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The existence of initially ω1-compact group topologies

on free Abelian groups is independent of ZFC

Artur Hideyuki Tomita

Abstract. It was known that free Abelian groups do not admit a Hausdorff compact
group topology. Tkachenko showed in 1990 that, under CH, a free Abelian group of size
c admits a Hausdorff countably compact group topology.
We show that no Hausdorff group topology on a free Abelian group makes its ω-th

power countably compact. In particular, a free Abelian group does not admit a Hausdorff
p-compact nor a sequentially compact group topology. Under CH, we show that a free
Abelian group does not admit a Hausdorff initially ω1-compact group topology. We also
show that the existence of such a group topology is independent of c= ℵ2.

Keywords: free Abelian group, countable compactness, products, initially ω1-compact,
Martin’s Axiom

Classification: 54H11, 22B99, 54D30

1. Introduction

Every topological space in this work is assumed to be infinite and Tychonoff.
All the basic definitions will be given later in this section.

1.1 Motivation. It has been known long ago that it is impossible to introduce a
compact group topology on any free Abelian group, but there are many different
ways to endow such groups with pseudocompact group topologies (W.W. Com-
fort, D. Remus, D. Shakmatov, D. Dikranjan and M. Tkachenko made important
contributions to the subject, see [3], [4], [11]). It is also known that under CH the
free Abelian group of size c admits a countably compact group topology ([11]).
The later result gave rise to the problem whether there exists in ZFC a countably
compact group topology on a free Abelian group ([2]). This problem still remains
open.
In this paper we deal with two natural properties between countable compact-

ness and compactness. First, we show that there is no group topology on a free
Abelian group which makes the ω-th power of the group countably compact (cor-
recting one of the statements made by M. Tkachenko in [11]). Then we prove the
statement formulated in the title.

This work has been partially supported by the Conselho Nacional de Pesquisa of Brazil -
CNPq and University of São Paulo - São Paulo, Brazil.
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We show that there exists a model of c = ℵ2 in which every free Abelian group
does not admit an initially ω1-compact group topology. We show under MA(σ-
centered)+ c = ℵ2 the existence of an initially ω1-compact group topology on the
free Abelian group of size c.

These results were obtained while I was a Ph.D student at York University
([15]). I thank my supervisor, Prof. Stephen Watson, for his guidance and en-
couragement during those years.

1.2 Basics. We will denote by N the set of all positive integers and T ⊆ R2

the unitary circle group with the subspace metric topology, but we will use the
additive notation rather than the multiplicative.
Given a set I and a cardinal λ, define [κ ]λ = {A ⊆ I : |A| = λ}. Similarly,

define [κ ]<λ = {A ⊆ I : |A| < λ}.
If α is an ordinal, x ∈ T α and a ∈ T , then x∧a denotes the function x∪{〈α, a〉}.

Definition 1. An infinite subset A of a topological space X has a complete
accumulation point if there exists x ∈ X such that |A| = |A ∩ U | for every
neighbourhood U of x.

Definition 2. A space X is initially ω1-compact if every open cover of X of size
at most ℵ1 has a finite subcover.

We will use the following equivalence: a space is initially ω1-compact if and only
if every infinite subset A of cardinality at most ℵ1 has a complete accumulation
point.

Definition 3. Let p be a free ultrafilter on ω. A point x ∈ X is a p-limit of a
sequence {xn : n ∈ ω} in X if {n ∈ ω : xn ∈ U} ∈ p for each neighbourhood U
of x. We then write x = p-lim{xn : n ∈ ω}.

Definition 4. Let p be a free ultrafilter on ω. A topological spaceX is p-compact
if every sequence in X has a p-limit.

Every accumulation point of a sequence in X is a p-limit for some free ultrafil-
ter p. Every p-compact space is countably compact and the product of p-compact
spaces is p-compact. All powers of a space X are countably compact if and only
if there exists a free ultrafilter p on ω such that X is p-compact (see [16]).
By abuse of terminology, “countably compact free Abelian group” will be a

shortening for a “free Abelian group endowed with a countably compact group
topology”. Similarly, we will use “sequentially compact free Abelian group”,
“compact free Abelian group” and so on.

Definition 5. A partial order P is σ-centered if P can be represented as a union
P =

⋃

n∈ω Pn with each Pn centered (that is, every finite subset of Pn has a
common extension in Pn).



