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On a class of ∂-equations without solutions

Telemachos Hatziafratis

Abstract. In this note we construct ∂-equations (inhomogeneous Cauchy-Riemann equa-
tions) without solutions. The construction involves Bochner-Martinelli type kernels and
differentiation with respect to certain parameters in appropriate directions.
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1. Introduction

If D is an open set in Cn and f is a C∞-function in D, one sets ∂f to be the
(0, 1)-form

∑

(∂f/∂zj) dzj where

∂f

∂zj
=
1

2

(

∂f

∂xj
+ i

∂f

∂yj

)

(zj = xj + iyj , xj , yj ∈ R, j = 1, . . . , n),

and, in general, if u =
∑

fj1...jq
dzj1 ∧ . . . ∧ dzjq

is a (0, q)-form with C∞ coeffi-

cients in D then ∂u =
∑

∂fj1...jq
∧ dzj1 ∧ . . . ∧ dzjq

.

Several constructions in complex analysis are reduced to the ∂-equation, i.e.,
given a (0, q)-form v (in D) find a (0, q−1)-form u so that ∂u = v; since ∂(∂u) = 0,

a necessary condition that the equation ∂u = v have a solution is that ∂v = 0. It
is usual to consider the quotient (the (0, q)-∂-cohomology)

H
(0,q)

∂
(D) =

= {(0, q)-forms v in D with ∂v = 0}/{∂u : u is a (0, q − 1)-form in D}

which measures the “insolvability” of the ∂-equation in D (for (0, q)-forms).

If K ⊂ Cn is a convex compact set then H
(0,n−1)

∂
(Cn − K) is infinite dimen-

sional (see for example [4, p. 156]). The proof is based on Martineau’s theorem
of the representation of the ∂-cohomology classes as holomorphic functions in an
appropriate domain (depending on K). Here we will give a simple proof of this
using the Bochner-Martinelli integral. In fact our proof works in more general
settings, for example if we replace K by any compact set (not necessarily con-

vex). We also cover the case of (0, m − 1)-∂-cohomology if K is replaced by an
appropriate closed neighborhood of some analytic varieties of codimension m.
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After this brief introduction we come to the main point of this note which
is to construct some classes of ∂-equations without solution. The simplest such
example is the one given in Rudin [6, p. 355]. As we pointed out, our construction
involves Bochner-Martinelli type kernels and differentiation, in appropriate direc-
tions, with respect to certain parameters. We start by explaining this construction
in a simple case and generalizing it gradually to more involved cases.

2. Examples of insolvable ∂-equations

For z 6= ζ, let us consider the Bochner-Martinelli kernel with singularity at ζ:

k(z, ζ) =:
1

|z − ζ|2n

n
∑

j=1

(−1)j−1(zj − ζj) dz1 ∧ . . . (j) . . . ∧ dzn.

We recall its basic properties: it is a (0, n− 1)-form in z ∈ C
n − {ζ}, ∂zk(z, ζ) =

0 and reproduces holomorphic functions, i.e., for a holomorphic function f in
neighborhood of D (D is assumed to be a bounded domain in C

n with smooth
boundary) and ζ ∈ D,

∫

z∈∂D
f(z)k(z, ζ) ∧ ω(z) = cnf(ζ)

where ω(z) = dz1 ∧ . . . ∧ dzn and cn = (2πi)n/(n − 1)! (see Kytmanov [5, Chap-
ter 1]).
Let I be the set of n-tuples a = (a1, . . . , an) where a1, . . . , an are non-negative

integers. For every a ∈ I let us define the differential form ηa by setting

ηa(z) =
∂a1+...+ank(z, ζ)

∂ζa1
1 . . . ∂ζan

n

∣

∣

∣

∣

ζ=0

.

