun →
q uniformly on G, i.e., with respect to the norm ‖ ‖0. Then q ≡ 0.

Proof: It is the same as the proof of Theorem 3.1 in [3]. For the sake of
completeness we will reproduce it here. We show this assertion by contradiction.
Without loss of generality, we may suppose that D = D

ψ with ψ(I) = 1 and

there is a point x0 ∈ G such that q(x0) > 0. Denote c =
1
2q(x0). By continuity

of q, there is a δ > 0 such that q ≥ c on a ball B = B(x0, δ) ⊂ G. By hypotheses,
there is an m ∈ N such that for each n ≥ m we have

Dun ≥
c

2
on B and ‖un‖0 ≤

c

8
δ2.

Fix n ≥ m. Since D(un − c
2τx0) ≥ 0 on B we get, by Theorem 5,

un(x0) ≤ supun(∂B)−
c

4
δ2 ≤ −

c

8
δ2,

which is a contradiction. �
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Definition 7. We denote A(G) ≡ A(D;G) the set of all u ∈ Cb(G) for which
there are a sequence {un} ⊂ C2b (G) and a functional q ∈ Cb(G) such that both

un → u and Dun → q uniformly on G. We define D̄u = q.

Remark. By the previous lemma, for each u ∈ A(G), such a functional q is
uniquely determined and, moreover, it is clear that D̄ = D on C2b (G). There is

a question of relationship between D and D̄ on A(G) ∩ (C2(G) \ C2b (G)).

Example 6. If un ∈ A(G), un → u uniformly on G and D̄un = 0 on G, then
u ∈ A(G) and D̄u = 0 on G.

Theorem 6 (Maximum principle for D̄). If u ∈ A(G) and D̄u ≥ 0 on G, then
supu(G) = supu(∂G).

Proof: This follows from Theorem 5. We may assume that D = D
ψ with

ψ(I) = 1. Let u satisfy the assumptions of the theorem. There is a sequence
{un} ⊂ C2b (G) such that un → u and Dun → D̄u uniformly on G. Fix an ε > 0
and x0 ∈ G. By hypotheses, there is an m ∈ N such that for each n ≥ m

Dun ≥ −ε and ‖un − u‖0 ≤ ε.

Fix n ≥ m. Since D(un + ετx0) ≥ 0 we get

un(x0) ≤ supun(∂G) + ε sup τx0(∂G) ≤ supu(∂G) + ε(1 + sup τx0(∂G)).

Letting n→ +∞ and ε→ 0+, u(x0) ≤ supu(∂G). Since x0 is an arbitrary point
of G, we have

supu(G) ≤ supu(∂G).

The proof is complete. �

4. The Dirichlet and Poisson problems

In this paragraphG ⊂ H will be a nonempty bounded open set unless otherwise
specified and we shall consider an irregular differential operator D ∈ D having
the property (MP) on G, see Definition 6. According to Definition 7 we have
D̄ defined on A(G). We will solve the Dirichlet and Poisson problems for D̄

on a certain class of functionals defined in what follows by generalizing results
obtained for the Lévy laplacian in [3]. First of all, we shall show the following
lemma which is a generalization of the assertion (2) in Theorem 3 for an irregular
operator. Put N = {1, 2, 3, . . .} and N0 = {0, 1, 2, . . .}.

Lemma. Let p ∈ N, I ⊂ {1, . . . , p}, J = {1, . . . , p} \ I, F : Rp → R be a continu-

ous function such that ∂jF is a continuous function for each j ∈ J and si ∈ A(G)
for i = 1, . . . , p such that D̄si = 0 on G for each i ∈ I. Denote u = (s1, . . . , sp)
on G. Then F ◦ u ∈ A(G) and