On initially ω1-compact free abelian groups 403

Definition 6. TheMartin’s Axiom for σ-centered partial orders,MA(σ-centered),
is the following statement: If P is σ-centered, κ < c and {Dξ : ξ < κ} is a family
of dense subsets of P, then there exists a filter G in P such that G ∩ Dξ 6= ∅ for
each ξ < κ.

We recall that MA(σ-centered) is a weaker version of Martin’s Axiom [18].

2. Free abelian groups and sequential compactness

We will first show that every sequentially compact free Abelian group does not
contain a proper open subgroup. We will then show that a free Abelian group
does not admit a sequentially compact group topology.

Theorem 7. Suppose that a free Abelian group G endowed with a group topo-
logy contains a proper open subgroup. Then G is not sequentially compact.

Proof: Let H be a proper open subgroup of G and let x ∈ G \ H .

Claim 1. There exists a prime p such that pkx /∈ H for each k ∈ N.

Proof of Claim 1: If {mx : m ∈ N} ∩ H 6= {0}, let n be the smallest positive
integer such that nx ∈ H . Fix a prime p such that p does not divide n.
Assume that there exists k ∈ N such that pkx ∈ H . Let a, b ∈ Z be such that

apk + bn = 1. Then x = apkx+ bnx ∈ H , which is a contradiction.
If {nx : n ∈ N} ∩ H = {0}, then the claim is valid for any prime p. �

Let p be as in Claim 1.

Claim 2. Suppose that {kn : n ∈ ω} is a strictly increasing sequence in N such

that the sequence {pknx : n ∈ ω} converges. Then this sequence must converge
to 0.

Proof of Claim 2: Suppose that {pknx : n ∈ ω} converges to y ∈ G. Let

{yα : α ∈ I} be a set of free generators for G and let y =
∑l

i=1 aiyαi , where

each each ai is an integer. Let n0 ∈ N be such that pkn0 > |ai| for every i ∈

{1, . . . , l}. By sequential compactness of G, the sequence {pkn−kn0x : n > n0}

has a subsequence {pknj
−kn0x : j ≥ 1} converging to a point z ∈ G.

Clearly {pknj x : j ≥ 1} = {pkn0 (p
knj

−kn0 )x : j ≥ 1} converges to pkn0 z.

Hence, by the uniqueness of the limit, pkn0z = y. Thus, for each i ∈ {1, .., l},

pkn0 divides ai. Hence ai = 0 for each i ∈ {1, .., l}. Therefore, y = 0. �

It follows from Claim 1 and Claim 2 that {pnx : x ∈ ω} does not have a
convergent subsequence. Thus G is not sequentially compact. �

We will show now that for each cardinal κ, every infinite sequentially compact
subgroup of T κ is not free Abelian. I thank Prof. Comfort for pointing out to
me that this implies that there are no infinite sequentially compact free Abelian
groups.
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Theorem 8. Let G be an infinite sequentially compact group. Then G is not
free Abelian.

Proof: Every countably compact Abelian group can be embedded into T κ as
a topological subgroup for a sufficiently large cardinal κ (see [1]). Therefore, we
can assume that G is a subgroup of T κ.
Suppose by contradiction that G is free Abelian. We will denote by πα the

projection of G on the α-th coordinate. Since G is infinite, we can fix β < κ such
that πβ(G) is not trivial, i.e. contains at least two points.

Claim 3. There exists x ∈ G such that {πβ(nx) : n ∈ Z} = {nx(β) : n ∈ Z} is
a non-trivial finite group.

Proof of Claim 3: Let y ∈ G be such that y(β) 6= 0. If the subgroup of T
generated by y(β) is finite, one can simply take x = y. Otherwise, the subgroup
generated by y(β) is dense in T . By countable compactness of G, πβ(G) = T . Fix
a non-zero element a ∈ T of finite order and choose x ∈ G such that πβ(x) = a.

�

Let x ∈ G be as in Claim 3, and let K be the subgroup of T generated by
x(β). Since K is a closed subgroup of T and πβ is a continuous homomorphism,

H = π−1
β
(K) is a closed subgroup of G, hence a sequentially compact free Abelian

group. Furthermore, H0 = π−1
β

{0} is an open subgroup of H . The existence of

such H and H0 contradicts Theorem 7, which completes the proof. �

The above Claim 3 implies the following result.

