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Uniformly µ-continuous topologies on

Köthe-Bochner spaces and Orlicz-Bochner spaces

Krzysztof Feledziak

Abstract. Some class of locally solid topologies (called uniformly µ-continuous) on
Köthe-Bochner spaces that are continuous with respect to some natural two-norm con-
vergence are introduced and studied. A characterization of uniformly µ-continuous
topologies in terms of some family of pseudonorms is given. The finest uniformly µ-
continuous topology T ϕI (X) on the Orlicz-Bochner space L

ϕ(X) is a generalized mixed
topology in the sense of P. Turpin (see [11, Chapter I]).

Keywords: Orlicz spaces, Orlicz-Bochner spaces, Köthe-Bochner spaces, locally solid
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Classification: 46E30, 46E40, 46A70

1. Preliminaries.

For notation and terminology concerning locally solid Riesz spaces we refer
to [1].
Throughout the paper let (Ω,Σ, µ) be a complete σ-finite measure space and

let L0 denote the corresponding space of equivalence classes of all Σ-measurable
real valued functions. Then L0 is a super Dedekind complete Riesz space under
the ordering u1 ≤ u2 whenever u1(ω) ≤ u2(ω) µ-a.e. on Ω.
For u ∈ L0 let us put

‖u‖µ = inf{λ > 0 : µ({ω ∈ Ω : |u(ω)| > λ}) ≤ λ}.

It is easy to see that a sequence (un) in L
0 is convergent to u ∈ L0 in measure

on Ω (in symbols un → u (µ− Ω)) iff ‖un − u‖µ → 0. We will denote by Tµ the

topology on L0 of ‖ · ‖µ.
For a subset A of Ω let χA stand for its characteristic function.
Let [x] denote the greatest integer which is less or equal to a real number x.
Let (E, ‖ · ‖E) be an F -normed function space, that is E is an ideal of L

0 with
suppE = Ω and ‖ · ‖E is a complete Riesz F -norm. The Köthe dual E

′ of E is
defined by

E′ = {v ∈ L0 :

∫

Ω
|u(ω)v(ω)| dµ <∞ for all u ∈ E}.
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In case (E, ‖ · ‖E) is a Banach function space the associated norm ‖ · ‖E′ on E′

can be defined for v ∈ E′ by

‖v‖E′ = sup
{∣∣∣

∫

Ω
u(ω)v(ω) dµ

∣∣∣ : u ∈ E, ‖u‖E ≤ 1
}
.

We will write An ց ∅ when (An) is a decreasing sequence in Σ such that
µ(An ∩A)→ 0 for every A ∈ Σ with µ(A) <∞.
We denote by Ea the ideal of elements of absolutely continuous norm in E, i.e.

Ea = {u ∈ E : ‖χAnu‖E → 0 as An ց ∅}.
Let (X, ‖ · ‖X) be a real Banach space, and let SX and BX denote the unit

sphere and the closed unit ball in X , respectively.
By L0(X) we will denote the linear space of equivalence classes of all strongly

Σ-measurable functions f : Ω→ X .
For f ∈ L0(X) let us put

‖f‖Xµ = inf{λ > 0 : µ({ω ∈ Ω : ‖f(ω)‖X > λ}) ≤ λ}.

We say that a sequence (fn) in L
0(X) is convergent to f ∈ L0(X) in measure on

Ω (in symbols fn → f (µ−Ω)) whenever µ({ω ∈ Ω : ‖fn(ω)− f(ω)‖X > ε})→ 0
for every ε > 0. It can be seen that a sequence (fn) in L

0(X) is convergent to

f ∈ L0(X) in measure on Ω iff ‖fn− f‖Xµ → 0. The topology on L0(X) of ‖ · ‖Xµ
will be denoted by Tµ(X).

For f ∈ L0(X) let
f̃(ω) := ‖f(ω)‖X for ω ∈ Ω.

The linear space E(X) = {f ∈ L0(X) : f̃ ∈ E} provided with the norm

‖f‖E(X) := ‖f̃‖E is called a Köthe-Bochner space (see [2], [3]).
Now we recall some concepts and terminology concerning locally solid topolo-

gies on vector-valued function spaces as set out in [3].
A subset H of E(X) is said to be solid whenever ‖f1(ω)‖X ≤ ‖f2(ω)‖X µ-a.e.

and f1 ∈ E(X), f2 ∈ H imply f1 ∈ H .
A pseudonorm ρ on E(X) is said to be solid whenever for f1, f2 ∈ E(X),

‖f1(ω)‖X ≤ ‖f2(ω)‖X µ-a.e. imply ρ(f1) ≤ ρ(f2).
A linear topology τ on E(X) is said to be locally solid if it has a basis for

neighbourhoods of zero consisting of solid sets.
A linear topology τ on E(X) that is at the same time locally solid and locally

convex will be called a locally convex-solid topology on E(X).

Theorem 1.1 (see [3, Theorem 2.2, Theorem 2.3]). For a linear topology τ on
E(X) the following statements are equivalent:

(i) τ is a locally solid topology (respectively τ is a locally convex-solid topo-
logy);

(ii) τ is generated by some family of solid pseudonorms (respectively semi-
norms).
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Now we are going to explain the relationship between locally solid topologies
on E and E(X) (see [3]).
Let p be a Riesz pseudonorm (respectively seminorm) on E, and let

p(f) := p(f̃) for f ∈ E(X).

