
Commentationes Mathematicae Universitatis Carolinae

Marian Turzański
On the selector of twin functions

Commentationes Mathematicae Universitatis Carolinae, Vol. 39 (1998), No. 2, 303--307

Persistent URL: http://dml.cz/dmlcz/119007

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/119007
http://project.dml.cz


Comment.Math.Univ.Carolin. 39,2 (1998)303–307 303

On the selector of twin functions
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Abstract. A theorem is proved which could be considered as a bridge between the com-
binatorics which have a beginning in the dyadic spaces theory and the partition calculus.
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The aim of this paper is to prove a pure set-theoretical theorem which could be
considered as a bridge between the combinatorics which have a beginning in the
dyadic spaces theory (see [1]) and partition calculus (see [3]). As an application of
this theorem, the proofs of Erdös-Rado Theorem [2], Strong Sequences Theorem
[5] and the Bolzano-Weierstrass Method [4] will be given.

The Erdös-Rado Theorem has been used several times for proving important
theorems (for more information see [3]). The same we can say about the role of
the strong sequences theorem in dyadic spaces theory (see [1], [6]).

Main theorem

Let X be a set and φ be an ordinal.

A pair (F, G) of two multifunctions

G : φ −→ 2X

F : X −→ 2φ

such that

(∗) for any conditions β < α < φ there exists b ∈ G(β) such that α ∈ F (b)

is said to be twin functions.

A map g : K −→ X, K ⊂ φ, is said to be a selector of twin functions if

(1) for any β ∈ K there is g(β) ∈ G(β),
(2) for any α, β ∈ K; β < α < φ implies α ∈ F (g(β)).

Fix twin functions (F, G). The main result of this note is the following:
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Theorem. If φ = (κλ)+ and card(G(α)) ≤ κ for each α < φ then there is a

selector g : K −→ X of the twin functions such that card(K) ≥ λ+.

A selector g : K −→ X is said to be transfixed if there is an α > supK with

α ∈
⋂

{F (g(β)) : β ∈ K}.

Denote by α(g) the least ordinal of this property.
For a given λ let us denote by λ∗, λ < λ∗ ≤ φ, the ordinal having the following

property:

(I) if g : K −→ X is a transfixed selector such that K ⊂ λ∗, card(K) ≤ λ,
then α(g) < λ∗.

Lemma 1. If λ∗ < φ, then there is a selector g : K −→ X of the twin functions

such that card(K) ≥ λ+.

Proof: Consider the family K of all transfixed selectors g : K −→ X such that

λ∗ ∈
⋂

{F (g(β)) : β ∈ K, K ⊂ λ∗, card(K) ≤ λ}

with the partial ordering

g1 ≤ g2 if dom g1 ⊂ dom g2 and g2 | dom g1 = g1.

The set K is non-empty because for each α < λ∗ in view of (∗) we have λ∗ ∈
F (G(α)). Hence there exists a ∈ G(α) such that λ∗ ∈ F (a). It is clear that the
map g : {α} −→ a, g(α) = a, belongs to K.
Let us observe that there are no maximal elements in K. To see this, fix g ∈ K,

g : K −→ X and define g1 : K1 −→ X with K1 = K ∪ {α(g)}, g1(β) = g(β)
for β ∈ K and g1(α(g)) = x, where according to the condition (∗) one can find
x ∈ G(α(g)) such that λ∗ ∈ F (x). Since α(g) < λ∗, the map g1 : K −→ X is well
defined, g1 ∈ K, g1 6= g and g ≤ g1.
Now let L ⊂ K be a chain. Denote by gL : KL −→ X a selector such that

KL =
⋃
{dom g : g ∈ L} and gL | dom g = g. Observe that if card(L) ≤ λ, then

gL ∈ K. Since there are no maximal elements in K, by the Zorn Lemma there
is a chain L ⊂ K such that λ+ ≤ card(L). It is clear that gL is a selector with
λ+ ≤ card(dom gL). �

Lemma 2. If card(G(α)) ≤ κ, then for each λ such that (κλ)+ ≤ φ we have

λ∗ < φ.

Proof: Let us observe that if (G, F ) are twin functions, then for each κ and λ

such that (κλ)+ ≤ φ, the system (G, F ), for which we take φ = (κλ)+, is a system
of twin functions.
Consider the setM of all transfixed selectors. By induction we shall define an

increasing sequence of ordinals {λα : α < λ+} satisfying the following conditions:

1o λ0 = λ,
2o if α is a limit ordinal then λα = sup{λβ : β < α},
3o if α = β + 1 then λα = sup{α(g) : g ∈ M, dom g ⊂ λβ , card(dom g) ≤

λ} + 1.
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Let us put λ∗ = sup{λα : α < λ+}. To see that λ∗ < (κλ)+, let us observe that

if λβ < (κλ)+ then the set

Mβ = {g ∈ M : dom g ⊂ λβ , card(g) ≤ λ}

has cardinality less or equal to κλ. Therefore λβ+1 < (κλ)+.
Now let us verify that if g ∈ M, card(dom g) ≤ λ and dom g ⊂ λ∗, then

α(g) < λ∗. Indeed, if card(dom g) ≤ λ, dom g ⊂ λ∗, then there is β < λ+ such
that dom g ⊂ λβ . By our construction we have α < λβ+1 < λ∗. �

The Theorem is an easy corollary of Lemmas 1 and 2.

Proof of the Theorem: From Lemma 2 it follows that λ∗ < (κλ)+. Hence,
by Lemma 1, there exists a selector g : K −→ X of the twin functions such that
card(K) ≥ λ+. �

Applications

We shall prove the following theorem of P. Erdös and R. Rado [2]. By [X ]2

denote the family of all exactly two points subsets of X .