Corollary 9. Let G be an infinite countably compact Abelian group. Then there
exists a non-trivial closed subgroup H of G such that H contains a proper open
subgroup.

This corollary will be used to generalize Theorem 8.

3. The ω-th power of free Abelian groups and countable compactness

S. Watson pointed out that the proof of Theorem 8 does not rely strongly on
sequential compactness. He suggested that sequential compactness of G could be
replaced by a weaker condition, such as the square of G being countably compact.
In the case of sequential compactness, it was essential to use the fact that the

limit of a convergent sequence is unique. It turns out that we can use a similar
argument if the ω-th power of a topological group is countably compact. We will
prove a slightly more general result which will include certain semigroups.

Theorem 10. Let G be a non-trivial Abelian semigroup. If G has the neutral
element, denote it by 0. Suppose that G is endowed with a semigroup topology
which satisfies the following conditions:

(1) G is torsion free, that is, for each x ∈ G \ {0}, nx 6= mx whenever m and
n are distinct non-negative integers;
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(2) for every x 6= 0, there exist infinitely many primes p such that pn ∤ x for
some n ∈ N (that is, pny 6= x for each y ∈ G);

(3) there are x ∈ G \ {0}, A ∈ [ω ]ω and an enumeration p1, p2, . . . of all but

finitely many prime numbers such that 0 /∈ {(p1 . . . pn)nx : n ∈ A}.

Then Gω is not countably compact.

Proof: Suppose by contradiction that Gω is countably compact. Fix x ∈ G,

A ⊆ ω and p1, p2, . . . satisfying (3). Define {~xn : n ∈ A} ⊆ Gω\{0} as follows:

~xn(m) =

{

(p1...pn)n

m x if m divides (p1 . . . pn)
n,

x otherwise.

SinceGω is countably compact, the sequence {~xn : n ∈ A} has an accumulation
point ~x ∈ Gω .
By (3), ~x(1) 6= 0. We will show that this leads to a contradiction. By (2), there

exist a prime p ∈ {p1, p2, . . . } and k ∈ N such that pk ∤ ~x(1). Put m∗ = pk and
fix a free ultrafilter U on A such that ~x is a U-limit of {~xn : n ∈ A}. Then

(∗) for each i ∈ ω \ {0}, ~x(i) is a U-limit of {~xn(i) : n ∈ A}.

Note that by definition, {~xn(1) : n ∈ A} = {(p1 . . . pn)
nx : n ∈ A}. Let

n∗ ∈ ω be such that p ∈ {p1, . . . , pn∗} and m∗ < n∗. By definition,

{~xn(m
∗) : n ∈ A, n > n∗} =

{ (p1 . . . pn)
n

m∗ : n ∈ A, n > n∗
}

.

Therefore, there are only finitely many n ∈ A with m∗~xn(m
∗) 6= (p1 . . . pn)

nx.
Thus, by (∗), the points ~x(1) and m∗~x(m∗) are U-limits of {(p1 . . . pn)

nx : n ∈
A}. Since the space X is Hausdorff, we conclude that ~x(1) = m∗~x(m∗). This

contradicts the equality m∗ = pk. �

Corollary 11. Let S be a topological semigroup without a neutral element.
Suppose that the conditions (1) and (2) of Theorem 10 are satisfied. Then Sω is

not countably compact.

Proof: Note that the condition (3) of Theorem 10 is trivially satisfied for a
semigroup without the neutral element. �

Corollary 12. Let S be a subsemigroup of a free Abelian group and suppose
that S does not have the neutral element. If S is endowed with a semigroup
topology, then Sω is not countably compact.

Proof: It suffices to note that a subsemigroup of a free Abelian group satisfies
conditions (1) and (2) of Theorem 10. �
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Theorem 13. Let S be a topological semigroup satisfying the conditions (1) and
(2) of Theorem 10. Suppose also that S has no non-trivial convergent sequences.
Then Sω is not countably compact.

Proof: Let x be any element ofG which is not the neutral element. Let p1, p2, . . .
be an enumeration of all prime numbers. By (1), X = {(p1 . . . pn)

nx : n ∈ ω\{0}}
is a sequence whose elements are pairwise distinct. By hypothesis, X does not

converge. Therefore, there exists A ∈ [ω ]ω such that 0 /∈ {(p1 . . . pn)nx : n ∈ A}.
Thus, the condition (3) of Theorem 10 holds. �

Corollary 14. Let S be a subsemigroup of a free Abelian group. Suppose that
S is endowed with a semigroup topology in which S has no non-trivial convergent
sequences. Then Sω is not countably compact.