Then p is a solid pseudonorm (respectively seminorm) on E(X).
Next, fix x ∈ SX . Given u ∈ E let us put u(ω) := u(ω) · x for ω ∈ Ω. Then

u ∈ L0(X) and ‖u(ω)‖X = |u(ω)| for ω ∈ Ω, so u ∈ E(X).
Let ρ be a solid pseudonorm (respectively seminorm) on E(X), and let

ρ̃(u) := ρ(u) for u ∈ E.

Then ρ̃ is a Riesz pseudonorm (respectively seminorm) on E.

Theorem 1.2 (see [3, Lemma 3.1]). (i) If ρ is a solid pseudonorm on E(X),

then ρ̃(f) = ρ(f) for f ∈ E(X).

(ii) If p is a Riesz pseudonorm on E, then

p̃(u) = p(u) for u ∈ E.

Let τ be a locally solid topology on E(X) generated by some family {ρα : α ∈
{α}} of solid pseudonorms defined on E(X). By τ̃ we will denote the locally solid
topology on E generated by the family {ρ̃α : α ∈ {α}} of Riesz pseudonorms
on E. If τ is a Hausdorff topology, then so is τ̃ .
In turn, let ξ be a locally solid topology on E generated by some family {pα :

α ∈ {α}} of Riesz pseudonorms on E. By ξ we will denote the locally solid
topology on E(X) generated by the family {pα : α ∈ {α}} of solid pseudonorms
on E(X). Then ξ is a Hausdorff topology, whenever ξ is Hausdorff.

Theorem 1.3 (see [3, Theorem 3.2]). (i) For a locally solid topology τ on E(X)

we have: τ̃ = τ .

(ii) For a locally solid topology ξ on E we have: ξ̃ = ξ.

Now we recall some notation and terminology concerning Orlicz spaces (see [5],
[6], [11] for more details).
By an Orlicz function we mean a function ϕ : [0,∞) → [0,∞] which is non-

decreasing, left continuous, continuous at 0 with ϕ(0) = 0 and not identically
equal to 0.
A convex Orlicz function is usually called a Young function. For a Young

function ϕ we denote by ϕ∗ the function complementary to ϕ in the sense of
Young, i.e.

ϕ∗(s) = sup{ts− ϕ(t) : t ≥ 0} for s ≥ 0.

Let ϕ and ψ be a pair of Orlicz functions vanishing only at zero (respectively
taking only finite values). We say that ϕ increases essentially more rapidly than ψ
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for small t (respectively for large t) denoted ψ
s

≺≺ϕ (respectively ψ
l

≺≺ϕ), when-
ever for any c > 0, ψ(ct)/ϕ(t)→ 0 as t→ 0 (respectively t→ ∞). We will write

ψ ≺≺ ϕ when ψ
s

≺≺ϕ and ψ
l

≺≺ϕ hold. For ϕ and ψ being Young functions the

condition ψ
s

≺≺ϕ (respectively ψ
l

≺≺ϕ) implies ϕ∗
s

≺≺ψ∗ (respectively ϕ∗
l

≺≺ψ∗)
(see [5, Lemma 13.1]).
An Orlicz function ϕ determines a functional mϕ : L

0 → [0,∞] by

mϕ(u) =

∫

Ω
ϕ(|u(ω)|) dµ.

The Orlicz space generated by ϕ is the ideal of L0 defined by

Lϕ = {u ∈ L0 : mϕ(λu) <∞ for some λ > 0}.

Lϕ can be equipped with the complete metrizable topology Tϕ of the F -norm

‖u‖ϕ = inf
{
λ > 0 : mϕ

(u
λ

)
≤ λ

}
.

Let

ϕ0(t) =

{
0 for 0 ≤ t ≤ 1

1 for t > 1.

It is known that Lϕ0 is the largest Orlicz space and consists of all those u ∈ L0

that are bounded outside of some set of finite measure and ‖u‖ϕ0 = ‖u‖µ for all
u ∈ Lϕ0 . (see [11, 0.3.4]).
Moreover one can check that Lϕ0 is the largest linear subspace of L0 such that

the functional ‖ · ‖µ restricted to Lϕ0 is an F -norm.
We will write ‖ · ‖µ and Tµ instead of ‖ · ‖ϕ0 and Tϕ0 , respectively.
Moreover, if ϕ is a Young function, then the topology Tϕ can be generated by

the Luxemburg norm:

|||u|||ϕ = inf
{
λ > 0 : mϕ

(u
λ

)
≤ 1

}
.

For an Orlicz function ϕ let

Eϕ = {u ∈ L0 : mϕ(λu) <∞ for all λ > 0}

and
Lϕa = {u ∈ Lϕ : ‖uAn‖ϕ → 0 as An ց ∅}.

It is well known that Eϕ = L
ϕ
a whenever ϕ takes only finite values. Moreover, for

every Young function ϕ the identity (Lϕ)′ = Lϕ
∗

holds.
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Let Mϕ : L
0(X)→ [0,∞] be defined by

Mϕ(f) =

∫

Ω
ϕ(‖f(ω)‖X) dµ.

Thus Mϕ(f) = mϕ(f̃). The Köthe-Bochner space

Lϕ(X) = {f ∈ L0(X) : f̃ ∈ Lϕ}

= {f ∈ L0(X) :Mϕ(λf) <∞ for some λ > 0}

is usually called an Orlicz-Bochner space and is equipped with the F -norm

‖f‖Lϕ(X) = ‖f̃‖ϕ for f ∈ Lϕ(X).