Theorem (Erdös-Rado [2]). Suppose λ is an infinite cardinal number and F is

a partition of [X ]2 of cardinality not greater than λ. If the cardinality of the set

X is greater than 2λ, then there exists a subset Γ ⊂ X of cardinality greater than

λ such that the family [Γ]2 is contained in some element of F .

Proof: Order well the elements of F into the size λ, i.e. F = {Fβ : β < λ}.

Order well the set X into the size (2λ)+, i.e. X = {α : α < (2λ)+}. For each

α < (2λ)+ let Fγ(α) = {β : {α, β} ∈ Fγ}. Let Z = {{Fγ(α)} : α < (2λ)+ and
γ < λ}.
Let us define the functions

G : (2λ)+ −→ 2Z ; α 7−→ {{Fγ(α)} : γ < λ}

and
F : Z −→ 2(2

λ)+ : {Fγ(α)} 7−→ Fγ(α).

We shall show that (F, G) are twin functions. For this purpose, take β < α,

G(β) = {{Fγ} : γ < λ} and
⋃

{Fγ(β) : {Fγ(β)} ∈ G(β)} = (2λ)+ \ {β}.

Hence we have α ∈ Fγ(β) = F ({Fγ(β)}) for some γ < λ. Hence, by the Theorem

there exists a selector g : K −→ Z such that λ+ ≤ card(K). From this it follows
that there exist γ < λ and Γ ⊂ K, card(Γ) = λ+ such that g(β) = {Fγ(β)} for
each β ∈ Γ. Hence for each α and β from Γ, the condition β < α implies that
α ∈ Fγ(β). This means that for each α, β from Γ we have {α, β} ∈ Fγ . Hence

[Γ]2 ⊂ Fγ . �

Let X be a set. Let r ⊂ [X ]<ω × [X ]<ω. Let Sφ be a finite subset of X and
Hφ ⊂ X for φ < α.
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Definition. A sequence (Sφ, Hφ);φ < α is called a strong sequence if

1o for each T, S ∈ [Sφ ∪ Hφ]
<ω there is TrS,

2o for each β > φ there exist T, S ∈ [Sβ ∪ Hφ]
<ω such that ∼ (TrS).

Theorem (On strong sequences [1], [5], [6]). Let X be a set and r be a relation

on [X ]<ω. Let (Sφ, Hφ);φ < (κλ)+ be a strong sequence such that card(Hφ) ≤ κ

for each φ < (κλ)+. Then there exists a strong sequence (Sφ, Tφ); φ < λ+, where

card(Tφ) < ω for each φ < λ+.

Proof: For each Hφ let

G(φ) = {T : T ⊂ Hφ, card(T ) < ω

and there exists β > φ such that ∼ (TrSβ)}.

Let X = {T : T ∈ G(φ) for some φ}. Let us define the functions:

G : (κλ)+ −→ 2X : φ 7−→ G(φ)

and
F : X −→ 2(κ

λ)+ : T 7−→ {β : ∼ (TrSβ)}.

We shall show that (F, G) are twin functions. Let β < α < (κλ)+, then there
exists T ∈ G(β) such that ∼ (TrSα). Hence α ∈ F (T ). By the theorem there
exists a selector g : K −→ X , λ+ ≤ card(K) such that

1o for each β ∈ K we have g(β) ∈ G(β),
2o for each α, β ∈ K; β < α implies α ∈ F (g(β)).

By 1o we have that g(β) ∈ [Hβ ]
<ω . By 2o we have that for α > β, ∼ (Sαrg(β)).

Hence (Sα, g(α));α ∈ K is a strong sequence. �

In [4] the following theorem has been proved.

Theorem (The Bolzano-Weierstrass Method). Suppose λ and κ are cardinal

numbers such that κ > 1 and λ is infinite. Assume that Y = {yα : α < (κλ)+} is

a set of different indexed points. If for any α < (κλ)+ the family

Fyα = {Fyα(β) : β < κ}

consists of pairwise disjoint subsets of X such that

(∗)
⋃

Fyα ∪ {yα} ⊂
⋂

{
⋃

Fyγ : γ < α},

then there exist a function f : λ+ −→ κ and an indexed subset {pγ : γ < λ+} ⊂ Y

such that any condition β < τ < λ+ implies pτ ∈ Fpβ
(f(β)).

Proof: Let us define the set

X = {Fyα(β) : α < (κλ)+ and β < κ}.
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Let G : (κλ)+ −→ 2X : α 7−→ {Fγ(α) : γ < κ} and let F : X −→ 2(κ
λ)+ :

Fyα(β) 7−→ {γ : yγ ∈ Fyγ (β)}.
We shall show that (F, G) are twin functions. By (∗) we have that for each β < α,
yα ∈

⋃
Fyβ
. Hence yα ∈ Fyβ

(γ) for some γ < κ. Then α ∈ F (Fyβ
(γ)). We have

card(G(α)) ≤ κ for each α < (κλ)+. Then, by the theorem, there exists a selector
g : K −→ X , λ+ ≤ card(K) such that

1o for each β ∈ K there is g(β) ∈ G(β)

and

2o for each α, β ∈ K the condition β < α implies α ∈ F (g(β)).

From this it follows that

for each α ∈ K, α ∈
⋂

F (g(β)), where β ∈ K, β < α.

The selector g : K −→ X and any increasing map h from λ+ into K define a
map f : λ+ −→ κ in the following way: f(β) = γ if g(h(β)) = Fyh(β)

(γ) and a set

{pγ : γ < λ+, where pγ = yh(γ)}. �
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[6] Turzański M., Cantor cubes: chain conditions, Prace Naukowe Uniwersytetu Sla̧skiego w
Katowicach nr 1612, 1996.
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