Corollary 15. Suppose that a topological Abelian group G has no non-trivial
convergent sequences. If G is algebraically free and S ⊆ G is a subsemigroup of
G endowed with the subspace topology, then Sω is not countably compact.

Proposition 16. Let G be a non-trivial Abelian semigroup with the neutral
element 0. Suppose that G is endowed with a semigroup topology which contains
a proper open subgroup. If conditions (1) and (2) of Theorem 10 are satisfied,
then Gω is not countably compact.

Proof: It suffices to show that condition (3) of Theorem 10 is satisfied. Let H
be a proper open subgroup of G and let x ∈ G \ H .

Claim 4. There exists k ∈ ω \ {0} such that {mx : (m, k) = 1∧m ≥ 2}∩H = ∅,
where (m, k) = 1 means that m and k do not have common prime divisors.

Proof of Claim 4: If {nx : n ∈ ω} ∩ H 6= {0}, let k be the smallest positive
integer such that kx ∈ H . Suppose that there existsm ∈ ω\2 such that (m, k) = 1
and mx ∈ H . Then one can find a, b ∈ Z such that x = amx + bkx ∈ H ,
a contradiction.
If {nx : n ∈ ω} ∩ H = {0}, then the Claim is valid for any k ≥ 1. �

Since H is an open neighbourhood of 0, by Claim 4, the neutral element 0
cannot be an accumulation point of A = {mx : m ∈ ω ∧ (m, k) = 1}. Let
p1, p2, . . . be an enumeration of all prime numbers that do not divide k. Clearly,
x, A and p1, p2 . . . satisfy the condition (3). It follows from Theorem 10 that Gω

is not countably compact. �

Theorem 17. Let G be an infinite free Abelian group endowed with a group
topology. Then Gω is not countably compact.

Proof: By Corollary 9, we can assume that G contains a proper open subgroup.
Clearly, the conditions (1) and (2) of Theorem 10 are satisfied, thus the result
follows from Proposition 16. �

Corollary 18. There exists no p-compact group topology on a free Abelian
group.



On initially ω1-compact free abelian groups 407

4. Countably compact group topologies and MA(σ-centered)

We will construct under MA(σ-centered) a subgroup G ⊆ T c of size c which
is algebraically free Abelian and countably compact when endowed with the sub-
space topology. This yields the following.

Example 19 (MA(σ-centered)). There exists a countably compact group topo-
logy on the free Abelian group generated by c elements.

The construction is a modification of van Douwen’s group ([5]). It is related
to Tkachenko’s modification ([11]) of Hajnal and Juhász’ group ([8]).

4.1 Main ideas. We will construct a subset X = {xα : α < c} ⊆ T c and the
group G will be the subgroup of T c generated by X .
Every element of G can be written as a finite sum of elements of X and each

element of X is indexed by an ordinal. Thus, for each x ∈ G there exists a
function f from a finite subset of c to Z \ {0} such that x =

∑

ξ∈dom f f(ξ)xξ .

We will call such an f the coding of x (the coding of the neutral element is the
empty function).

Definition 20. Define F as the set of all functions f from a finite subset of c

into Z \ {0}.
At stage α ≤ c, we will have defined {xβ↾α: β < α}. Thus, at each intermediate

stage we only know a fragment of X . We will use F to code the fragments of G.
Let us see now which are the inductive assumptions we have to impose on X .

Making G free Abelian

We will construct X to witness that G is free Abelian. That is, if f ∈ F \ {∅},
then

∑

ξ∈dom f f(ξ)xξ 6= 0. This condition will be satisfied if for each f ∈ F \{∅}

there exists β < c such that
∑

ξ∈dom f f(ξ)xξ(β) 6= 0.

Since |F \ {∅}| = c, we can take care of one f ∈ F at each step.

Definition 21. Let {fα : α < c} be an enumeration of F such that dom fα ⊆
α+ 1 for each α < c.

Then the group G is free Abelian if

(1) for each α < c,
∑

ξ∈dom fα
fα(ξ)xξ(α) 6= 0.