We will denote by Tϕ(X) the topology on Lϕ(X) generated by the F -norm
‖ · ‖Lϕ(X). Moreover, if ϕ is a Young function, then Tϕ(X) is generated by

the Luxemburg norm: |||f |||Lϕ(X) = |||f̃ |||ϕ for f ∈ Lϕ(X). We will write ‖ · ‖Xµ
and Tµ(X) instead of ‖ · ‖Lϕ0 (X) and Tϕ0(X), respectively.

2. Uniformly µ-continuous topologies on Köthe-Bochner spaces

Definition 2.1. (i) A solid pseudonorm ρ on E(X) is said to be uniformly µ-
continuous, whenever fn ∈ E(X), fn → 0 (µ − Ω) with supn ‖fn‖E(X) < ∞

imply ρ(fn)→ 0.

(ii) A locally solid topology τ on E(X) is said to be uniformly µ-continuous

whenever fn ∈ E(X), fn → 0 (µ− Ω) with supn ‖fn‖E(X) <∞ imply fn
τ

−→ 0.

In view of [3, Theorem 2.3] a locally solid topology τ on E(X) is uniformly
µ-continuous iff it is generated by some family {ρα : α ∈ {α}} of uniformly
µ-continuous pseudonorms defined on E(X).
It is easy to prove the following lemma.

Lemma 2.1. (i) If ρ is a uniformly µ-continuous pseudonorm on E(X), then ρ̃
is a uniformly µ-continuous pseudonorm on E (i.e. un ∈ E un → 0 (µ−Ω) with
supn ‖un‖E <∞ imply ρ̃(un)→ 0).

(ii) If p is a uniformly µ-continuous pseudonorm on E, then p is a uniformly
µ-continuous pseudonorm on E(X).

From Lemma 2.1 we easily get the following theorem that explains the rela-
tionship between uniformly µ-continuous topologies on E and E(X).

Theorem 2.2. (i) If τ is a uniformly µ-continuous topology on E(X), then τ̃
is a uniformly µ-continuous topology on E.

(ii) If ξ is a uniformly µ-continuous topology on E, then ξ is a uniformly
µ-continuous topology on E(X).

We shall need the following result.
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Theorem 2.3. (i) If τ is the finest uniformly µ-continuous topology on E(X),
then τ̃ is the finest uniformly µ-continuous topology on E.

(ii) If ξ is the finest uniformly µ-continuous topology on E, then ξ is the finest
uniformly µ-continuous topology on E(X).

Proof: (i) Let ξ be a uniformly µ-continuous topology on E. By Theorem 2.2
ξ is a uniformly µ-continuous topology on E(X), so ξ ⊂ τ . By [3, Theorem 3.3]

and Theorem 1.3 ξ = ξ̃ ⊂ τ̃ , as desired.

(ii) Let τ be a uniformly µ-continuous topology on E(X). By Theorem 2.2 τ̃
is a uniformly µ-continuous topology on E, so τ̃ ⊂ ξ. By [3, Theorem 3.3] and

Theorem 1.3 τ = τ̃ ⊂ ξ, as desired. �

Now we are going to give a description of uniformly µ-continuous topologies
on Orlicz-Bochner spaces. We start with the following definition.

Definition 2.2. A solid pseudonorm ρ on E(X) is said to be uniformly summable
whenever the following conditions hold:
For every r > 0

(∗) sup{ρ(χA(f,λ)f) : f ∈ E(X), ‖f‖E(X) ≤ r} → 0 as λ→ 0+,

where A(f, λ) = {ω ∈ Ω : ‖f(ω)‖X ≤ λ or ‖f(ω)‖X > 1
λ} for 0 < λ < 1

and

(∗∗) ρ(χA)→ 0 as µ(A)→ 0.

Theorem 2.4. Let ϕ be an arbitrary Orlicz function and ψ be a finite valued
Orlicz function such that ψ ≺≺ ϕ. Then the F -norm ‖ · ‖Lψ(X) (restricted to

Lϕ(X)) is uniformly summable on Lϕ(X).

Proof: Since ψ ≺≺ ϕ, so Lϕ ⊂ Lψ (see [11, 0.2.5, 0.3.5]). Hence Lϕ(X) ⊂
Lψ(X). Let r > 0, ε > 0 be given. Choose η > 0 such that η(r + 1) < ε and let
c = ε

r+1 . Then there exist 0 < t1 < t2 such that ψ(t) ≤ ηϕ(ct) for 0 ≤ t < t1

or t > t2, and choose λ0 ∈ (0, 1) such that λ0 ≤ εt1 and
1
λ0

> εt2. Hence for

f ∈ Lϕ(X) and ‖f‖Lϕ(X) ≤ r we have:

Mψ

(χA(f,λ)f
ε

)
=

∫

A(f,λ)
ψ

(‖f(ω)‖X
ε

)
dµ ≤

∫

A(f,λ)
ηϕ

(
c
‖f(ω)‖X

ε

)
dµ

≤

∫

Ω
ηϕ

(‖f(ω)‖X
r + 1

)
dµ ≤ η(r + 1) < ε

for every 0 < λ ≤ λ0. It follows that ‖χA(f,λ)f‖Lψ(X) ≤ ε for every

f ∈ Lϕ(X), ‖f‖Lϕ(X) ≤ r and 0 < λ ≤ λ0. This means that for r > 0

sup{‖χA(f,λ)f‖Lψ(X) : f ∈ Lϕ(X), ‖f‖Lϕ(X) ≤ r} → 0 as λ→ 0+.
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Now, choose δ > 0 such that 0 < δ < ε

ψ
(
1

ε

) . Then Mψ

(
χA
ε

)
=

∫
A ψ

(
1
ε

)
dµ =

µ(A) ·ψ
(
1
ε

)
≤ δ ·ψ

(
1
ε

)
< ε for every A ∈ Σ with µ(A) ≤ δ. Hence ‖χA‖Lψ(X) → 0

as µ(A)→ 0, and the proof is finished. �

Remark 2.1. Let ϕ be an Orlicz function such that ϕ(u)→ ∞ as u→ ∞. Then
ϕ0 ≺≺ ϕ and it follows that the F -norm ‖ · ‖Xµ is uniformly summable on L

ϕ(X).