Then ηa is a (0, n−1)-form with C∞-coefficients in C
n−{0} where it is ∂-closed,

i.e., ∂ηa = 0; this follows from the fact that ∂zk(z, ζ) = 0.
We claim that for each finite subset A ⊂ I and any λa ∈ C, a ∈ A, the ∂-

equation ∂u =
∑

a∈A λaηa has no solution in Cn−{0} unless λa = 0 for all a ∈ A
(of course now we assume that n ≥ 2). To prove this let us assume that this
equation has a solution u; then

(1)
∑

a∈A

λaηa ∧ ω = ∂u ∧ ω = d[u ∧ ω].

On the other hand

(2)

∫

z∈∂B(0,1)
f(z)ηa(z) ∧ ω(z) = cn

∂a1+...+anf

∂za1
1 . . . ∂zan

n
(0)
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for every holomorphic function f in a neighborhood of B(0, 1), where B(0, 1) =
{z ∈ Cn : |z| < 1}. Indeed for ζ ∈ B(0, 1),

∫

z∈∂B(0,1)
f(z)k(z, ζ) ∧ ω(z) = cnf(ζ),

and applying the differential operator ∂a1+...+an/∂ζa1
1 . . . ∂an

n and evaluating at
ζ = 0 we obtain (2).

Next applying (2) with f = fβ(z) = z
β1
1 . . . z

βn

n , for each β = (β1, . . . , βn) ∈ A,
we obtain

(3)

∫

z∈∂B(0,1)
fβ(z)ηa(z) ∧ ω(z) =

{

0 if a 6= β

cnβ1! . . . βn! if a = β.

But (1) and Stokes’s theorem give

∫

∂B(0,1)

∑

a∈A

λafβηa ∧ ω =

∫

∂B(0,1)
d[fβu ∧ ω] = 0.

The above equation, taking into consideration (3), gives that λβ = 0, and the
claim follows.
It follows from what we have just proved that the set {[ηa] : a ∈ I} is linearly

independent in H
(0,n−1)

∂
(Cn−{0}); it follows that these vector spaces are infinite

dimensional: dim H
(0,n−1)

∂
(Cn − {0}) = ∞. More generally if K ⊂ Cn is a

compact set with 0 ∈ K then the cohomology classes {[ηa] : a ∈ I} are linearly

independent in H
(0,n−1)

∂
(Cn − K). This can be proved in the same exactly way

replacing the sphere S(0, 1) by a sufficiently large sphere surrounding the compact

set K. In particular dim H
(0,n−1)

∂
(Cn −K) =∞; as we said in the introduction,

in the caseK is a convex compact set in Cn, this is proved (by a different method)
in Henkin-Leiterer [4, p. 156].
Now we are going to generalize the above construction by replacing the set

Cn − {0} = Cn − {z1 = z2 = . . . = zn = 0} by a more general set of the form
Cn − {z ∈ Cn : h1(z) = . . . = hm(z) = 0} (with hj ∈ O(Cn) and m ≤ n) and
the set Cn − K by a set of the form D − A, where D ⊂ Cn is open and A is an
appropriate closed set of D and satisfying a simple geometric condition; moreover
we will construct explicitly an infinite set of linearly independent cohomology

classes in H
(0,m−1)

∂
(D − A) (thus giving a large class of ∂-equations without

solutions). More precisely we will prove the following

Theorem 1. Let D be a domain in Cn, h1, . . . , hm ∈ O(D) holomorphic func-
tions on D and V = {z ∈ D : h1(z) = . . . = hm(z) = 0}. Suppose A ⊂ D is
a closed (in D) subset, containing V , such that there exist a point p ∈ V which
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is a regular point of V (in the sense that dh1 ∧ . . . ∧ dhm 6= 0 at the point p)
and a complex submanifold X of D of dimension m, meeting V only at p and

transversally, so that A ∩ X is a compact set. Then dim H
(0,m−1)

∂
(D − A) =∞.