Note that at stage α + 1, we will have defined xξ ↾α+1 for each ξ ∈ dom fα.
Thus (1) makes sense at stage α+ 1.

Definition 22. If f ∈ F and dom f ⊆ γ, then denote by
∑

ξ∈dom f f(ξ)xξ↾γ the

element of T γ coded by f .

Making G countably compact

We have to guarantee that every infinite subset of G has an accumulation
point. Each countably infinite subset of G can be coded by a countable subset of
F . There are c many codings for a sequences in G. For technical reasons, we can
only take care of fewer than c sequences at each stage.
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Definition 23. Let {Fα : α < c} be an enumeration of [F ]ω such that dom f ⊆
α+ 1 for each f ∈ Fα.

At stage α + 1, we promise that xα will be the accumulation point of the
sequence {

∑

ξ∈dom f f(ξ)xξ : f ∈ Fα}. Thus, at each stage β < c, we will only

worry about the sequences coded by some Fα with α < β.
To keep the promise we will need the following.

Lemma 24. Let y be an element of T β and {yn : n ∈ ω} ⊆ T β, where β < c is

a limit ordinal. Then y is an accumulation point of {yn : n ∈ ω} if and only if
y↾α is an accumulation point of {yn↾α: n ∈ ω} for each α < β.

Definition 25. If α ≤ γ, then denote by {
∑

ξ∈dom f f(ξ)xξ ↾γ : f ∈ Fα} the
sequence in T γ coded by Fα.

Using Lemma 24, it suffices to choose xα↾α to be an accumulation point of the
sequence in T α coded by Fα and by induction show that if xα↾γ is an accumulation
point for the sequence in T γ coded by Fα, then we can define the γ-th coordinates
of the points in question so that xα↾γ+1 will be an accumulation point for the

sequence in T γ+1 coded by Fα.
We will rewrite this last condition in terms of subsets of Fα. In what follows

‖t‖ stands for the length of a vector t ∈ R2.

Definition 26. For each α ≤ γ, F ∈ [ γ ]<ω and k ∈ ω, define

E(α, F, k) =
{

f ∈ Fα : ∀µ ∈ F
(∥

∥

∥

∑

ξ∈dom f

f(ξ)xξ(µ)− xα(µ)
∥

∥

∥
<

1

k + 1

)}

.

The proof of the following lemma is left to the reader.

Lemma 27. Let α ≤ γ. Then xα↾γ is an accumulation point of the sequence in

T γ coded by Fα if and only if |E(α, F, k)| = ω for every F ∈ [ γ ]<ω and k ∈ ω.

Thus, G will be countably compact if the following two conditions hold:

(2) the set E(α, F, k) is infinite for all α < c, F ∈ [ γ ]<ω and k ∈ ω;
(3) if α < γ and (2) holds for α, then

{f ∈ E(α, F, k) : ‖
∑

ξ∈dom f

f(ξ)xξ(γ)− xα(γ)‖ <
1

k + 1
}

is infinite for all F ∈ [ γ ]<ω and k ∈ ω.

A construction of the group as in Example 19 is given below.

Theorem 28 (MA(σ-centered)). There exists a family {xα : α < c} ⊆ T c which

satisfies the conditions (1)–(3) stated above.

Proof: At stage 0 there is nothing to do. Suppose we have defined {xα↾β: α < β}
for each β < γ such that the conditions (1)–(3) hold.
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If γ is limit, define xα↾γ=
⋃

α<β<γ xα↾β. Clearly {xα↾γ : α < γ} satisfies the

conditions (1)–(3).

Let us suppose that γ = β+1. Then we have defined {xα↾β : α < β} satisfying

the conditions (1)–(3). Then the sequence in T β coded by Fβ is already defined.

Fix an accumulation point y ∈ T β and define xβ↾β= y. Thus, (2) is valid for β.
Let φ be as in Lemma 29. Then the family {xα ↾γ : α < γ} satisfies the

conditions (1)–(3) if we define xα↾γ= (xα↾β)
∧φ(α) for each α < γ.

Lemma 29 (MA(σ-centered)). There exists a function φ : γ −→ T satisfying
the following conditions:

(A)
∑

ξ∈dom fβ
fβ(ξ)φ(ξ) 6= 0;

(B) the set {f ∈ E(α, F, k) : ‖
∑

ξ∈dom f f(ξ)φ(ξ) − φ(α)‖ < 1
k+1} is infinite

for all α < γ, F ∈ [β ]<ω and k ∈ ω.