Theorem 2.5. Let ϕ be an Orlicz function such that ϕ(u)→ ∞ as u→ ∞. For
a solid pseudonorm ρ on Lϕ(X) the following statements are equivalent:

(i) ρ is uniformly summable;
(ii) ρ is uniformly µ-continuous.

Proof: (i) ⇒ (ii) Take a sequence (fn) in Lϕ(X) such that fn → 0 (µ−Ω) and
supn ‖fn‖Lϕ(X) ≤ r for some r > 0. Fix ε > 0. There exists λ0 ∈ (0, 1) such that

supn ρ(χA(fn,λ0)fn) <
ε
2 . Moreover, there exists δ > 0 such that

ρ(χA) <
ε

2
([
1
λ0

]
+ 1

) whenever A ∈ Σ with µ(A) ≤ δ.

Since fn → 0 (µ− Ω), we can find a natural number k such that for all n ≥ k

µ(Ω \A(fn, λ0)) ≤ µ({ω ∈ Ω : ‖fn(ω)‖X > λ0}) ≤ δ.

Hence for n ≥ k

ρ(fn) = ρ(χA(fn,λ0)fn + χΩ\A(fn,λ0)fn) ≤ ρ(χA(fn,λ0)fn)

+ ρ(χΩ\A(fn,λ0)fn)

≤
ε

2
+ ρ

(([ 1
χ0

]
+ 1

)
χΩ\A(fn,λ0)

)
≤
ε

2
+

([ 1
λ0

]
+ 1

)
ρ(χΩ\A(fn,λ0))

≤
ε

2
+

([ 1
λ0

]
+ 1

) ε

2
([
1
λ0

]
+ 1

) ≤ ε.

Thus ρ(fn)→ 0.

(ii) ⇒ (i) For r > 0 let BϕX(r) = {f ∈ Lϕ(X) : ‖f‖Lϕ(X) ≤ r},

B
ρ
X (r) = {f ∈ Lϕ(X) : ρ(f) ≤ r}, BµX(r) = {f ∈ Lϕ0(X) : ‖f‖Xµ ≤ r}. By (ii)
the identity map

id : (Bϕ
X
(r), Tµ(X)|BϕX(r)

)→ (Bϕ
X
(r), τ(ρ)|BϕX (r)

)

is continuous at zero for any r > 0, where τ(ρ) denotes the topology on Lϕ(X)
generated by ρ. Let ε > 0, r > 0 be given. There exists η > 0 such that
B
µ
X (η) ∩ B

ϕ
X(r) ⊂ B

ρ
X(ε). Since ‖ · ‖Xµ is uniformly summable on L

ϕ(X) (see

Remark 2.1) there exists λ0 ∈ (0, 1) such that

sup{‖χA(f,λ)f‖
X
µ : f ∈ Lϕ(X), ‖f‖Lϕ(X) ≤ r} ≤ η whenever 0 < λ ≤ λ0.
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Then sup{ρ(χA(f,λ)f) : f ∈ Lϕ(X), ‖f‖Lϕ(X) ≤ r} ≤ ε whenever 0 < λ ≤ λ0.

Hence sup{ρ(χA(f,λ)f) : f ∈ Lϕ(X), ‖f‖Lϕ(X) ≤ r} → 0 as λ→ 0+.

Moreover, there exists δ > 0 such that ‖χA‖
X
µ ≤ η for A ∈ Σ with µ(A) ≤ δ.

Then ρ(χA) ≤ ε whenever A ∈ Σ with µ(A) ≤ δ. It follows that ρ(χA) → 0 as
µ(A)→ 0.
Thus ρ is a uniformly summable pseudonorm on Lϕ(X). �

Theorem 2.6. Let ϕ be an Orlicz function such that ϕ(u)→ ∞ as u→ ∞. For
a locally solid topology τ on Lϕ(X) the following statements are equivalent:

(i) τ is uniformly µ-continuous;
(ii) τ |BϕX (r)

⊂ Tµ(X)|BϕX(r)
for every r > 0;

(iii) τ is generated by some family of uniformly summable pseudonorms.

Proof: (i) ⇒ (ii) Since Tµ(X) is a linear metrizable topology, it follows from
Definition 2.1 (ii).

(ii) ⇒ (i) Obvious.

(i)⇒ (iii) Let τ be defined by the family {ρα : α ∈ {α}} of solid pseudonorms.
Then by Definition 2.1 and Theorem 2.5 τ is generated by the family {ρα : α ∈
{α}} of uniformly summable pseudonorms.