D̄(F ◦ u) =
∑

j∈J

(∂jF ) ◦ uD̄sj on G.
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Proof: We shall prove only a special case of the lemma we need later on. The
proof of the general case is analogous. Assume that p = m+1 and I = {1, . . . ,m}.
Then there are sequences {Pn} ⊂ C∞(Rm+1) and {Qn} ⊂ C∞(Rm+1) such that
Pn → F and Qn → ∂m+1F uniformly on each compact set of R

m+1. Define for
each n ∈ N the function Fn : R

m+1 → R by

Fn(t1, . . . , tm+1) = Pn(t1, . . . , tm, 0) +

∫ tm+1

0
Qn(t1, . . . , tm, t) dt.

Obviously, ∂m+1Fn = Qn and hence Fn → F and ∂m+1Fn → ∂m+1F uniformly
on each compact set of R

m+1 as n → ∞. Since each si is an element of A(G),
there is a sequence

{sni }
∞
n=1 ⊂ C2b (G)

such that sni → si and Dsni → D̄si uniformly on G as n → ∞. Define for each
n ∈ N

un(x) = (s
n
1 (x), . . . , s

n
m(x), s

n
m+1(x)), x ∈ G.

Now we show that

(1) Fn ◦ un → F ◦ u and (∂m+1Fn) ◦ un → (∂m+1F ) ◦ u

uniformly on G as n→ ∞. We have to prove that Hn ◦ un → H ◦ u uniformly on
G if Hn → H uniformly on each compact set of R

m+1. We may write

Hn ◦ un −H ◦ u = Hn ◦ un −H ◦ un +H ◦ un −H ◦ u.

Since Hn → H uniformly on each compact set of R
m+1 and {un} is a uniformly

bounded sequence of functionals on G it is seen that Hn ◦ un − H ◦ un → 0
uniformly on G. In conclusion, H ◦ un → H ◦ u uniformly on G because un → u

uniformly on G and H is a uniformly continuous function on each compact set of
R
m+1.
Fix n ∈ N. According to (2) in Theorem 3 we have

D(Fn ◦ un) =
m

∑

i=1

(∂iFn) ◦ unDsni + (∂m+1Fn) ◦ unDsnm+1 on G.

Since for each i = 1, . . . ,m the function ∂iFn is bounded on each compact subset
of R

m+1 and D̄si = 0 on G we may assume that {s
n
i }
m
i=1 are, moreover, chosen

so that the absolute value of the first term on the right-hand side of the above
equality is less than 1n . Hence by (1) we get

Fn ◦ un → F ◦ u and D(Fn ◦ un)→ (∂m+1F ) ◦ uD̄sm+1

uniformly on G. Thus F ◦ u ∈ A(G) and D̄(F ◦ u) = (∂m+1F ) ◦ uD̄sm+1 on G.
�
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Definition 8. We denote by F(G) the set of all functionals f : G→ R for which

there are an m ∈ N0, a continuous function F : R
m+1 → R having continuous

partial derivative with respect to the last variable (i.e., ∂m+1F : R
m+1 → R is

a continuous function) and si ∈ A(G) satisfying D̄si = 0 on G for i = 1, 2, . . . ,m
such that

(2) f(x) = F (s1(x), . . . , sm(x), ‖x‖
2), x ∈ G.

If f ∈ F(G), then f is said to be a fundamental functional on G. Furthermore,
define

H(G) = {f ∈ A(G); D̄f = 0 on G}.

Remark. By the previous lemma and Definition 8, H(G) ⊂ F(G) ⊂ A(G). In
fact, if s ∈ H(G) and F (t1, t2) = t1, (t1, t2) ∈ R

2, then

s(x) = F (s(x), ‖x‖2), x ∈ G,

which means that s ∈ F(G). The second inclusion is a direct consequence of the
lemma.

Remark. In [3], f is said to be fundamental if F is, moreover, an element of
C2(Rm) in the above definition.

We will solve the Dirichlet and Poisson problems on sets defined as follows.

Definition 9. A bounded open set G ⊂ H is said to be fundamental if there is

a functional s ∈ A(G) such that

(3) D̄s = 0 on G and s(x) = ‖x‖2, x ∈ ∂G.

Examples of fundamental functionals and fundamental sets are given later on.