The function φ will be constructed in the next subsection. �

4.2 Proof of Lemma 29. We will define a partial order P and dense sets which
will be used to define a function φ satisfying the conditions of Lemma 29. Recall
that β is a fixed ordinal with β < c, and γ = β + 1.
Fix a countable basis B for T consisting of non-empty open subsets. We assume

that T ∈ B.

Definition 30. Let P be the family of all functions p from a finite subset of γ
into B.
Given p, q ∈ P, define p ≤ q if dom p ⊇ dom q and either p(ξ) = q(ξ) or

p(ξ) ⊆ q(ξ) for each ξ ∈ dom q.

Lemma 31. The partial order P is σ-centered.

Proof: Let {sn : n ∈ ω} be a dense subset of Bγ, where B is endowed with the
discrete topology. Let Pn = {p ∈ P : p ≤ sn} for every n ∈ ω. Then clearly Pn is
centered and P =

⋃

n∈ω Pn. �

Suppose that G is a filter on P. For every ξ < λ, define Φ(ξ) = {p(ξ) : ξ ∈
dom p}. If Φ(ξ) is not empty, then

⋂

Φ(ξ) 6= ∅ and we can choose φG(ξ) ∈
⋂

Φ(ξ).

Lemma 32. For each ξ < γ, the set Dξ = {p ∈ P : ξ ∈ dom p} is dense in P.

Proof: Fix q ∈ P. If ξ /∈ dom q, then define p = q ∪ {〈ξ, T 〉}. �

Applying Lemma 32 and MA(σ-centered) to P, we choose a filter G on P such
that dom φG = γ.
If there exists p ∈ G such that 0 /∈

∑

ξ∈dom fβ
fβ(ξ)p(ξ), then the condition

(A) of Lemma 29 holds.
The proof of the following simple fact is omitted.

Lemma 33. The set {p ∈ P : 0 /∈
∑

ξ∈dom fβ
fβ(ξ)p(ξ)} is dense and open in P.

Condition (3) presents more difficulties.



410 A.H.Tomita

Definition 34. For α < γ, F ∈ [β ]<ω and k ∈ ω, let {E(α, F, k, n) : n ∈ ω} be
a partition of E(α, F, k) into disjoint infinite subsets.

Let E = {E(α, F, k, n) : α < γ, F ∈ [β ]<ω, k, n ∈ ω}.

To guarantee that the condition (3) holds, it suffices to show that for all
U ∈ B and f ∈ E(α, F, k, n) there exists p ∈ G such that dom f ⊆ dom p
and

∑

ξ∈dom f f(ξ)p(ξ) ⊆ U .

Lemma 35. For all E ∈ E and U ∈ B, the set
{p ∈ P : (∃ f ∈ E)(

∑

ξ∈dom f f(ξ)p(ξ) ⊆ U)} is a dense subset of P.

Proof: The argument which follows is similar to Tkachenko’s ([11]).
Fix E ∈ E, U ∈ B and q ∈ P. We have two cases to consider.

Case 1. There exists an infinite subset E1 ⊆ E such that dom f 6= dom g
whenever f, g ∈ E1 are distinct.

Then there are f ∈ E1 and µ < γ such that µ ∈ dom f \ dom q 6= ∅. We will
define p such that its domain will be D = dom q∪dom f . For every ξ ∈ dom q, fix
aξ ∈ q(ξ) and for every ξ ∈ D\(dom q∪{µ}), put aξ = 0. Choose aµ ∈ T such that
∑

ξ∈dom f f(ξ)aξ ∈ U . For every ξ ∈ D, fix Uξ ∈ B such that
∑

ξ∈dom f f(ξ)Uξ ⊆

U , aξ ∈ Uξ and Uξ ⊆ q(ξ) if ξ ∈ dom q. Define p = {〈ξ, Uξ〉 : ξ ∈ D}.

Case 2. There exists an infinite subset E2 ⊆ E such that |{dom f : f ∈ E2}| = 1.