(iii) ⇒ (i) It follows from Theorem 2.5. �

3. Generalized mixed topologies on Orlicz-Bochner spaces

In this section we consider some kind of inductive limit topology on Orlicz-
Bochner space Lϕ(X).
Let ϕ be an arbitrary Orlicz function, and let

FXn = B
ϕ
X(2

n) and Tn(X) = Tµ(X)|FXn for n ≥ 0.

It can be seen that the metric bounded sets FXn (n ≥ 0) are balanced subsets
of Lϕ(X). Moreover, the sequence (FXn , Tn(X)) (n ≥ 0) of balanced topological
spaces satisfies the following conditions:

(i) Lϕ(X) =
⋃
n≥0 F

X
n ;

(ii) FXn + F
X
n ⊂ FXn+1, and the function

FXn × FXn ∋ (f, g) 7→ f + g ∈ FXn+1

is continuous (n ≥ 0);
(iii) the function [−1, 1]× FXn ∋ (λ, f) 7→ λ · f ∈ FXn is continuous (n ≥ 0);
(iv) Tn+1(X)|FXn = Tn(X) for n ≥ 0.

Thus the space Lϕ(X) with the system {(FXn , Tn(X)) : n ≥ 0} comes under
the definition of the strict inductive limit of balanced topological spaces (in the
sense of Turpin; see [11, Definition 1.1.1]).
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Definition 3.1. Let ϕ be an Orlicz function and let (εn) be a sequence of positive
numbers. The family of all sets of the form:

(∗)
∞⋃

N=0

( N∑

n=0

BϕX(2
n) ∩BµX (εn)

)

forms a base of neighbourhoods of zero for a linear topology T ϕI (X) on L
ϕ(X) that

will be called generalized mixed topology. T ϕI (X) is exactly the strict inductive

limit topology of balanced topological spaces {(BϕX (2
n), Tµ(X)|BϕX(2n)

) : n ≥ 0}

in the sense of Turpin [11, Chapter I].

Using the solid decomposition property (see [3, Lemma 1.1]) it is easy to verify
that the sets of the form (∗) are solid, so T ϕI (X) is locally solid.

According to [11, Theorem 1.1.6] T ϕI (X) is the finest of all linear topologies
τ on Lϕ(X), which satisfy the condition

(1) τ |BϕX (2n)
⊂ Tµ(X)|BϕX(2n)

for n ≥ 0.

Moreover, in view of [11, Theorem 1.1.8] we have

(2) T ϕI (X)|BϕX(2n)
= Tµ(X)|BϕX(2n)

for n ≥ 0.

Since Tµ(X)|Lϕ(X) ⊂ Tϕ(X) we have T
ϕ
I (X) ⊂ Tϕ(X); hence Tµ(X)|Lϕ(X) ⊂

T ϕI (X) ⊂ Tϕ(X).

Henceforth, we assume in this section that ϕ(u)→ ∞ as u→ ∞.

Theorem 3.1. The topology T ϕI (X) is the finest uniformly µ-continuous topo-
logy on Lϕ(X).

Proof: It follows from (1) and Theorem 2.6. �

The generalized mixed topology T ϕI on Orlicz spaces L
ϕ has been studied in

[11], [8], [9], [10]. Now we will extend the study of the generalized mixed topology
to the Orlicz-Bochner spaces.

Theorem 3.2. The space (Lϕ(X), T ϕI (X)) is complete.

Proof: First we show that the balls B
ϕ
X(2

n) are closed subsets of

(Lϕ0(X), Tµ(X)). Indeed, let (fk) be a sequence in B
ϕ
X(2

n) and let f ∈ Lϕ0(X)
be such that fk → f for Tµ(X). This means that µ({ω ∈ Ω : ‖fk(ω)− f(ω)‖X >

ε}) → 0 for any ε > 0. Hence µ({ω ∈ Ω :
∣∣‖fk(ω)‖X − ‖f(ω)‖X

∣∣ > ε}) → 0 for

every ε > 0. Thus f̃k → f̃ for Tµ in Lϕ0 . It is known that the balls Bϕ(2n) are

closed subsets of (Lϕ0 , Tµ) (see [11, 0.3.6]). But f̃k ∈ Bϕ(2
n) (k = 1, 2, . . . ),

f̃ ∈ Lϕ0 , so we get f̃ ∈ Bϕ(2
n). It follows that f ∈ B

ϕ
X (2

n).

Since the spaces (BϕX (2
n), Tµ(X)|Bϕ

X
(2n)) (n ≥ 0) are complete, by [11, The-

orem 1.1.10] the space (Lϕ(X), T ϕI (X)) is complete.
�
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Theorem 3.3. For a subset Z ⊂ Lϕ(X) the following statements are equivalent:

(i) sup{‖f‖Lϕ(X) : f ∈ Z} <∞;

(ii) Z is bounded for T ϕI (X).

Proof: Observe that the balls Bϕ
X
(2n) are bounded subsets of

(Lϕ(X), Tµ(X)|Lϕ(X)). In fact, fix an r > 0, let fn ∈ B
ϕ
X(r) (n = 1, 2, . . . ) and

let λn → 0. For ε > 0 let Ωn(ε) = {ω ∈ Ω : ‖λnfn(ω)‖X > ε}. Then we have

µ(Ωn(ε)) · ϕ
( ε

r|λn|

)
≤

∫

Ωn(ε)
ϕ
(‖fn(ω)‖X

r

)
dµ ≤Mϕ

(fn
r

)
≤ r.