Remark. By the maximum principle for D̄ (see Theorem 6) for each fundamental
set G there exists exactly one s satisfying (3); such s is called the representation
of G.

Remark. For every M ⊂ H and a ∈ H define

Ma = {a+m; m ∈M}.

If G is a fundamental set and a ∈ H, then Ga is a fundamental set. In fact, if s
is the representation of G, then functional sa defined by

sa(x) = s(x− a) + 2(a, x)− ‖a‖2, x ∈ Ga

is the representation of Ga.
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Remark. In [3] it is shown that the regularity of G ⊂ R
m which is a necessary

and sufficient condition for the solvability of the classical Dirichlet problem is
equivalent to the fundamentality of G, i.e., the existence of a solution of the
following boundary value problem

∆u = 0 on G and u(x) = ‖x‖2, x ∈ ∂G.

Theorem 7. Let G ⊂ H be a fundamental set and f ∈ F(G).
Then there exists exactly one u ∈ F(G) such that

(DP) D̄u = 0 on G and u = f on ∂G,

and there exists exactly one v ∈ F(G) such that

(PP) D̄v = f on G and v = 0 on ∂G.

Remark. If for every f ∈ F(G) there is a solution of (DP), then G is fundamen-
tal. In fact, a solution of (DP) for f(x) = ‖x‖2, x ∈ G is the representation of G.
Consequently, the fundamentality of G is a necessary and sufficient condition for
the solvability of (DP) on F(G). (See Theorem 4.3 in [3].)

Proof: Recalling that F(G) ⊂ A(G) and using the maximum principle for D̄

on A(G) (see Theorem 6), we get the uniqueness of solutions of problems (DP)
and (PP).
We have to show the existence of solutions. Let s be the representation of G

and f be as in (2). Then

u(x) = F (s1(x), . . . , sm(x), s(x)), x ∈ G

is a solution of the problem (DP). In fact, by the previous lemma we have that
D̄u = 0 on G and, obviously, the boundary condition holds.
It only remains to solve the problem (PP). Let D =D

ψ and c = ψ(I). Define
a function H on R

m+2 by

H(t1, . . . , tm+2) = −
1

2c

∫ tm+1

tm+2

F (t1, . . . , tm, r) dr.

Then v(x) = H(s1(x), . . . , sm(x), s(x), ‖x‖
2), x ∈ G is a solution of the prob-

lem (PP). Trivially, v = 0 on ∂G. By the previous lemma, we get

D̄v(x) = 2c∂m+2H(s1(x), . . . , ‖x‖
2) = f(x), x ∈ G.

The proof is complete. �

The so-called simple functionals were introduced by G.E. Šilov in [6]. A.B. Min-
garelli and S. Wang developed Šilov’s ideas in [3].
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Definition 10. A functional s : G→ R is said to be simple if there are anm ∈ N,

a continuous function h : Rm → R and an orthonormal set {a1, . . . , am} ⊂ H such

that

(4) s(x) = h((a1, x), . . . , (am, x)), x ∈ G.

Denote by S(G) the set of all simple functionals on G. Furthermore, denote by
H the set of all functionals f : H → R such that f |G ∈ H(G) for each bounded
open set G ⊂ H.

Remark. If an n ∈ N, {b1, . . . , bn} ⊂ H (not necessarily orthonormal set) and
g : Rn → R is continuous, then the functional

(5) s(x) = g((b1, x), . . . , (bn, x)), x ∈ G,

is simple. In fact, there arem ∈ N, m ≤ n and an orthonormal set {a1, . . . , am} ⊂
H such that each bi can be expressed as a linear combination of a1, . . . , am, i.e.,
for i = 1, . . . , n there is a sequence {cij}

m
j=1 ⊂ R such that bi =

∑m
j=1 cijaj .

Define a linear function S : Rm → R
n by

S(t1, . . . , tm) = (

m
∑

j=1

c1jtj , . . . ,

m
∑

j=1

cnjtj)

and h = g ◦ S. Obviously, S((a1, x), . . . , (am, x)) = ((b1, x), . . . , (bn, x)), x ∈ H

and

s(x) = h((a1, x), . . . , (am, x)), x ∈ G,

which concludes the proof. Moreover, S(G) is an algebra because a sum and
a product of two functionals of S(G) are of the form (5).