LetD be the domain of every f ∈ E2. We can suppose without loss of generality
that dom q ⊇ D. There exists µ ∈ D such that {f(µ) : f ∈ E2} is unbounded
in Z. Let g ∈ E2 be such that g(µ)q(µ) = T . Fix aξ ∈ q(ξ) for every ξ ∈ D \ {µ}.
Choose aµ ∈ q(µ) such that

∑

ξ∈D\{µ} g(ξ)aξ+g(µ)aµ ∈ U . Then we can proceed

as in Case 1. �

Observation. The set {nx0 : n ∈ ω} can be made dense in T c by adding some
new dense subsets to E.

5. Initially ω1-compact group topologies on the free Abelian group

Finally, we prove the result formulated in the title.

Theorem 36. The existence of an initially ω1-compact group topology on some
free Abelian group is independent of c = ℵ2.

This follows from Example 37 and Theorem 41 below.

The existence of an initially ω1-compact group topology.

Example 37 (MA(σ-centered) + c = ℵ2). There exists an initially ℵ1-compact
group topology on the free Abelian group of size c.

We will point out small modifications which should be made in the construction
presented in Section 4.
It suffices to construct a subset X ⊆ T c in such a way that every infinite subset

G of size at most ℵ1 has a complete accumulation point in G.
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Since 2ℵ1 = c, we can enumerate all infinite subsets of F of size at most ℵ1
in length c. In the inductive condition (2) we require that |E(α, F, k)| = |Fα|.
During the successor stage, if E(α, F, k) has size ℵ1, then we split it into ℵ1 pieces
of size ℵ1.

5.2 Non-existence of such a group topology.

Let p be a free ultrafilter on ω having a base of cardinality ℵ1. It is not
difficult to verify that every infinite ω1-compact space is p-compact. Since the
class of p-compact spaces is productive, we have the following.

Lemma 38. Suppose that there exists a free ultrafilter p on ω generated by
a basis of size ℵ1. Then the product of arbitrarily many initially ω1-compact
spaces is p-compact. In particular, the product of initially ω1-compact spaces is
countably compact.

Theorem 39 (CH). No free Abelian group can be endowed with an initially
ω1-compact group topology.

Proof: Let p be any free ultrafilter on ω. By our assumption, c = ℵ1, so that
p has a base of cardinality ℵ1. However, the ω-th power of a “topological” free
Abelian group G is not countably compact (Theorem 17). Thus, by Lemma 38,
there exists no initially ω1-compact group topology on G. �

Thus, the absence of such group topologies is related with the existence of free
ultrafilters p as in Lemma 38.

Definition 40. Kunen’s Axiom (KA) is the following statement: There exists
a free ultrafilter on ω generated by a basis of size ℵ1.

KA is consistent with c = ℵ2 (see Chapter VIII of [9] or [5]). Therefore, we
have the following result.

Theorem 41 (KA+c = ℵ2). There exists no initially ω1-compact group topology
on any free Abelian group.

6. Final remarks

Some comments on Wallace semigroups

Definition 42. A cancellative semigroup S endowed with a countably compact
semigroup topology which does not make S a topological group is called aWallace
semigroup.

Using the terminology above, Wallace [17] asked whether there is no Wallace
semigroup (see [1], [2]).
For any Wallace semigroup, its 2c-th power is not countably compact ([12]).

The Wallace semigroups constructed in [10] and [12] do not have their ω-th power
countably compact. Indeed, the Robbie and Svetlichny’s counterexample for the
Wallace’s Problem constructed under CH (see [10]) satisfies the conditions of
Corollary 12, so its ω-th power is not countably compact.
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The countably compact group topology on the free Abelian group G that we
constructed in Section 4 does not have non-trivial convergent sequences. We note
that every subsemigroup of G containing the subset X ⊆ G and which is not
a group will be a Wallace semigroup. By Corollary 15, its ω-th power is not
countably compact.
The Wallace semigroups we have constructed in [12] cannot have its ω-th power

countably compact either.

Thus, it is natural to ask which is the least κ such that the κ-th power of any
Wallace semigroup is not countably compact.

Finite powers of free Abelian groups

In [14] we have constructed a topological group whose square is countably
compact but whose cube is not. In [13] we showed that for every integer k there
exists an integer n ≥ k and a topological group G such that Gn is countably
compact but Gn+1 is not.
It is not clear for us whether these constructions could be used to obtain a

topological group topology on an infinite free Abelian group G which makes G2

countably compact.

Acknowledgments. The author thanks the referee for his useful comments to
improve the presentation of this paper.
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