Since ϕ(u)→ ∞ as u → ∞ we get µ(Ωn(ε))→ 0 and this means that λnfn → 0
for Tµ(X).
Moreover the balls BϕX(2

n) are also closed in (Lϕ(X), Tµ(X)|Lϕ(X)). In view

of (1) and (2) T ϕI (X) is the finest of all linear topologies τ on L
ϕ(X) such that

τ |Bϕ
X
(2n) = Tµ(X)|Bϕ

X
(2n) (n = 0, 1, 2, . . . ). Hence by [11, Corollary 1.1.12] the

equivalence (i) ⇔ (ii) holds. �

Theorem 3.4. For a subset Z ⊂ Lϕ(X) the following statements are equivalent:

(i) Z is relatively compact for T ϕI (X);
(ii) Z is relatively compact for Tµ(X)|Lϕ(X) and

sup{‖f‖Lϕ(X) : f ∈ Z} <∞.

Proof: follows from Theorem 3.3 and (2). �

Definition 3.2. A sequence (fn) in L
ϕ(X) is said to be γXϕ -convergent to f ∈

Lϕ(X), in symbols fn
γϕ
−→ f , whenever

fn → f (µ− Ω) and sup
n

‖fn‖Lϕ(X) <∞.

Theorem 3.5. For a sequence (fn) in L
ϕ(X) the following statements are equiv-

alent:

(i) fn → 0 for T ϕI (X);

(ii) fn
γϕ
−→ 0.

Moreover, T ϕI (X) is the finest of all linear topologies τ on L
ϕ(X) which satisfy

the condition:

(+) fn
γϕ
−→ 0 implies fn → 0 for τ.

Proof: The equivalence (i) ⇔ (ii) follows immediately from Theorem 3.3 and
(2). Now let τ be a linear topology on Lϕ(X) for which the condition (+) holds.
Then τ |BϕX (r)

⊂ Tµ(X)|BϕX(r)
for r > 0, because Tµ(X) is a linear metrizable

topology. Hence by (1) we get τ ⊂ T ϕI (X). �
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Definition 3.3. Let (Y, η) be a linear topological space. A linear mapping T :
Lϕ(X)→ Y is said to be γϕ-linear, whenever

fn
γϕ
−→ 0 implies T (fn)→ 0 for η.

Then following theorem gives a characterization of γϕ-linear operators on
Lϕ(X).

Theorem 3.6. For a linear topological space (Y, η) and a linear mapping T :
Lϕ(X)→ Y the following statements are equivalent:

(i) T is (T ϕI (X), η)-continuous;
(ii) T is γϕ-linear;
(iii) for every r > 0, the restriction T |BϕX(r)

is (Tµ(X)|BϕX(r)
, η)-continuous.

Proof: (i) ⇒ (ii) It follows from Theorem 3.5.

(ii) ⇒ (iii) Obvious.

(iii) ⇒ (i) Let W be a neighbourhood of zero in Y for η. Since η is a linear
topology, there exists a sequence (Wn : n ≥ 0) of neighbourhoods of zero for

η such that
∑N
n=0Wn ⊂ W for every N ≥ 0. By (iii) we can find a sequence

(εn : n ≥ 0) of positive numbers such that T (BϕX(2
n)∩BµX(εn)) ⊂Wn for n ≥ 0.

Thus for N ≥ 0 we have

T
( N∑

n=0

(B
ϕ
X(2

n) ∩BµX (εn))
)
⊂

N∑

n=0

Wn ⊂W,

so

T
( ∞⋃

N=0

( N∑

n=0

(Bϕ
X
(2n) ∩Bµ

X
(εn))

))
⊂

∞⋃

N=0

T
( N∑

n=0

(Bϕ
X
(2n) ∩Bµ

X
(εn))

)
⊂W.

It follows that T is (T ϕI (X), η)-continuous. �

Theorem 3.7. Assume that (Ω,Σ, µ) is an atomless measure space or that µ is
the counting measure on N. If (Lϕ(X), Tϕ(X)) is a locally bounded space then
for a subset Z of Lϕ(X) the following statements are equivalent:

(i) Z is bounded for T ϕI (X);
(ii) sup{‖f‖Lϕ(X) : f ∈ Z} <∞;

(iii) Z is bounded for Tϕ(X).

Proof: (i) ⇔ (ii) See Theorem 3.3.

(ii)⇒ (iii) In view of [11, 0.3.10.2] sup{‖f‖Lϕ(X) : f ∈ Z} <∞ iff Z is additively

bounded (see [11, 0.3.10.1]), so arguing as in the proof of [9, Lemma 2.5] we obtain
that Z is bounded for Tϕ(X).

(iii) ⇒ (i) Obvious. �

The next theorem compares the topology T ϕI (X) with the mixed topology
γ[Tϕ(X), Tµ(X)|Lϕ(X)] in the sense of Wiweger (see [12]).
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Theorem 3.8. Assume that (Ω,Σ, µ) is an atomless measure space or that µ
is the counting measure on N. If (Lϕ(X), Tϕ(X)) is a locally bounded space,
then the generalized mixed topology T ϕI (X) coincides with the mixed topology
γ[Tϕ(X), Tµ(X)|Lϕ(X)].