Proof: Let us consider the (0, m − 1)-form:

θ(z, ζ) =

m
∑

j=1

(−1)j−1(hj(z)− hj(ζ))∂h1(z) ∧ . . . (j) . . . ∧ ∂hm(z)

[ m
∑

j=1

|hj(z)− hj(ζ|
2
]m

;

this is a (0, m− 1)-form in z defined for z ∈ D−{z ∈ D : hj(z) = hj(ζ), 1 ≤ j ≤
m}; its coefficients depend on the parameter ζ ∈ D.
Also let us consider a holomorphic vector field w(ζ) tangent to X in a neigh-

borhood of p with w(p) 6= 0. Then express w(ζ) in terms of the basic fields
∂/∂ζ1, . . . , ∂/∂ζn to obtain

w(ζ) =

n
∑

j=1

cj(ζ)

(

∂

∂ζj

)

ζ

for some holomorphic functions cj(ζ) in a neighborhood of p. Since w(p) 6= 0 we
may assume that c1(p) 6= 0 and hence c1(ζ) 6= 0 in a neighborhood U of p; in U
define

ξ(ζ) =

(

∂

∂ζ1

)

ζ

+
n

∑

j=2

cj(ζ)

c1(ζ)

(

∂

∂ζj

)

ζ

.

Now for k = 0, 1, 2, . . . , define ηk by the formula

ηk(z) = ξk
ζ θ(z, ζ)|ζ=p;

here ξk
ζ acts in the variable ζ on each coefficient of the form θ(z, ζ). It is clear

that ηk is a (0, m − 1)-form with C∞ coefficients on D − V ⊃ D − A. Moreover
∂zθ(z, ζ) = 0 for each fixed ζ; this is a straightforward computation. Therefore
∂ηk = 0 in D − A for every k and consequently the (0, m − 1)-forms ηk define

cohomology classes in H
(0,m−1)

∂
(D − A), denoted by [ηk].

We will prove that the set {[ηk] : k = 0, 1, 2, . . .} is C-linearly independent in

H
(0,m−1)

∂
(D − A). For this let λ0, . . . , λN ∈ C so that

N
∑

k=0

λk[ηk] = 0 in H
(0,m−1)

∂
(D − A);
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this means that there is a (0, m − 2)-form u with C∞ coefficients in D − A such
that

N
∑

k=0

λkηk = ∂u in D − A (here we assume m ≥ 2).

Since X ∩A is compact there is a domain G ⊂⊂ X with smooth boundary which
contains X ∩ A, i.e., ∂G ⊂ X − A.
Then, for every holomorphic function f on D, we have

∫

∂G
f∂u ∧ ω(h) =

∫

∂G
d [fu ∧ ω(h)] = 0,

by Stokes’s theorem, where ω(h) = ∂h1 ∧ . . . ∧ ∂hm. Therefore

(4)

N
∑

k=0

λk

∫

∂G
fηk ∧ ω(h) = 0.

Since d[fηk ∧ ω(h)] = 0 (with differential forms restricted to X) we have

(5)

∫

∂G
fηk ∧ ω(h) =

∫

∂B
fηk ∧ ω(h)

where B ⊂ X is a small domain with smooth boundary containing the point p;
here we used also our assumption that X ∩ V = {p}.
On the other hand

(6)

∫

∂B
fηk ∧ ω(h) = cmξkf(p)

where cm = (2πi)m/(m − 1)!, provided that B is sufficiently small.
Indeed since p is a regular point of V and X meets V at p and transversally it
follows that B can be chosen sufficiently small so that for each ζ ∈ B the map:

B ∋ z → (h1(z)− h1(ζ), . . . , hm(z)− hm(ζ))

is one-to-one; hence the multiplicity of the zero ζ of this map is 1. Thus by [1,
p. 25]

∫

z∈∂B
f(z)θ(ζ, z) ∧ ω(h)(z) = cmf(ζ) for ζ ∈ B.

Applying ξk
ζ to both sides of this equation (this can be done since ξζ are tangent

to X near the point p) and evaluating at ζ = p we obtain (3).
Now apply (4) and (5) with f = (z1 − p1)

s for s = 0, 1, 2, . . . to obtain

(7)

N
∑

k=0

λk

∫

∂B
(z1 − p1)

sηk ∧ ω(h) = 0, s = 0, 1, 2, . . . .
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But by (6)

(8)

∫

∂B
(z1 − p1)

sηk ∧ ω(h) = cm

(

ξk(ζ1 − p1)
s
)
∣

∣

∣

ζ=p
.