Example 7. Let a ∈ H and t(x) = (a, x), x ∈ G. Then t ∈ C2b (G), t
′′ = 0 on

G and D̄t = Dt = 0 on G. Thus t ∈ H(G). Therefore, by the lemma at the
beginning of the paragraph, S(G) ⊂ H(G).

Example 8. Quadratic forms of compact operators restricted to G belong to
H(G). Let S ∈ L∞ and f(x) = (Sx, x), x ∈ G. Then f ∈ C2b (G),

f ′′(x) = S + S∗ ∈ L∞ ∩ Ls, x ∈ G.

Since D is irregular D̄f = Df = 0 on G.

Sets introduced in the following definition present examples of fundamental
sets. They were considered by G.E. Šilov in [6].
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Definition 11. A set G ⊂ H is said to be s-fundamental if there are an m ∈ N,

a continuous function h : Rm → R such that

{t ∈ R
m; h(t1, . . . , tm) >

m
∑

i=1

t2i }

is a nonempty bounded set of Rm and an orthornormal set {a1, . . . , am} ⊂ H such

that

(6) G = {x ∈ H; h((a1, x), . . . , (am, x)) > ‖x‖2}.

Remark. Every s-fundamental set is really fundamental. Let G be as in (6). We
shall show the boundedness of G. Since

g(t1, . . . , tm) = h(t1, . . . , tm)−
m

∑

i=1

t2i

is a continuous function on R
m and is positive on a bounded set, i.e., there is an

R > 0 such that
∑m
i=1 t

2
i ≤ R if g(t1, . . . , tm) > 0, there is a K > 0 such that

K ≥ g on R
m. Suppose that x ∈ G. Then

0 ≤ ‖x‖2 −
m

∑

i=1

|(ai, x)|
2 < g((a1, x), . . . , (am, x)).

Consequently,
∑m
i=1 |(ai, x)|

2 ≤ R and ‖x‖2 ≤ K + R. Hence G is bounded.

Obviously, s(x) = h((a1, x), . . . , (am, x)), x ∈ G is the representation of G.

Example 9. Each ball in H is s-fundamental. In fact, for each r > 0

B(0, r) = {x ∈ H; ‖x‖2 < r2}

is an s-fundamental set and it is obvious that if G is s-fundamental and a ∈ H,
then Ga is also s-fundamental.

Example 10. Let {λn} ⊂ (0, 1), λn → 1, r > 0 and E = {en}
∞
n=1 be an ON-

basis of H. For x ∈ H and n ∈ N put xn = (x, en). Then

G = {x ∈ H; r2 >

∞
∑

n=1

λnx
2
n}

is fundamental but not s-fundamental. In fact, G is bounded and

s(x) = r2 +

∞
∑

n=1

(1 − λn)x
2
n, x ∈ G
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is the representation of G because s is up to a constant a quadratic form of
a compact operator and hence s ∈ H(G), see Example 8. Let m ∈ N, h : Rm → R

be a continuous function, {a1, . . . , am} ⊂ H be an orthonormal set and

s(x) = h((a1, x), . . . , (am, x)), x ∈ G.

There is 0 6= x ∈ G such that (ai, x) = 0 for i = 1, . . . ,m. For such a point x we
get

∞
∑

n=1

(1 − λn)x
2
n = 0

and hence xn = 0 for n = 1, 2, 3 . . . , which is impossible. The set G is not
s-fundamental.
If K ⊂ H, then we denote by Cw(K) the set consisting of all continuous func-

tions f : (K,w)→ R where w is the weak topology on H. Let us emphasize that,
in the following theorem, G means the closure with respect to the norm topology.

Theorem 8. If G is an s-fundamental set, then G is a w-compact set. If

a bounded open set G ⊂ H is such that G is a w-compact set, then Cw(G) ⊂ H(G).
Moreover, Cw(H) ⊂ H.