Proof: In view of Theorem 3.7 it follows from [12, 2.2.1, 2.2.2]. �

An Orlicz function ϕ continuous for all u ≥ 0, taking only finite values, van-
ishing only at zero and not bounded is usually called a ϕ-function. By Φ we will
denote the collection of all ϕ-functions.
A Young function ϕ vanishing only at zero and taking only finite values is

called an N -function whenever
ϕ(t)
t → 0 as t → 0 and ϕ(t)

t → ∞ as t → ∞. By
ΦN we will denote the collection of all N -functions.
Let Φ1 be the set of all Orlicz functions ϕ vanishing only at zero and such that

ϕ(t)→ ∞ as t→ ∞. Denote by

Φ11 = {ϕ ∈ Φ1 : ϕ(t) <∞ for t ≥ 0},

Φ12 = {ϕ ∈ Φ1 : ϕ jumps to ∞}.

Then Φ1 = Φ11 ∪ Φ12.

Theorem 3.9. Let ϕ ∈ Φ1i (i = 1, 2). Then the topology T ϕI (X) is generated
by the family of solid F -norms:

{‖ · ‖Lψ(X) : ψ ∈ Ψϕ1i},

where Ψ
ϕ
11 = {ψ ∈ Φ : ψ ≺≺ ϕ}, Ψϕ12 = {ψ ∈ Φ : ψ

s
≺≺ϕ}.

Moreover, the following identities hold:

(3) Lϕ(X) =
⋂

{Lψ(X) : ψ ∈ Ψϕ1i} =
⋂

{Eψ(X) : ψ ∈ Ψϕ1i}.

Proof: Let ϕ ∈ Φ1i (i = 1, 2). Then T ϕI is the finest uniformly µ-continuous
topology on Lϕ (see [10, Theorem 2.4]) and is generated by the family {‖ · ‖ψ :

ψ ∈ Ψϕ1i} (see [10, Theorem 4.5, Theorem 3.8]). Then the topology T ϕI on

Lϕ(X) is generated by the family {‖ · ‖Lψ(X) : ψ ∈ Ψϕ1i} of solid F -norms and by

Theorem 2.3 T ϕI is the finest uniformly µ-continuous topology on Lϕ(X). By

Theorem 3.1 T ϕI = T ϕI (X), and we are done.
The identities (3) follow from [10, Theorem 3.1]. �

Let Φc1 be the set of all Young functions ϕ vanishing only at zero and such that
ϕ(t)
t → ∞ as t→ ∞. Denote by

Φc11 = {ϕ ∈ Φc1 : ϕ(t) <∞ for t ≥ 0 and
ϕ(t)
t → 0 as t→ 0},

Φc12 = {ϕ ∈ Φc1 : ϕ jumps to ∞ and
ϕ(t)
t → 0 as t → 0},
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Φc13 = {ϕ ∈ Φc1 : ϕ(t) <∞ for t ≥ 0 and ϕ(t)
t → a as t→ 0

for some a > 0},

Φc14 = {ϕ ∈ Φc1 : ϕ jumps to ∞ and
ϕ(t)
t → a as t→ 0

for some a > 0}.

Then Φc1 =
⋃4
i=1Φ

c
1i and the sets Φ

c
1i (i = 1, 2, 3, 4) are pairwise disjoint. It can

be seen that Φc11 = ΦN .

Theorem 3.10. Let ϕ ∈ Φc1i (i = 1, 2, 3, 4). Then the topology T
ϕ
I
(X) is gene-

rated by the family of solid norms

{||| · |||Lψ(X) : ψ ∈ Ψϕ1i(N)},

where Ψϕ11(N) = {ψ ∈ ΦN : ψ ≺≺ ϕ}, Ψϕ12(N) = {ψ ∈ ΦN : ψ
s

≺≺ϕ},

Ψϕ13(N) = {ψ ∈ ΦN : ψ
l

≺≺ϕ}, Ψϕ14(N) = ΦN .

Moreover, the following identities hold:

(4) Lϕ(X) =
⋂

{Lψ(X) : ψ ∈ Ψϕ1i(N)} =
⋂

{Eψ(X) : ψ ∈ Ψϕ1i(N)}.

Proof: Let ϕ ∈ Φc1i (i = 1, 2, 3, 4). Then T
ϕ
I is the finest uniformly µ-continuous

topology on Lϕ (see [10, Theorem 2.4]) and is generated by the family {||| · |||ψ :

ψ ∈ Ψϕ1i(N)} (see [10, Theorem 3.12 and Theorem 4.5]). Then the topology T ϕI
on Lϕ(X) is generated by the family {||| · |||Lψ(X) : ψ ∈ Ψϕ1i(N)} of solid norms,

and by Theorem 2.3 T ϕI is the finest uniformly µ-continuous topology on Lϕ(X).

By Theorem 3.1 T ϕI = T ϕI (X), as desired.
The identities (4) follow from [10, Theorem 3.2]. �

As an application of Theorem 3.10 we get a characterization of uniformly µ-
continuous seminorms on Lϕ(X).

Theorem 3.11. Let ϕ ∈ Φc1i (i = 1, 2, 3, 4). Then for a solid seminorm ρ on
Lϕ(X) the following statements are equivalent:

(i) ρ is uniformly µ-continuous;
(ii) there exist ψ ∈ Ψϕ1i(N) and a number a > 0 such that

ρ(f) ≤ a|||f |||Lψ(X) for all f ∈ Lϕ(X).