Also, as a simple computation shows,

ξk =
∂k

∂ζk
1

+ Lk

where Lk is a differential operator with the property Lk[(ζ1 − p1)
s]|ζ=p = 0 for

all s. Hence

(

ξk(ζ1 − p1)
s
)∣

∣

∣

ζ=p
=

∂k

∂ζk
1

((ζ1 − p1)
s)|ζ=p =

{

k! if k = s

0 if k 6= s.

This, combined with (7) and (8), gives that λs = 0, s = 0, 1, . . . , N .
Thus the linear independence of the classes [ηk], k = 0, 1, 2, . . . has been estab-
lished and the proof is complete.

�

Remarks. (i) With the notation of Theorem 1, suppose that the Jacobian
∂(h1, . . . , hm)/∂(z1, . . . , zm) is different from zero at the point p of V . Then
X = {z ∈ D : zm+1 = pm+1, . . . , zn = pn} meets V at p transversally and if the
closed subset A ⊂ D, which contains V , is such that there is a neighborhood U
of p and a compact subset K ⊂ X ∩ U so that p ∈ K and X ∩ U − K ⊂ D − A,

then dim H
(0,m−1)

∂
(D−A) =∞. In fact a similar proof shows that the set {[ηa]:

where a = (a1, . . . , am) with a1, . . . , am being non-negative integers}, is linearly

independent in H
(0,m−1)

∂
(D − A) where the (0, m − 1)-forms ηa are defined as

follows:

ηa(z) =
∂a1+...+amθ(z, ζ)

∂ζa1
1 . . . ∂ζam

m

∣

∣

∣

∣

ζ=p

.

A special case of this is when A = V and we obtain, in particular, that

dim H
(0,m−1)

∂
(D − V ) = ∞; this is proved (by a different method) in Gunning

[2, p. 163].

(ii) Notice that Theorem 1 holds even for m = 1; then it simply says that
dim O(D − A) = ∞. Thus Theorem 1 may be considered as a generalization of

this fact and the space H
(0,m−1)

∂
(D − A) plays, in a sense, the role of O(D − A).

(iii) A similar construction can also be carried out with the Cauchy-Fantappie
type kernels of [3].
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3. Replacing D by a complex manifold

Let M be an n-dimensional complex manifold on which global holomorphic
functions give coordinates at any point of M , i.e., for any point p of M there
exist holomorphic functions ζ1, . . . , ζn on M so that (ζ1, . . . , ζn) restricted to a
sufficiently small neighborhood of p define holomorphic coordinates for M at p.
For example a Stein manifold (i.e., a closed submanifold of some Cn) or any open
subset of a Stein manifold satisfies this condition. For such manifolds we can
prove the following

Theorem 2. Let M be an n-dimensional complex manifold on which global
holomorphic functions give coordinates at any point of M . Let h1, . . . , hm ∈
O(M) be holomorphic functions on M and V = {z ∈ M : h1(z) = . . . = hm(z) =
0}. Suppose A ⊂ M is a closed subset, containing V , such that there exist a
point p ∈ V which is a regular point of V and a complex submanifold X of M of

dimension m, meeting V only at p and transversally, so that A ∩ X is a compact

set. Then dim H
(0,m−1)

∂
(M − A) =∞.

Proof: Choose functions ζ1, . . . , ζn, holomorphic on M , which give coordinates
at p and ζ1(p) = . . . = ζn(p) = 0. Then, as in the proof of Theorem 1, we may
choose a holomorphic vector field of the form

ξ(ζ) =

(

∂

∂ζ1

)

ζ

+

n
∑

j=2

cj(ζ)

c1(ζ)

(

∂

∂ζj

)

ζ

in a neighborhood U (in M) of p which is tangential to X at any point of X ∩U .
Then the proof can be continued as in the case of Theorem 1, using at the end
the functions zs

1, s = 0, 1, 2 . . . , which are holomorphic functions on all of M . �
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