Corollary. If G is a bounded convex open set, then Cw(G) ⊂ H(G).

Proof: Assume that G is as in (6), i.e.,

G = {x ∈ H; h(x1, . . . , xm) > ‖x‖2}

where xi = (ai, x) for each x ∈ H and i = 1, . . . ,m. Denote

Q = {t ∈ R
m; there is a point x ∈ G such that t = (x1, . . . , xm)}.

Then we prove that

G = {x ∈ H; (x1, . . . , xm) ∈ Q and h(x1, . . . , xm) ≥ ‖x‖2}.

Since {a1, . . . , am} ⊂ H is an orthonormal set there is an ON-basis E = {en}∞n=1
of H such that ai = ei for i = 1, . . . ,m. We write xi = (x, ei) for each x ∈ H

and i ∈ N. Assume that a point x ∈ H is an element of the set on the right-hand
side. If there is a number i ∈ N, i > m such that xi 6= 0, then for each p ∈ N

xp = x − xi

p ei ∈ G and xp → x, which implies that x ∈ G. If this is not the case

and we assume that h(x1, . . . , xm) = ‖x‖2, there is a sequence {yp}∞p=1 ⊂ G such

that ypi → xi for each i = 1, 2, 3, . . . ,m as p → ∞ and we may argue as follows.
For each p ∈ N we have

∞
∑

i=m+1

(y
p
i )
2 < h(y

p
1, . . . , y

p
m)−

m
∑

i=1

(y
p
i )
2.



134 R.Lávička

Since the right-hand term tends to zero as p → +∞ we have that yp → x and
x ∈ G. The converse inclusion holds trivially. Now we are going to show that
G is a w-compact set. Since G is a bounded set we must prove only that G is
a w-closed set. Obviously, the functional

s(x) = h(x1, . . . , xm), x ∈ H,

belongs to Cw(H). Then this is an immediate consequence of the equality

G =

∞
⋂

n=1

{x ∈ H; h(x1, . . . , xm) ≥
n

∑

i=1

x2i } ∩ {x ∈ H; (x1, . . . , xm) ∈ Q}

because each set on the right-hand side is w-closed.
LetG ⊂ H be a bounded open set such thatG is a w-compact set. As G.E. Šilov

in [6] we prove that S(G) is a dense subset of Cw(G) with respect to the supremum
norm ‖ ‖0. By the remark following Definition 10, S(G) is an algebra containing
all constant functionals on G contained in Cw(G). Since the restriction of H

∗ to
G is contained in S(G), S(G) separates points of G, i.e., for each two different
points x, y ∈ G there is an f ∈ S(G) such that f(x) 6= f(y). Now the assertion
follows by the Stone-Weierstrass approximation theorem. The remainder of the
assertion follows directly from the definition A(G) and D̄ (see Definition 7).
It only remains to verify that Cw(H) ⊂ H. Let G1 and G2 be bounded open

subsets of H, G1 ⊂ G2 and f ∈ H(G2). Then we get that

f |G1 ∈ H(G1),

see Definition 7. Consequently, Cw(H) ⊂ H because every bounded set is con-
tained in a ball.

�

Example 11. Obviously, if s ∈ Cw(H) and G = {x ∈ H; s(x) > ‖x‖2} is
a nonempty bounded set, then G is fundamental.

Remark. At the end of the second paragraph we mentioned that the invariant
Laplace operator at a point a ∈ H coincides up to a positive multiple with the
irregular operator D restricted to Ωa. Moreover, if G ⊂ H is a bounded open
set, then V.Ja. Sikirjavyj proved the maximum principle for the invariant Laplace
operator on

Ωb(G) = {f : G→ R; f is bounded and continuous on G, f ∈ Ωa∀a ∈ G}.

Because of the maximum principle we may extend the invariant Laplace operator
and solve the Dirichlet and Poisson problems for the extension just like in the
fourth and this paragraphs we have done for D|C2

b
(G) (see [8]).
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