Proof: (i) ⇒ (ii) Since T ϕI (X) is the finest uniformly µ-continuous topology
on Lϕ(X) (see Theorem 3.1), in view of Theorem 3.10 and [4, Chapter 4, § 18(4)]
there exist ψ1, . . . , ψn ∈ Ψϕ1i(N) and a number a > 0 such that

ρ(f) ≤ amax(|||f |||Lψ1 (X), . . . , |||f |||Lψn (X)) for all f ∈ Lϕ(X).
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Let ψ(u) = max(ψ1(u), . . . , ψn(u)) for u ≥ 0. Then ψ ∈ Ψϕ1i(N) and
|||f |||Lψi (X) ≤ |||f |||Lψ(X) for i = 1, . . . , n and all f ∈ Lϕ(X), so

ρ(f) ≤ a|||f |||Lψ(X) for all f ∈ Lϕ(X).

(ii) ⇒ (i) It is obvious, because for each ψ ∈ Ψϕ1i(X), ||| · |||Lψ(X) is a uniformly

µ-continuous norm on Lϕ(X). �

To present the general form of T ϕ
I
(X)-continuous linear functionals on Lϕ(X)

we recall the terminology concerning some spaces of X-weak measurable functions
(see [2]).
Given a function g : Ω → X∗ and x ∈ X we denote by gx the real function

on Ω defined by gx(ω) = g(ω)(x). A function g is said to be X-weak measurable
if the functions gx are measurable for each x ∈ X . We say that two X-weak
measurable functions g1, g2 are equivalent whenever g1(ω)(x) = g2(ω)(x) µ-a.e.
for all x ∈ X .
By L0(X∗, X) we denote the linear space of equivalence classes of all X-weak

measurable functions g : Ω → X∗. It is known that the set {|gx| : x ∈ BX} is
order bounded in L0 for every g ∈ L0(X∗, X).
The function ϑ : L0(X∗, X)→ L0 defined by

ϑ(g) = sup{|gx| : x ∈ BX} for g ∈ L0(X∗, X)

is called an abstract norm.
It is known that for f ∈ L0(X), g ∈ L0(X∗, X) the function 〈f, g〉 : Ω → R

defined by 〈f, g〉(ω) = 〈f(ω), g(ω)〉 = g(ω)(f(ω)) is measurable and

|〈f, g〉(ω)| ≤ ‖f(ω)‖X · ϑ(g)(ω) µ-a.e.

For an ideal I of L0 let

I(X∗, X) = {g ∈ L0(X∗, X) : ϑ(g) ∈ I}.

Theorem 3.12. Let ϕ ∈ Φc1i (i = 1, 2, 3, 4). Then for a linear functional F on
Lϕ(X) the following statements are equivalent:

(i) F is continuous for T ϕI (X);
(ii) F is γϕ-linear;

(iii) there exists a unique g ∈ Eϕ
∗

(X∗, X) such that

F (f) = Fg(f) =

∫

Ω
〈f(ω), g(ω)〉 dµ for f ∈ Lϕ(X).
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Proof: (i) ⇔ (ii) The equivalence follows from Theorem 3.6.

(i)⇒ (iii) Let ϕ ∈ Φc1i (i = 1, 2, 3, 4). In view of Theorem 3.10 (see also the proof
of Theorem 3.11) there exist ψ ∈ Ψϕ1i(N) and r > 0 such that F is bounded on

B
(ψ)
X (r) ∩ L

ϕ(X), where B
(ψ)
X (r) = {f ∈ Lψ(X) : |||f |||Lψ(X) ≤ r}. This means

that F is continuous on the linear subspace (Lϕ(X), Tψ(X)|Lϕ(X)) of the normed

space (Eψ(X), Tψ(X)|Eψ(X)). Hence by the Hahn-Banach extension theorem

there exists a Tψ(X)|Eψ(X)-continuous linear functional F on E
ψ(X) such that

F (f) = F (f) for f ∈ Lϕ(X). Since Eψ = L
ψ
a , we get E

ψ(X) = L
ψ
a (X). By [2,

Corollary 4.1] there exists a unique g ∈ (Lψa )
′(X∗, X) such that

F (f) =

∫

Ω
〈f(ω), g(ω)〉 dµ for f ∈ Lψa (X).

But (Lψa )
′ = Lψ

∗

(see [6, p.56]), so by [10, Corollary 3.5] we get Lψ
∗

⊂ Eϕ
∗

.

Finally, there exists a unique g ∈ Eϕ
∗

(X∗, X) such that

F (f) =

∫

Ω
〈f(ω), g(ω)〉 dµ for f ∈ Lψa (X).

Hence

F (f) = Fg(f) =

∫

Ω
〈f(ω), g(ω)〉 dµ for f ∈ Lϕ(X).

(iii) ⇒ (i) Let ϕ ∈ Φc1i (i = 1, 2, 3, 4). According to [10, Corollary 3.5] there

exists ψ ∈ Ψϕ1i(N) such that g ∈ Lψ
∗

(X∗, X). Then Lϕ(X) ⊂ Eψ(X) ⊂ Lψ(X).
Moreover, by [2, Theorem 1.1] using the Hölder’s inequality we get for f ∈ Lϕ(X)

|Fg(f)| ≤

∫

Ω
|〈f(ω), g(ω)〉| dµ ≤

∫

Ω
‖f(ω)‖X · ϑ(g)(ω) dµ

≤ 2|||f̃ |||ψ · |||ϑ(g)|||ψ∗ = 2|||f |||Lψ(X) · |||ϑ(g)|||ψ∗ .

This means that Fg is Tψ(X)|Lϕ(X)-continuous, so Fg is T
ϕ
I
(X)-continuous, be-

cause Tψ(X)|Lϕ(X) ⊂ T ϕI (X) by Theorem 3.10.
Thus the proof is complete. �
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